Способы отогрева грунта в зимнее время. Прогрев грунта в зимнее время

Трудоемкость извлечения мерзлого грунта крайне велика по причине его значительной механической прочности. К тому же замерзшее состояние грунта осложняет задачу по его выемке из-за невозможности задействования некоторых типов землеройных и землеройно-транспортных машин, снижению производительности и ускоренному износу рабочих частей оборудования. И все же одним достоинством мерзлый грунт обладает - рыть котлованы в нем можно без устройства откосов.

Существует четыре основных способа проведения выемки грунта в холодное время года:

  • защита земельного участка работ от промерзания с дальнейшим использованием обычных землеройных машин;
  • предварительное рыхление и выемка замерзшего грунта;
  • прямая разработка грунта в замерзшем состоянии, т.е. без какой-либо подготовки;
  • доведение до талого состояния и последующая выемка.

Подробно рассмотрим каждый из приведенных способов.

Предохранение грунтов от промерзания

Защиту от низких температур грунту обеспечивают путем взрыхления верхнего слоя, застилкой утеплительными материалами и заливкой водных растворов соли.

Распахивание и боронование земельного участка проводится в секторе дальнейших работ по извлечению грунта. Результатом такого рыхления становится ввод большого количества воздуха в грунтовые слои, образование замкнутых воздушных пустот, препятствующих теплоотдаче и сохраняющих положительную температуру в грунте. Распашка проводится рыхлителями или факторными плугами, ее глубина - 200-350 мм. Следом выполняется боронование в одном или двух направлениях (перекрестных) на глубину 150-200 мм, что в итоге повышает термоизоляционные свойства грунта как минимум на 18-20%.
Роль утеплителя при укрывании участка будущих работ выполняют дешевые местные материалы - сухой мох, опилки и стружки, опавшие листья деревьев, шлак и маты из соломы, можно воспользоваться пвх пленкой. Насыпные материалы размещаются на поверхности 200-400 мм слоем. Утепление поверхности грунта производится чаще всего на небольших земельных участках.

Мерзлый грунт - рыхление и выемка

Чтобы снизить механическую прочность зимнего грунта применяются методы его механической и взрывной обработки. Извлечение взрыхленной таким образом земли после проводится обычным способом - при помощи землеройных машин.

Механическое рыхление. В процессе его осуществления грунт режется, скалывается и раскалывается вследствие нагрузок статического или динамического характера.

Статические нагрузки на мерзлый грунт производится металлическим инструментом режущего типа - зубом. Специальная конструкция с гидравлическим приводом, оборудованная одним зубом и более, проводится по участку работ будучи размещенной на гусеничному экскаваторе. Такой метод позволяет снимать грунт послойно на глубину до 400 мм за каждый проход. В процессе рыхления оборудованная зубом установка прежде протягивается параллельно предыдущим проходам с отступом 500 мм от них, затем ее проводят поперечно им под углом от 60 до 90 о. Объемы выемки мерзлого грунта при этом достигают 20 кубометров в час. Послойная статическая разработка мерзлой земли обеспечивает применение установок рыхления на любой глубине промерзания грунта.

Ударные нагрузки на грунтовые участки позволяют снизить механическую прочность замерзшей земли благодаря динамическому воздействию. Применяются молоты свободного падения, обеспечивающие раскалывание и рыхление, или молоты с направленным действием для рыхления расколом. В первом случае используется молот в виде шара или конуса наибольшей массы в 5 т - его канатом закрепляют на стреле экскаватора и после подъема до пяти-восьмиметровой высоты сбрасывают на участок работ. Шарообразные молоты лучше всего подходят для песчаников и супесей, на глинистых почвах эффективны конические молоты - при условии, что глубина промерзания не превышает 700 мм.

Направленное действие на мерзлый грунт осуществляют дизель-молоты, установленные на трактор или экскаватор. Они применяются на любых грунтах при условии глубины промерзания не более 1300 мм.

Снижение прочности мерзлой земли путем взрыва наиболее эффективно - этот метод позволяет выполнять зимнюю выемку грунта на глубине от 500 мм и при потребности извлечения значительных объемов. На незастроенных участках выполняется открытый подрыв, а на частично застроенных необходимо предварительно выставить укрытия и ограничители взрыва - массивные плиты из металла или железобетона. Взрывчатое вещество закладывается в щель или шпур (при глубине рыхления до 1500 мм), а при потребности выемки грунта на большей глубине - в щели и скважины. Для нарезания щелей применяются буровые или фрезерные машины, щели выполняются на 900-1200 мм дистанции друг от друга.

Взрывчатка укладывается в среднюю (центральную) щель, а расположенные по соседству щели обеспечат компенсацию взрывного сдвига мерзлого грунта и погасят ударную волну, тем самым препятствуя разрушениям вне зоны работ. В щель закладывается удлиненный заряд или несколько коротких зарядов сразу, затем ее заполняют песком с утрамбовкой. После взрыва мерзлый грунт в секторе производства работ будет полностью раздроблен, при этом стенки траншеи или котлована, создание которых и было целью выемки земли, останутся неповрежденными.

Разработка мерзлого грунта без его подготовки

Существует два способа прямой разработки грунта в условиях низких температур - механический и блочный.

Технология механической разработки мерзлых грунтов базируется на силовом воздействии, в некоторых случаях включающим в себя удар и вибрацию. В ходе его осуществления используются как обычные машины для землеройных работ, так и оснащенные специальным инструментом.

На небольших глубинах промерзания работы по извлечению грунта применяются обычные землеройные машины: экскаваторы с прямым или обратным ковшом; драглайны; скреперы; бульдозеры. Одноковшовые экскаваторы могут оснащаться специальным навесным оборудованием - ковшами с захватными клещами и виброударными зубьями. Такое оборудование позволяет воздействовать на мерзлый грунт посредством избыточного режущего усилия и вести его послойную разработку, соединив в одной рабочей операции рыхление и экскавацию.

Послойное извлечение грунта выполняется специальной землеройно-фрезерной установкой, срезающей с участка работ слои шириной 2600 мм и глубиной до 300 мм. В конструкции это машины предусмотрено бульдозерное оборудование, обеспечивающие перемещение срезанного грунта.

Суть блочной разработки грунтов заключается в резке мерзлого грунта на блоки с последующим их извлечением при помощи трактора, экскаватора или строительного крана. Блоки нарезаются путем пропиливания грунта резами, перпендикулярными между собой. Если земля промерзла неглубоко - до 600 мм - то для извлечения блоков достаточно выполнить прорезы вдоль участка. Щели прорезаются на 80% глубины, на которую промерз грунт. Этого вполне достаточно, поскольку слой со слабой механической прочностью, расположенный между промерзшей зоной грунта и зоной, сохраняющей положительную температуру, не помешает отделению грунтовых блоков. Дистанция между щелями-прорезями должна примерно на 12% быть меньше, чем кромочная ширина ковша экскаватора. Извлечение грунтовых блоков производится при помощи экскаваторов с обратной лопатой, т.к. выгружать их из ковша прямой лопаты довольно трудно.

Способы оттаивания мерзлого грунта

Они классифицируются по направлению подачи тепла в грунт и виду используемого теплоносителя. В зависимости от направления подачи тепловой энергии существует три способа разморозить грунт - верхний, нижний и радиальный.

Верхняя подача тепла в землю наименее эффективна - источник тепловой энергии находится в воздушном пространстве и активно охлаждается воздухом, т.е. значительная часть энергии расходуется попусту. Однако этот способ оттаивания организоваться проще всего и в этом его преимущество.

Процедура оттаивания, проводимая из-под земли, сопровождается минимальными затратами энергии, поскольку тепло распространяется под прочным слоем льда на поверхности грунта. Главный минус данного способа - потребность выполнения сложных подготовительных мер, поэтому он применяется редко.


Радиальное распространение тепловой энергии в толще грунта осуществляется при помощи вертикально утопленных в землю тепловых элементов. Эффективность радиального оттаивания находится между результатами верхнего и нижнего прогревания грунта. Для осуществления этого способа требуются несколько меньшие, но все же достаточно высокие объемы работ по подготовке прогрева.

Разморозка грунта зимой проводится с использованием огня, электрических термоэлементов и горячего пара.
Огневая методика применима для рытья относительно узких и неглубоких траншей. На поверхности участка работ выставляется группа коробов из металла, каждый из которых представляет собой разрезанный пополам усеченный конус. Они ставятся разрезанной стороной на землю вплотную друг к другу и образуют галерею. В первый короб закладывается топливо, которое затем поджигается. Галерея из коробов становится горизонтальной вытяжной трубой - вытяжка идет из последнего короба, а продукты сгорания движутся по галерее и обогревают грунт. Чтобы понизить потери тепла от контакта корпуса коробов с воздухом, они засыпаются шлаком или талым грунтом с участка, работы на котором проводились ранее. Образовавшуюся по окончании прогрева полосу размороженного грунта необходимо засыпать опилками или застелить пвх пленкой, чтобы аккумулированное тепло способствовало дальнейшему оттаиванию.

Электрический прогрев мерзлого грунта базируется на способности нагрева материалов при пропуске через них электротока. С этой целью применяются вертикально и горизонтально ориентированные электроды.

Горизонтальное оттаивание производится электродами из круглой или полосовой стали, уложенной на грунт - чтобы подключить к ним электропровода, противоположные концы стальных элементов загибают на 150-200 мм. Прогреваемый участок с размещенными на нем электродами засыпается опилками (толщина слоя - 150-200 мм), предварительно смоченными солевым раствором (концентрация соли - 0,2-0,5%) в количестве, равном исходной массе опилок. Задача опилок, пропитанных солевым раствором - проводить ток, поскольку мерзлый грунт в начальной стадии работ ток проводить не будет. Сверху слой опилок закрывается пленкой пвх. По мере прогрева верхний грунтовый слой становится проводником тока между электродами и интенсивность оттаивания значительно возрастает - прежде размораживается средний слой грунта, а затем и расположенные ниже. По мере включения слоев грунта в проведение электротока слой опилок начинается выполнять вторичную задачу - сохранение тепловой энергии в участке работ, для чего необходимо укрыть опилки деревянными щитами или толем. Оттаивание мерзлого грунта горизонтальными электродами производится на глубину промерзания до 700 мм, затраты электроэнергии при обогреве кубометра земли составляют 150-300 МДж, опилочный слой прогревается до 90 о С, не более.

Вертикальное электродное оттаивание производится при помощи стержней, изготовленных из арматурной стали и имеющих один острый конец. Если глубина промерзания грунта равна 700 мм, стержни вбиваются прежде на глубину 200-250 мм шахматным порядком, а после оттаивания верхнего слоя их утапливают на большую глубину. В процессе работ по вертикальному размораживанию грунта требуется устранять снег, накопившийся на поверхности участка, засыпать его опилками, смоченными солевым раствором. Процесс прогрева идет также, как и при горизонтальном оттаивании с применением полосовых электродов - по мере оттаивания верхних слоев важно периодически погружать электроды дальше в грунт до глубины 1300-1500 мм. По окончании вертикального оттаивания мерзлого грунта электроды извлекаются, но вся площадка остается под слоем опилок - еще 24-48 часов грунтовые слои будут размораживаться самостоятельно благодаря накопленной тепловой энергии. Затраты электроэнергии на работы по вертикальному оттаиванию немного ниже, чем при выполнении горизонтального размораживания.

Для электродного обогрева грунта по направлению снизу вверх необходима предварительная подготовка скважин - их бурят на 150-200 мм глубже, чем глубина промерзания. Скважины располагаются в шахматном порядке. Данный способ характеризуется меньшими затратами электроэнергии - около 50-150 МДж на кубометр грунта.

Стержни электродов вводятся в подготовленные скважины, достигая не промерзшего слоя земли, поверхность участка засыпается отпилками, смоченными солевым раствором, поверх укладывается пластиковая пленка. В результате процесс оттаивания идет в двух направлениях - сверху вниз и снизу вверх. Данный метод оттаивания мерзлого грунта осуществляется редко и исключительно при необходимости срочно разморозить участок для выемки земли.


Оттаивание паром проводится при помощи специальных приспособлений - паровых игл, выполненных из металлических труб диаметром 250-500 мм, по которым в грунт вводится горячий пар. Нижняя часть паровой иглы оборудуется металлическим наконечником, содержащим множество 2-3 мм отверстий. К верхней (полой) части трубы-иглы подключается резиновый шланг, снабженный краном. Для установки паровых игл в грунте пробуриваются скважины (шахматный порядок, дистанция 1000-1500 мм) протяженностью 70% от требуемой глубины оттаивания. На отверстия скважины одеваются металлические колпаки, оснащенные сальниками, через которые будет пропущена паровая игла.

После установки игл по шлангу в них под давлением 0,06-0,07 МПа подается пар. Поверхности оттаиваемого участка земли закрывается слоем опилок. Потребление пара на прогрев кубометра грунта - 50-100 кг, по расходу тепловой энергии этот способ в 1,5-2 раза более затратный по сравнению с прогревов заглубленными электродами.

Способ оттаивания мерзлого грунта при помощи контактных электронагревателей внешне схож с паровым размораживанием. В металлические полые иглы, длиной порядка 1000 мм и диаметром не более 60 мм, устанавливаются нагревательные элементы с изоляцией от металлического корпуса иглы. При подключении электропитания нагревательный элемент сообщает тепловую энергию корпусу иглы-трубы, а она - слоям грунта. Тепловая энергия в процессе прогрева распространяется радиально.

Основной целью прогрева бетона является соблюдение правильных условий вывода влаги при проведении работ в зимнее время или при их ограниченных сроках. Принцип действия технологии заключается в поддержке внутри или вокруг толщи раствора повышенной температуры (в пределах 50-60 °С), методы реализации зависят от типа и размера конструкций, марки прочности смеси, бюджета и условий внешней среды. Для достижения нужного эффекта обогрев должен быть равномерным и экономически обоснованным, лучшие результаты наблюдаются при комбинировании.

Обзор методов обогрева

1. Электроды.

Простой и надежный способ электропрогрева, заключающийся в размещении арматуры или катанки толщиной в 0,8-1 см во влажном растворе, образуя с ним единый проводник. Выделение тепла происходит равномерно, зона воздействия достигает половины расстояния от одного электрода к другому. Рекомендуемый интервал между ними варьируется от 0,6 до 1 м. Для запуска работы цепи концы подключают к ИП с пониженным напряжением от 60 до 127 В, превышение этого диапазона возможно только при бетонировании неармированных систем.

Сфера применения включает конструкции с любым объемом, но максимальный эффект достигается при подогреве стен и колонн. Расход электроэнергии в этом случае значительный – 1 электрод требует не менее 45 А, число подключаемых стержней к понижающему трансформатору ограничено. По мере высыхания раствора подаваемое напряжение и затраты возрастают. При заливке ЖБИ технология прогрева электродами требует согласования со специалистами (составляется проект их размещения, исключающий контакт с металлическим каркасом). По окончании процесса стержни остаются внутри, повторная эксплуатация исключена.

2. Закладка проводов.

Суть метода заключается в расположении в толще раствора электрического провода (в отличие от электродов – изолированного), нагреваемого при пропускании тока и равномерно отдающего тепло. В качестве рабочих элементов используется один из следующих видов:

  • ПНСВ – изолированный поливинилхлоридом стальной кабель.
  • Саморегулирующие секционные разновидности: КДБС или ВЕТ.

Применение проводов считается самым эффективным при необходимости заливки перекрытий или фундамента зимой, они практически без потерь преобразуют электрическую энергию в тепловую и обеспечивают ее равномерное распределение.

ПНСВ обходится дешевле, при необходимости он закладывается по всей площади конструкции (длина ограничена только мощностью понижающего трансформатора), для данных целей подойдет сечение от 1,2 до 3 мм. К особенности технологии обогрева относят потребность в использовании установочных проводов с алюминиевой жилой на открытых участках. Подходящими характеристиками обладает кабель АПВ. Схема ПНСВ 1.2 исключает перехлесты, рекомендуемый шаг между соседними кольцами и линиями составляет 15 см.

Саморегулирующие секции (КДБС или ВЕТ) эффективны при обогреве зимой без возможностей задействования трансформатора или подачи 380 В. Их изоляция лучше, чем у ПНСВ, но стоят они дороже. Схема укладки провода в целом аналогична предыдущей, но его длина ограничена, она подбирается из учета размеров конструкции, разрезать его нельзя. При добавлении в нее устройства контроля за силой тока прогрев осуществляется более плавно и экономно. В целом, оба варианта считаются эффективными при бетонировании зимой, к недостаткам относят лишь сложность укладки и невозможность повторного применения.

3. Тепловые пушки.

Суть технологии заключается в повышении температуры воздуха с помощью электрических, газовых, дизельных и других обогревателей. Обрабатываемые элементы закрывают от холода брезентом, создание такого шатра позволяет достичь внутри условий от +35 до 70 °C. Обогрев осуществляется за счет внешнего источника, который без проблем переносится на другое место без потребности в расходе провода или специальной аппаратуры. Из-за сложностей с закрытием крупных объектов и воздействия только на внешние слои этот способ чаще используется при небольших объемах бетонирования или при резком падении температуры. Энергозатраты в сравнении с электродами или ПНСВ приемлемые, при задействовании дизельных пушек возможен обогрев на объектах без электроснабжения.

4. Термоматы.

Принцип действия этой технологии основан на покрытии свежезалитого раствора полиэтиленом и полотнами инфракрасной пленки во влагостойкой оболочке. Термоматы подключаются к обычной сети, величина энергопотребления варьируется в пределах 400-800 Вт/м2, при достижении границы в +55 °С они выключаются, что позволяет снизить затраты на электропрогрев бетона. Максимальный эффект от применения достигается зимой, в том числе при комбинировании с химическими добавками.

Риск замерзания влаги внутри ЖБИ исключается через 12 часов, процесс полностью автономный. В отличие от проводов ПНСВ термоматы без проблем контактируют с открытым воздухом и влагой, помимо бетонных конструкций они успешно используются для прогрева грунта.

При правильном уходе (отсутствие нахлестов, выполнение изгибов строго по отведенным линиям, защите полиэтиленом) ИК-пленки выдерживают не менее 1 года активной эксплуатации. Но при всех плюсах технология плохо подходит для обогрева массивных монолитов, воздействие матов локальное.

5. Греющая опалубка.

Принцип действия аналогичен с предыдущим: между двумя листами влагостойкой фанеры размещается инфракрасная пленка или изолированные асбестом провода, выделяющие тепло при подключении к сети. Этот способ обеспечивает прогрев в зимнее время на глубину до 60 мм, благодаря локальному воздействию исключен риск растрескивания или перенапряжения. По аналогии с матами эти нагревательные элементы имеют термозащиту (биметаллические датчики с автовозвратом). Сфера применения включает конструкции с любым наклоном, лучшие результаты наблюдаются при заливке монолитных объектов, в том числе при ограниченных сроках строительства, но простой технологию назвать нельзя. При бетонировании фундамента в греющую опалубку заливают раствор с температурой не ниже +15 °C, грунт нуждается в предварительном обогреве.

6. Индукционный метод.

Принцип действия основан на образовании тепловой энергии под воздействием вихревых токов, способ хорошо подходит для колонн, балок, опор и других вытянутых элементов. Индукционная обмотка размещается поверх металлической опалубки и создает электромагнитное поле, в свою очередь оказывающее влияние на арматурные стержни каркаса. Обогрев бетона осуществляется равномерно и качественно при среднем расходе энергии. Подойдет также для предварительной подготовки щитов опалубки зимой.

7. Пропаривание.

Промышленный вариант, для реализации этого способа требуется двухстенная опалубка, не только выдерживающая массу раствора, но и подводящая к поверхности горячий пар. Качество обработки более чем высокое, в отличие от остальных методов, при пропарке обеспечиваются максимально подходящие условия для гидратации цемента, а именно – влажная горячая среда. Но из-за сложности эта методика используется редко.

Сравнение преимуществ и ограничений технологий прогревания

Способ Оптимальная сфера применения Преимущества Недостатки, ограничения
Электродами Заливка вертикальных конструкций Быстрый монтаж и прогрев, достаточно размещения электрода в бетоне и подключения его к источнику переменного тока Значительные энергозатраты – от 1000 кВт на 3-5 м3
ПНСВ Фундаменты и перекрытия при бетонировании зимой Высокая эффективность, равномерность. Обогрев проводом позволяет достичь 70% прочности за несколько дней Потребность в понижающем трансформаторе и проводе для холодных концов
ВЕТ или КДБС То же, плюс работа от простой сети Высокая стоимость кабеля, ограничение в длине секций
Тепловыми излучателями Конструкции с небольшой толщиной Возможность контроля температуры, применение при резком похолодании, минимум проводов, относительно низкие энергозатраты Воздействие осуществляется локально, качественный обогрев происходит только во внешних слоях
Термоматами Грунт перед заливкой раствора, перекрытия Многократное применение, возможность контроля за температурой смести, достижение 30% марочной прочности в течении суток Высокая стоимость матов, наличие подделок
Греющей опалубкой Объекты быстрого возведения (совмещение с технологией скользящей опалубки) Обеспечение равномерного прогрева, возможность качественного замоноличивания стыков Типовые размеры, высокая цена, средний КПД
Индукционной обмоткой Колонны, ригели, балки, опоры Равномерность Не подходит для перекрытий и монолитов
Пропаривание Объекты промышленного строительства Хорошее качество прогрева Сложность, дороговизна

Значительная часть территории России расположена в зонах с продолжительной и суровой зимой. Однако строительство осуществляется круглогодично, в этой связи около 15% общего объема земляных работ приходится выполнять в зимних условиях и при мерзлом состоянии грунта. Особенность разработки грунта в мерзлом состоянии за ключается в том, что при замерзании грунта механическая прочность его возрастает, а разработка затрудняется. Зимой значительно возрастает трудоемкость разработки грунта (ручных работ в 4...7 раз, механизированных в 3...5 раз), ограничивается применение некоторых механизмов - экскаваторов, бульдозеров, скреперов, грейдеров, в то же время выемки зимой можно выполнять без откосов. Вода, с которой много неприятностей в теплое время года, в замерзшем состоянии становится союзником строителей. Иногда отпадает необходимость в шпунтовых ограждениях, практически всегда в водоотливе. В зависимости от конкретных местных условий используют следующие методы разработки грунта:

■ предохранение грунта от промерзания с последующей разработкой обычными методами;

■ оттаивание грунта с разработкой его в талом состоянии;

■ разработка грунта в мерзлом состоянии с предварительным рыхлением;

■ непосредственная разработка мерзлого грунта.

5.11.1. Предохранение грунта от промерзания

Этот метод основан на искусственном создании на поверхности участка, намеченного к разработке в зимнее время, термоизоляционного покрова с разработкой грунта в талом состоянии. Предохранение проводится до наступления устойчивых отрицательных температур, с заблаговременным отводом с утепляемого участка поверхностных вод. Применяют следующие способы устройства термоизоляционного покрытия: предварительное рыхление грунта, вспахивание и боронование грунта, перекрестное рыхление, укрытие поверхности грунта утеплителями и др.

Предварительное рыхление грунта, а также вспахивание и боронование осуществляется накануне наступления зимнего периода на участке, предназначенном для разработки в зимних условиях. При рыхлении поверхности грунта верхний слой приобретает рыхлую структуру с заполненными воздухом замкнутыми пустотами, обладающими достаточными теплоизоляционными свойствами. Вспашку производят тракторными плугами или рыхлителями на глубину 30...35 см с последующим боронованием на глубину 15...20 см. Такая обработка в сочетании с естественно образующимся снеговым покровом отдаляют начало промерзания грунта на 1,5 мес, а на последующий период уменьшают общую глубину промерзания примерно на 73. Снеговой покров может быть увеличен перемещением снега на участок бульдозерами или автогрейдерами или установкой перпендикулярно направлению господствующих ветров нескольких рядов снегозащитных заборов из решетчатых щитов размером 2 X 2 м на расстоянии 20...30 м ряд от ряда.

Глубинное рыхление производят экскаваторами на глубину 1,3. ..1,5 м путем перекидки разрабатываемого грунта на участке, где в последующем будет располагаться земляное сооружение.

Перекрестное рыхление поверхности на глубину 30...40 см, второй слой которого располагается под углом 60...900, а каждая последующая проходка выполняется с нахлесткой на 20 см. Такая обработка, включая снежный покров, отодвигает начало замерзания грунта на 2.5.. .3.5 мес., резко снижается общая глубина промерзания.

Предварительная обработка поверхности грунта механическим рыхлением особенно эффективна при утеплении этих участков земли.

Укрытие поверхности грунта утеплителями. Для этого используют дешевые местные материалы - древесные листья, сухой мох, торфяная мелочь, соломенные маты, стружки, опилки, снег. Наиболее простой способ - укладка этих утеплителей толщиной слоя 20...40 см непосредственно по грунту. Такое поверхностное утепление применяют в основном для небольших по площади выемок.

Укрытие с воздушной прослойкой. Более эффективным является использование местных материалов в сочетании с воздушной прослойкой. Для этого на поверхности грунта раскладывают лежни толщиной 8.. .10 см, на них горбыли или другой подручный материал - ветки, прутья, камыши; по ним сверху насыпают слой опилок или древесных стружек толщиной 15...20 см с предохранением их от сдувания ветром. Такое укрытие чрезвычайно эффективно в условиях срединной России, оно фактически предохраняет грунт от промерзания в течение всей зимы. Целесообразно площадь укрытия (утепления) увеличивать с каждой стороны на 2...3 м, что предохранит грунт от промерзания не только сверху, но и сбоку.

С началом разработки грунта вести его надо быстрыми темпами, сразу на всю необходимую глубину и небольшими участками. Утепляющий слой при этом нужно снимать только на разрабатываемой площади, в противном случае при сильных морозах будет быстро образовываться мерзлая корка грунта, затрудняющая производство работ.

5.11.2. Метод оттаивания грунта с разработкой его в талом состоянии

Оттаивание происходит за счет теплового воздействия и характеризуется значительной трудоемкостью и энергетическими затратами. Применяется в редких случаях, когда другие методы недопустимы или неприемлемы - вблизи действующих коммуникаций и кабелей, в стесненных условиях, при аварийных и ремонтных работах.

Способы оттаивания классифицируются по направлению распространения теплоты в грунте и по применяемому теплоносителю (сжигание топлива, пар, горячая вода, электричество). По направлению оттаивания все способы делятся на три группы.

Оттаивание грунта сверху вниз. Теплота распространяется в вертикальном направлении от дневной поверхности вглубь грунта. Способ наиболее прост, практически не требует подготовительных работ, наиболее часто применим на практике, хотя с точки зрения экономного расхода энергии наиболее несовершенен, так как источник теплоты размещается в зоне холодного воздуха, поэтому неизбежны значительные потери энергии в окружающее пространство.

Оттаивание грунта снизу вверх. Теплота распространяется от нижней границы мерзлого грунта к дневной поверхности. Способ наиболее экономичный, так как опаивание происходит под защитой мерзлой корки грунта и теплопотери в пространство практически исключены. Потребная тепловая энергия может быть частично сэкономлена за счет оставления верхней корки грунта в промерзшем состоянии. Она имеет наиболее низкую температуру, поэтому требует больших затрат энергии на опаивание. Но этот тонкий слой грунта в 10...15 см будет беспрепятственно разработан экскаватором, для этого вполне хватит мощности машины. Главный недостаток этого способа в необходимости выполнения трудоемких подготовительных операций, что ограничивает область его применения.

Радиальное оттаивание грунта занимает промежуточное положение между двумя предыдущими способами по расходу тепловой энергии. Теплота распространяется в грунте радиально от вертикально установленных прогревных элементов, но для того, чтобы их установить и подключить к работе требуются значительные подготовительные работы.

Для выполнения оттаивания грунта по любому из этих трех способов необходимо участок предварительно очистить от снега, чтобы не тратить тепловую энергию на его оттаивание и недопустимо переувлажнять грунт.

В зависимости от применяемого теплоносителя существует несколько методов оттаивания.

Оттаивание непосредственным сжиганием топлива. Если в зимнее время необходимо выкопать 1...2 ямы, самое простое решение - обойтись простым костром. Поддерживание костра в течение смены приведет к оттаиванию грунта под ним на 30...40 см. Погасив костер и хорошо утеплив место прогрева опилками, оттаивание грунта внутрь будет продолжаться за счет аккумулированной энергии и за смену может достигнуть общей глубины до 1 м. При необходимости можно снова расжечь костер или разработать талый грунт и на дне ямы развести костер. Применяют способ крайне редко, так как только незначительная часть тепловой энергии расходуется продуктивно.

Огневой способ применим для отрывки небольших траншей, используется звеньевая конструкция (рис. 5.41) из ряда металлических коробов усеченного типа, из которых легко собирается галерея необходимой длины, в первом из них устраивают камеру сгорания твердого или жидкого топлива (костер из дров, жидкое и газообразное топливо с сжиганием через форсунку). Тепловая энергия перемещается к вытяжной трубе последнего короба, создающей необходимую тягу, благодаря которой горячие газы проходят вдоль всей галереи и грунт под коробами прогревается по всей длине. Сверху короба желательно утеплить, часто утеплителем используют талый грунт. После смены агрегат убирают, полосу оттаявшего грунта засыпают опилками, дальнейшее опаивание продолжается за счет аккумулированного в грунте тепла.

Электропрогрев. Сущность данного метода состоит в пропускании электрического тока через грунт, в результате чего он приобретает положительную температуру. Используют горизонтальные и вертикальные электроды в виде стержней или полосовой стали. Для первоначального движения электрического тока между стержнями необходимо создать токопроводящую среду. Такой средой может быть талый грунт, если электроды забить в грунт до талого грунта, или на поверхности грунта, очищенного от снега, насыпать слой опилок толщиной 15...20 см, смоченных солевым раствором с концентрацией 0,2-0,5%. Вначале смоченные опилки являются токопроводящим элементом. Под воздействием теплоты, генерируемой в слое опилок, верхний слой грунта нагревается, опаивает и сам становится проводником тока от одного электрода к другому. Под воздействием теплоты происходит оттаивание нижележащих слоев грунта. В последующем распространение тепловой энергии осуществляется в основном в толще грунта, опилочный слой только защищает обогреваемый участок от потерь теплоты в атмосферу, для чего слой опилок целесообразно накрыть рулонными материалами или щитами. Этот способ достаточно эффективен при глубине промерзания или оттаивания грунта до 0,7 м. Расход электроэнергии на отогрев 1 м3 грунта колеблется в пределах 150...300 кВт.ч, температура нагретых опилок не превышает 80...90 °С.

Рис. 5.41. Установка для оттаивания грунта жидким топливом:

а - общий вид; б - схема утепления короба; 1 - форсунка; 2 - утеплитель (обсыпка талым грунтом); 3 - короба; 4 - вытяжная труба; 5 - полость оттаявшего грунта

Оттаивание грунта полосовыми электродами, укладываемыми на поверхность грунта, очищенной от снега и мусора, по возможности выровненной. Концы полосового железа отгибают кверху на 15...20 см для подключения к электропроводам. Поверхность отогреваемого участка покрывают слоем опилок толщиной 15...20 см, смоченных раствором хлористого натрия или кальция консистенции 0,2...0,5%. Так как грунт в промороженном состоянии не является проводником, то на первой стадии ток движется по смоченным раствором опилкам. Далее отогревается верхний слой грунта и оттаявшая вода начинает проводить электрический ток, процесс со временем идет вглубь грунта, опилки начинают выполнять роль теплозащиты отогреваемого участка от теплопотерь в атмосферу. Опилки сверху обычно покрывают толем, пергамином, щитами, другими защитными материалами. Способ применим при глубине отогрева до 0,6...0,7 м, так как при больших глубинах напряжение падает, грунты менее интенсивно включаются в работу, значительно медленнее нагреваются. К тому же они достаточно пропитаны с осени водой, которая требует больше энергии для перехода в талое состояние. Расход энергии колеблется в пределах 50-85 кВт.ч на 1 м3 грунта.

Оттаивание грунта стержневыми электродами (рис. 5.42). Данный метод осуществляют сверху вниз, снизу вверх и комбинированным способами. При оттаивании грунта вертикальными электродами стержни из арматурного железа с заостренным нижним концом забиваются в грунт в шахматном порядке, обычно используя рамку 4x4 м с крестообразно натянутыми проволоками; расстояние между электродами оказывается в пределах 0,5-0,8 м.

Рис. 5.42. Оттаивание грунта глубинными электродами:

а - снизу вверх; б - сверху вниз; 1 - талый грунт; 2 - мерзлый грунт; 3 - электрический провод; 4 - электрод, 5 - слой гидроизоляционного материала; 6 - слой опилок; I-IV - слои оттаивания

При прогреве сверху вниз предварительно очищают от снега и наледи поверхность, стержни забивают в грунт на 20...25 см, укладывают слой опилок, пропитанных раствором солей. По мере прогрева грунта электроды забивают глубже в грунт. Оптимальной будет глубина прогрева в пределах 0,7... 1,5 м. Продолжительность оттаивания грунта воздействием электрического тока примерно 1,5...2,0 сут, после этого увеличение глубины оттаивания будет происходить за счет аккумулированной теплоты еще в течение 1...2 сут. Расстояние между электродами 40...80 см, расход энергии по сравнению с полосовыми электродами сокращается на 15...20% и составляет 40...75 кВт-ч на 1 м3 грунта.

При прогреве снизу вверх пробуривают скважины и вставляют электроды на глубину, превышающую глубину промерзшего грунта на 15...20 см. Ток между электродами идет по талому грунту ниже уровня промерзания, при нагреве грунт отогревает вышележащие слои, которые также включаются в работу. При этом методе применять слой опилок не требуется. Расход энергии составляет 15...40 кВт/ч на 1 м3 грунта.

Третий, комбинированный способ, будет иметь место при заглублении электродов в подстилающий талый грунт и устройстве на дневной поверхности опилочной засыпки, пропитанной солевым раствором. Электрическая цепь замкнется наверху и внизу, оттаивание грунта будет происходить сверху вниз и снизу вверх одновременно. Так как трудоемкость подготовительных работ при этом способе самая высокая, то его применение может быть оправдано лишь в исключительных случаях, когда требуется ускоренное оттаивание грунта.

Оттаивание токами высокой частоты. Этот метод позволяет резко сократить подготовительные работы, так как промерзший грунт сохраняет проводимость к токам высокой частоты, поэтому отпадает надобность в большом заглублении электродов в грунт и в устройстве опилочной засыпки. Расстояние между электродами может быть увеличено до 1,2 м, т. е. сокращено их количество почти в два раза. Процесс оттаивания грунта протекает относительно быстро. Ограниченное использование способа связано с недостаточным выпуском генераторов токов высокой частоты.

Одним из методов, которые в настоящее время утратили свою эффективность и вытеснены более современными, является оттаивание грунта паровыми или водяными иглами. Дня этого необходимо наличие источников горячей воды и пара, при малой, до 0,8 м глубине промерзания грунта. Паровые иглы представляют собой металлическую трубу длиной до 2 м и диаметром 25...50 мм. На нижнюю часть трубы насажен наконечник с отверстиями диаметром 2...3 мм. Иглы соединяют с паропроводом гибкими резиновыми шлангами при наличии на них кранов. Иглы заглубляют в скважины, предварительно пробуриваемые на глубину, приблизительно равную 70% глубины оттаивания. Скважины закрывают защитными колпаками, снабженные сальниками для пропуска паровой иглы. Пар подают под давлением 0,06...0,07 МПа. После установки аккумулированных колпаков прогреваемую поверхность покрывают слоем термоизоляционного материала, чаще всего опилок. Иглы располагают в шахматном порядке с расстоянием между центрами 1 1,5 м.

Расход пара на 1 м3 грунта составляет 50... 100 кг. За счет выделения паром в грунте скрытой теплоты парообразования прогрев грунта проходит особенно интенсивно. Этот метод требует расхода тепловой энергии примерно в 2 раза больше, чем метод вертикальных электродов.

Оттаивание грунта теплоэлектронагревателями. Данный метод основан на передаче теплоты мерзлому грунту контактным способом. В качестве основных технических средств применяются электро-маты, изготавливаемые из специального теплопроводящего материала, через который пропускают электрический ток. Прямоугольные маты, размеры которых могут закрывать поверхность от 4...8 м2, укладываются на оттаиваемый участок и подсоединяются к источнику электричества напряжением 220 В. При этом образующееся тепло эффективно распространяется сверху вниз в толщу мерзлого грунта, что приводит к его оттаиванию. Время, необходимое для оттаивания, зависит от температуры окружающего воздуха и от глубины промерзания грунта и в среднем составляет 15-20 ч.

5.11.3. Разработка грунта в мерзлом состоянии с предварительным рыхлением

Рыхление мерзлого грунта с последующей разработкой землеройными и землеройно-транспортными машинами осуществляют механическим или взрывным методом.

Механическое рыхление мерзлого грунта с использованием современных строительных машин повышенной мощности приобретает все большее распространение. В соответствии с требованиями экологии, перед зимней разработкой грунта необходимо в осенний период снять бульдозером слой растительного грунта с намеченного для разработки участка. Механическое рыхление базируется на резании, раскалывании или сколе мерзлого грунта статическим (рис. 5.43) или динамическим воздействием.

Рис. 5.43. Рыхление мерзлого грунта статическим воздействием:

а - бульдозером с активными зубьями, б - экскаватором-рыхлителем, 1 - направление хода рыхления

При динамическом воздействии на грунт осуществляется его раскалывание или сколы молотами свободного падения и направленного действия (рис. 5.44). Этим способом разрыхление грунта производят молотами свободного падения (шар- и клин-молотами), подвешенными на канатах на стрелы экскаваторов, либо молотами направленного действия, когда рыхление осуществляется сколом грунта. Рыхление механическим способом позволяет осуществлять его разработку землеройными и землеройно-транспортными машинами. Молоты массой до 5 т сбрасывают с высоты 5...8 м: молот в форме шара рекомендуется применять при рыхлении песчаных и супесчаных грунтов, клин-молоты - для глинистых (при глубине промерзания 0,5...0,7 м). В качестве молота направленного действия широко применяют дизель-молоты на экскаваторах или тракторах; они позволяют разрушать промороженный грунт на глубину До 1,3 м (рис. 5.45).

Статическое воздействие основано на непрерывном режущем Усилии в мерзлом грунте специального рабочего органа - зуба-рыхлителя, который может быть рабочим оборудованием гидравлического экскаватора «обратная лопата» или быть навесным оборудованием на Мощных тракторах.

Рыхление статическими рыхлителями на базе трактора подразумевает в качестве навесного оборудования специального ножа (зуба), режущее усилие которого создается за счет тягового усилия трактора.

Машины этого типа рассчитаны на послойное рыхление грунта на глубину 0,3...0,4 м. Число зубьев зависит от мощности трактора, при минимальной мощности трактора 250 л.с. используется один зуб. Разрыхление грунта осуществляют параллельными послойными проходками через 0,5 м с последующими поперечными проходками под углом 60...900 к предыдущим. Перемещение разрыхленного грунта в отвал осуществляют бульдозерами. Целесообразно навесное оборудование крепить непосредственно на бульдозер и использовать его для самостоятельного перемещения разрыхленного грунта (см. рис. 5.21). Производительность рыхлителя 15...20 м3/ч.

Способность статических рыхлителей послойно разрабатывать мерзлый грунт дает возможность использовать их независимо от глубины промерзания грунта. Современные рыхлители на базе тракторов с бульдозерным оборудованием благодаря своим широким технологическим возможностям находят широкое применение в строительстве. Это обусловлено их высокой экономичностью. Так, стоимость разработки грунта с применением рыхлителей по сравнению с взрывным способом рыхления в 2...3 раза ниже. Глубина рыхления этими машинами составляет 700...1400 мм.

Рис.5.45. Схема совместной работы дизель-молота и экскаватора «прямая лопата»

Рыхление мерзлых грунтов взрывом эффективно при значительных объемах разработки мерзлого грунта. Метод применяют преимущественно на незастроенных участках, и ограниченно застроенных - с использованием укрытий и локализаторов взрыва (тяжелых пригрузочных плит).

В зависимости от глубины промерзания грунта взрывные работы выполняют (рис. 5.46):

■ методом шпуровых и щелевых зарядов при глубине промерзания грунта до 2 м;

■ методом скважинных и щелевых зарядов при глубине промерзания свыше 2 м.

Шпуры просверливают диаметром 22...50 мм, скважины - 900...1100 мм, расстояние между рядами принимается от 1 до 1,5 м. Щели на расстоянии 0,9... 1,2 м одна от другой нарезают щеленарез-Выми мяптнями фрезерного типа или баровыми машинами. Из трех Соседних щелей взрывчатое вещество помещается только в среднюю, крайние и промежуточные щели служат для компенсации сдвига мерзлого грунта во время взрыва и для снижения сейсмического эффекта. Заряжают щели удлиненными или сосредоточенными зарядами, после чего их сверху засыпают талым песком. При качественном выполнении подготовительных работ в процессе взрывания мерзлый грунт полностью дробится, не повреждая стенок котлована или траншеи.

Рис. 5.46. Методы рыхления мерзлого грунта взрывом:

а - шпуровыми зарядами; б - то же, скважинными; в - то же, котловыми; г - то же, малокамерными; д, е - то же, камерными; ж - то же, щелевыми; 1 - заряд ВВ; 2 - забойка; 3 - грудь забоя; 4 - рукав; 5 - шурф; б - штольня; 7 - рабочая щель; 8 - компенсационная щель

Разрыхленный взрывами грунт разрабатывается экскаваторами или землеройно-транспортными машинами.

5.11.4. Непосредственная разработка мерзлого грунта

Разработка (без предварительного рыхления) может осуществляется двумя методами - блочным и механическим.

Блочный метод разработки применим для больших площадей и основан на том, что монолитность мерзлого грунта нарушается за счет разрезки его на блоки. С помощью навесного оборудования на тракторе - баровой машины грунт разрезают при взаимно-перпендикулярных проходках на блоки шириной 0,6...1,0 м (рис. 5.47). При малой глубине промерзания (до 0,6 м) достаточно сделать только продольные разрезы.

Баровые машины, осуществляющие нарезку щелей, имеют одну, две или три врубовые цепи, навешенные на тракторы или траншейные экскаваторы. Баровые машины позволяют прорезать в мерзлом грунте щели глубиной 1,2...2,5 м. Используют стальные зубья с режущей кромкой из прочного сплава, что продлевает срок их службы, а при износе или истирании позволяет быстро их заменить. Расстояние между барами принимается в зависимости от грунта через 60... 100 см. Разработку производят экскаваторами «обратная лопата» с ковшом большой вместимости или глыбы грунта волоком перемещают с разрабатываемой площадки в отвал бульдозерами или гранторами.

Рис.5.47. Схема блочной разработки грунта:

а - нарезка щелей баровой машиной; б - то же, с извлечением блоков трактором; в - разработка котлована с извлечением блоков мерзлого грунта при помощи крана; I - слой мерзлого грунта; 2 - режущие цепи (бары); 3 - экскаватор; 4 - щели в мерзлом грунте; 5 - нарезанные блоки грунта; 6 - перемещаемые с площадки блоки; 7 - столики крана; 8 - транспортное средство; 9 - клещевой захват; 10 - строительный кран; 11 - трактор

Механический метод основан на силовом, а чаще в сочетании с ударным или вибрационном воздействии на массив мерзлого грунта. Реализуется метод применением обычных землеройных и землеройно-транспортных машин и машин со специально разработанными для зимних условий рабочими органами (рис. 5.48).

Обычные серийные машины применяют в начальный период зимы, Когда глубина промерзания грунта незначительна. Прямая и обратная лопата могут разрабатывать грунт при глубине промерзания 0,25...0,3 м; с ковшом вместимостью более 0,65 м3-0,4 м; экскаватор драглайн - до 0,15 м; бульдозеры и скреперы в состоянии разрабатывать промерзший грунт на глубину до 15 см.

Рис. 5.48. Механический способ непосредственной разработки грунта:

а - ковш экскаватора с активными зубьями; б - разработка грунта экскаватором «обратная лопа-та» и захватно-клещевым устройством; в - землеройно-фрезерная машина; 1 - ковш; 2 - зуб ков-ша; 3 - ударник; 4 - вибратор; 5 - захватно-клещевое устройство; б - отвал бульдозера; 7 - гидроцилиндр для подъема и опускания рабочего органа; 8 - рабочий орган (фреза)

Для зимних условий разработано специальное оборудование для одноковшовых экскаваторов - ковши с виброударными активными зубьями и ковши с захватно-клещевым устройством. Затраты энергии на резание грунта примерно в 10 раз больше, чем на скалывание. Вмонтирование в режущий край ковша экскаватора виброударных механизмов, аналогичных по работе отбойному молотку, приносят хорошие результаты. За счет избыточного режущего усилия такие одноковшовые экскаваторы могут послойно разрабатывать массив мерзлого грунта. Процесс рыхления и экскавации грунта оказывается единым.

Разработку грунта осуществляют и многоковшовыми экскаваторами, специально разработанными для проходки траншей в мерзлом грунте. Для этой цели служит специальный режущий инструмент в виде клыков, зубьев или коронок со вставками из твердого металла, укрепляемых на ковшах. На рис. 5.48, а показан рабочий орган многоковшового экскаватора с активными зубьями для разработки скальных и мерзлых грунтов.

Послойную разработку грунта можно осуществлять специализированной землеройно-фрезерной машиной, снимающей стружку глубиной до 0,3 м и шириной 2,6 м. Перемещение разработанного мерзлого грунта производят бульдозерным оборудованием, входящим в комплект машины.

Наша страна находится в северных широтах. Зимний период с отрицательными температурами отнимает много времени у строителей. Однако можно и не останавливать капитальное строительство, если предпринять прогрев грунта. Такая процедура становится все более популярной. В данной статье мы расскажем об основных способах прогрева грунта.

Зачем нужен прогрев грунта зимой?

Когда строительство проводится в черте города, вынимать мерзлый грунт с помощью отбойного оборудования становится опасно. Можно легко повредить подземные коммуникации, которых так много в городе: кабельные линии, водопроводы, газопроводы. В таких местах, зачастую, вынимать грунт приходится вручную. Зимой мерзлую землю лопатами не выймешь из траншеи. Поэтому заказывают прогрев грунта непосредственно перед началом строительных работ. Одновременно заказывают и прогрев бетона после заливки фундамента для его гидратации и правильного набора твердости.

Какие бывают способы прогрева грунта?

Прогревать землю на месте стройки можно множеством способов. Они различаются не только затратами, но и эффективностью. Мы перечислим основные из них:
  1. Прогрев горячей водой. Такой метод подходит для разморозки небольших участков земли. По площади укладывают лабиринты гибких рукавов, которые укрывают полиэтиленом или любым теплоизолятором. По рукавам пускают нагретую до 70-90 градусов по Цельсию воду. Для этого используют тепловой генератор или пиролизный котел. Скорость размораживания — не более 60 см за сутки. Недостатки — высокая стоимость оборудования и низкая скорость прогрева.
  2. Прогрев паром и паровыми иглами. На участке пробуривают скважины глубиной от полутора до двух метров для специальных металлических труб диаметром до 50 мм. Эти так называемые иглы имеют на концах отверстия размером не более 3 мм. Трубы расставляют в шахматном порядке через каждые 1-1,5 метра. В иглы подают насыщенный водяной пар (температура — более 100 градусов по Цельсию, давление — 7 атмосфер). Этот метод применяется только для глубоких котлованов — более 1,5 метра. Недостатки — сложные подготовительные работы, выброс больших объемов конденсата и необходимость в постоянном контроле процесса.
  3. Прогрев ТЭНами. Этот метод схож с паровыми иглами применяемым инструментом. Также используются трубы длиной 1 метр и диаметром до 60 мм. Их устанавливают в пробуренные скважины на таком же расстоянии. Внутри труб находится жидкий диэлектрик с высокой теплопроводностью. ТЭНы подключают к электросети. Расход электроэнергии на 1 куб. метр земли — 42 кВт*ч. Недостатки — высокие затраты.
  4. Прогрев электрическими матами. Метод подразумевает использование инфракрасных матов, работающих по принципу подобных матов для “теплого пола”. Электроматы нагревают грунт до температуры в 70 градусов. Глубина прогрева — не более 80 см за 32 часа. Расход электроэнергии — 0,5 кВт*ч на 1 квадратный метр. Недостатки — хрупкий материал, потребность в постоянном контроле.
  5. Прогрев этиленгликолем с помощью установки Waker Neuson. Оборудование работает на дизельном топливе. С этой точки зрения оно является автономным и не зависит от подводки коммуникаций (электричества). По площади участка змейкой раскладывается шланг, по которому будет циркулировать нагретый этиленгликоль. Эта жидкость отличается высочайшей теплопроводностью и большей, чем у воды, температурой кипения. Шланги накрывают матами из теплоизоляции. Одна установка позволяет разморозить 400 квадратных метров на глубину до 1,5 метра за 8 суток.

Наша компания предлагает услуги прогрева грунта и бетона именно с помощью установки Waker Neuson. Такой метод считается наиболее эффективным в пересчете затрат на площадь участка и на время разморозки.

Зимнее время традиционно считается неблагоприятным периодом для работ в сфере строительства. Однако применение термоэлектроматов поможет вам достичь преимущества перед конкурентами путем перехода на круглогодичный график работ, независимо от погодных условий и наличия ветра вы сможете избежать простоев в работе и отправки ваших работников в вынужденный отпуск. Мы поможем вам стать сильнейшей компанией на рынке !

Гибкие нагревательные маты устанавливаются на площадях, подлежащих размораживанию, прогреву или требующих защиты от промерзания. Установка и демонтаж матов занимает очень мало времени ! Нагревательный элемент термоматов отдает тепло непосредственно в грунт.

Температура нагрева термоэлектромата 70 o C. Блогодаря встроенуму отражающему материалу тепловой поток направлен только в зону обогрева,
для максимальной теплопередачи и для уменьшения теплопотерь. Термомат нагревается и эффективно осуществляет оттаивание грунта на глубину 30 - 40 см в день, в зависимости от состояния грунта.


Термомат функционирует независимо от оператора, вплоть до выполнения задачи.

Применение мата с нашей концепцией обогрева и размораживания поможет вам достичь конкурентного преимущества перед другими игроками на рынке. Вы сможете продолжать
работы пока остальные будут ждать естественного оттаивания промерзлого грунта. Термомат уже вызвал большой интерес в строительной индустрии.

Эффективные и удобные в применении маты с низкими эксплуатационными расходами, задали новый стандарт в прогреве бетона и размораживании промерзшего грунта в условиях холодного климата.

За этим - будущее!

Область применения предназначена для потребителей, нуждающихся в не подверженных промерзанию материалах или грунте, для круглогодичного выполнения работ согласно установленным спецификациям и требованиям к качеству. Помимо размораживания, предотвращения промерзания и повышения морозоустойчивости, термомат также может применяться для прогрева бетона , обогрева трубопровода, цистерн, песчаных масс, каменной кладки и других нестандартных задач обогрева.

Примеры применения оборудования

Размораживание грунта и территорий:

  • Систем водоснабжения и канализации
  • Траншей для кабеля
  • Шахт, цоколей и площадей для устройства полов
  • Крыш и покрытий
  • Устранения льда и снега

При промерзании:

  • Площадей предназначенных для облицовки
  • Песчаных масс, отсадочного песка
  • Насыпных масс
  • Линий трубопроводов
  • Стрелочных переводов
  • Плавучих пристаней

Предварительный обогрев грунта или бетона:

  • Основания до закладки фундамента
  • Опалубок и оснастки для бетонных работ
  • Увеличение степени отвердевания бетона и плит из облегченного бетона
 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо