Какую информацию дает саузерн блоттинг. Метод блоттинга по саузерну

Southern blot ) - метод, применяемый в молекулярной биологии для выявления определенной последовательности ДНК в образце. Метод Саузерн блоттинга сочетает электрофорез в агарозном геле для фракционирования ДНК с методами переноса разделенной по длине ДНК на мембранный фильтр для гибридизации. Метод называется по имени изобретателя, английского биолога Эдвина Саузерна.

Другие технологии переноса (блота), например, вестерн блоттинг , нозерн блоттинг, саузвестерн блоттинг используют сходные методы, но для определения РНК или белка в образце, и называются по образцу метода, придуманного Саузерном. Так как Саузерн-блот назван по имени ученого, термин пишут с заглавной буквы, в то время как вестерн-блот и нозерн-блот - со строчной буквы.

Метод

  1. Рестрикция эндонуклеазами рестрикции для разрезания высокомолекулярной ДНК на более мелкие фрагменты.
  2. Фрагменты ДНК подвергаются электрофорезу в агарозном геле для разделения по длине.
  3. В случае, если некоторые фрагменты ДНК длиннее 15 кб, перед переносом гель обрабатывают, например, соляной кислотой , которая вызывает депуринизацию ДНК и облегчает перенос на мембрану.
  4. В случае, когда используют щелочной метод переноса, агарозный гель помещают в щелочной раствор, при этом двойная спираль ДНК денатурирует и облегчает связывание отрицательно заряженной ДНК с положительно заряженной мембраной для дальнейшей гибридизации. При этом разрушаются и остатки РНК .
  5. Листок нитроцеллюлозной (или нейлоновой) мембраны помещают сверху или снизу от агарозного геля. Давление осуществляют непосредственно на гель или через несколько слоев бумаги. Для успешного переноса необходим плотный контакт геля и мембраны. Буфер переносится капиллярными силами из участка с высоким содержанием воды в зону с низким содержанием воды (мембрана). При этом осуществляется перенос ДНК из геля на мембрану. Полианионная ДНК связывается с положительно заряженной мембраной силами ионообменных взаимодействий.
  6. Для окончательного закрепления ДНК на мембране, последняя нагревается в вакууме до температуры 80 °C в течение двух часов или освещается ультрафиолетовым излучением (в случае нейлоновых мембран).
  7. Осуществляют гибридизацию радиоактивно (флюоресцентно) меченной пробы с известной последовательностью ДНК с мембраной.
  8. После гибридизации избыток пробы отмывают с мембраны и визуализируют продукты гибридизации путем авторадиографии (в случае радиоактивной пробы) или оценивают окраску мембраны (в случае использования хромогенного окрашивания).

Результаты

Гибридизация пробы со специфическим участком ДНК, закрепленным на мембране, указывает на наличие анализируемой последовательности нуклеотидов в пробе.

Применение

Саузерн блоттинг, который проводят с геномной ДНК, обработанной эндонуклеазами рестрикции , может быть использован для определения числа копий генов в геноме. Проба, которая гибридизуется только с единственным фрагментом ДНК, который не был разрезан рестриктазами, дает одну полосу на Саузерн-блоте, в то время как множественные полосы на блоте указывают на то, что проба гибридизовалась с несколькими идентичными последовательностями. Изменения условий гибридизации (повышение температуры, при которой проводят гибридизацию, изменение концентрации соли) приводят к повышению специфичности и снижению гибридизации с близкими, но не идентичными последовательностями.

Примечания

См. также

  • Блоттинг
  • Нозерн блоттинг

Wikimedia Foundation . 2010 .

Смотреть что такое "Саузерн блоттинг" в других словарях:

    Саузерн-блоттинг - блоттинг по Саузерну Метод обнаружения специфических нуклеотидных последовательностей путем переноса электрофретически разделенных фрагментов ДНК из агарозного геля на нитроцеллюлозный (бумажный) фильтр за счет капиллярного эффекта… …

    саузерн-блоттинг - — Тематики биотехнологии EN southern blotting … Справочник технического переводчика

    саузерн-блоттинг - Southern Blotting Саузерн блоттинг ДНК образец. Саузерн блоттинг включает в себя электрофоретическое разделение ДНК и методы переноса фрагментов ДНК из агарозного геля на мембрану под действием электрического поля для дальнейшего анализа с… … Толковый англо-русский словарь по нанотехнологии. - М.

    Southern blotting, Southern transfer Саузерн блоттинг, блоттинг по Саузерну. Mетод обнаружения специфических нуклеотидных последовательностей путем переноса электрофретически разделенных фрагментов ДНК из агарозного геля на нитроцеллюлозный… … Молекулярная биология и генетика. Толковый словарь.

    САУЗЕРН-БЛОТТИНГ - (Southern blot analysis) метод идентификации специфических форм ДНК в клетках. Молекулы ДНК удаляются из клеток и с помощью рестриктирующих ферментов разделяются на небольшие фрагменты. Эти фрагменты отделяются друг от друга, и с помощью генного… … Толковый словарь по медицине

    Саузерн-блоттинг блот-гибридизация по С - Саузерн блоттинг, блот гибридизация по С. * Саўзерн блотынг, блот гібрыдызацыя па С. * Southern blotting or S. hybridization or S. transfer техника гелевого блоттинга (см.), при которой фрагменты ДНК, разделенные по размеру в агарозном гель… …

    Метод идентификации специфических форм ДНК в клетках. Молекулы ДНК удаляются из клеток и с помощью рестриктирующих ферментов разделяются на небольшие фрагменты. Эти фрагменты отделяются друг от друга, и с помощью генного зонда производится поиск… … Медицинские термины

    Саузерн блоттинг Саузерн блоттинг (от англ. Southern blot) метод, применяемый в молекулярной биологии для выявления определенной последовательности ДНК в образце. Метод Саузерн блоттинга сочетает электрофорез в агарозном геле для… … Википедия

    - (от англ. Blot) общее название методов молекулярной биологии по переносу определённых белков или нуклеиновых кислот из раствора, содержащего множество других молекул, на какой либо носитель (мембрану из нитроцеллюлозы, PVDF или… … Википедия

    Блоттинг блоттинговый перенос - Блоттинг, блоттинговый перенос * блотынг, блотынгавы перанос * blotting or blot transfer процедура переноса электрофоретически разделенной ДНК (см.), ДНК фрагментов, РНК, РНКфрагментов или белков с геля (агарозного или полиакриламидного) на… … Генетика. Энциклопедический словарь

Купить домофоны с вызывной панелью.

Саузерн блоттинг

Саузерн блоттинг — метод, применяемый в молекулярной биологии для выявления определенной последовательности ДНК в образце. Метод Саузерн блоттинга сочетает электрофорез в агарозном геле для фракционирования ДНК с методами переноса разделенной по длине ДНК на мембранный фильтр для гибридизации. Метод называется по имени изобретателя, английского биолога Эдвина Саузерна.

Другие технологии переноса, например, вестерн блоттинг, нозерн блоттинг, саузвестерн блоттинг используют сходные методы, но для определения РНК или белка в образце, и называются по образцу метода, придуманного Саузерном. Так как Саузерн-блот назван по имени ученого, термин пишут с заглавной буквы, в то время как вестерн-блот и нозерн-блот — со строчной буквы.

Метод

  1. Рестрикция эндонуклеазами рестрикции для разрезания высокомолекулярной ДНК на более мелкие фрагменты.
  2. Фрагменты ДНК подвергаются электрофорезу в агарозном геле для разделения по длине.
  3. В случае, если некоторые фрагменты ДНК длиннее 15 кб, перед переносом гель обрабатывают, например, соляной кислотой, которая вызывает депуринизацию ДНК и облегчает перенос на мембрану.
  4. В случае, когда используют щелочной метод переноса, агарозный гель помещают в щелочной раствор, при этом двойная спираль ДНК денатурирует и облегчает связывание отрицательно заряженной ДНК с положительно заряженной мембраной для дальнейшей гибридизации. При этом разрушаются и остатки РНК.
  5. Листок нитроцеллюлозной мембраны помещают сверху или снизу от агарозного геля. Давление осуществляют непосредственно на гель или через несколько слоев бумаги. Для успешного переноса необходим плотный контакт геля и мембраны. Буфер переносится капиллярными силами из участка с высоким содержанием воды в зону с низким содержанием воды. При этом осуществляется перенос ДНК из геля на мембрану. Полианионная ДНК связывается с положительно заряженной мембраной силами ионообменных взаимодействий.
  6. Для окончательного закрепления ДНК на мембране, последняя нагревается в вакууме до температуры 80 °C в течение двух часов или освещается ультрафиолетовым излучением.
  7. Осуществляют гибридизацию радиоактивно меченной пробы с известной последовательностью ДНК с мембраной.
  8. После гибридизации избыток пробы отмывают с мембраны и визуализируют продукты гибридизации путем авторадиографии или оценивают окраску мембраны.
Репортёрный ген

После того как ДНК, РНК или белки разделены, они должны быть перенесены на твердую подложку для детекции и других операций, которые в геле идут с трудом. Процесс переноса, приводящий к иммобилизации молекул , т.е. закреплению в неподвижном состоянии, называется блоттингом (по англ. – blotting ). В качестве подложки используются нейлоновые или нитроцеллюлозные мембраны.

Блоттинг (от англ. blotting – промокание) – это метод перенесения электрофоретических фрагментов ДНК на специальную пленку (мембрану) из нитроцеллюлозы, связывающую (иммобилизующую) одноцепочечные молекулы ДНК.

Саузерн-блоттинг (по фамилии предложившего его автора) основан на перемещении фрагментов ДНК благодаря капиллярному эффекту. Процесс переноса фрагментов ДНК, находящихся в агарозном геле, на пленку из нитроцеллюлозы с помощью фильтровальной бумаги похож на промокание.

Анализ проводят следующим образом:

– Выделенную, очищенную, денатурированную и разбитую на фрагменты ДНК помещают на лист агарозного геля, где происходит электрофоретическое разделение фрагментов по массе и заряду.

– Лист агарозного геля помещают на фильтровальную бумагу, смоченную концентрированным солевым (буферным) раствором.

– Затем на гель накладывают нитроцеллюлозный фильтр, где происходит иммобилизация (или адсорбция, или фиксация) одноцепочечных фрагментов ДНК.

– Поверх фильтра накладывают стопку листов сухой фильтровальной бумаги, которая обеспечивает медленный ток буферного раствора через гель (т.е. служит своеобразным капиллярным насосом). Солевой раствор, проходя через агарозный гель, увлекает за собой фрагменты ДНК, которые задерживаются нитроцеллюлозой и связываются с ней, а раствор впитывается сухой фильтровальной бумагой.

– Далее ДНК денатурируют щелочью, а фильтр выдерживают в вакууме при температуре 80 0 С, в результате чего одноцепочечные фрагменты ДНК необратимо иммобилизуются (фиксируются) на нитроцеллюлозе. При этом расположение полос иммобилизованной ДНК точно соответствует их расположению в геле.

– ДНК, связанную с фильтром, помещают в раствор с меченым ДНК зондом, в котором и происходит гибридизация. Гибридизироваться (образовывать водородные связи) со специфическим зондом будут только комплементарные ему фрагменты ДНК, которые можно обнаружить в виде светлых полос на рентгеновской пленке, т.е. радиоавтографии нитроцеллюлозного фильтра

Дот-блоттинг . Для приготовления дот-блоттов препарат ДНК или РНК наносят непосредственно на фильтр. Капельки препарата выглядят в виде точек на фильтре, что объясняет название типа блоттинга (англ. dot –точка). 1) Из геномной ДНК, предварительно обработанной ультразвуком, образуются фрагменты длиной 5–10 пар нуклеотидов.


2) Чтобы сделать ДНК- или РНК-пробы доступными зонду, их нужно денатурировать, т.е. перевести в одноцепочечную форму. Это происходит под воздействием температуры 100 °С.

3) Денатурированные нуклеиновые кислоты инкубируют на льду: быстрое понижение температуры предотвращает их ренатурацию, т.е. комплементарное спаривание цепей. Денатурированную ДНК или РНК наносят непосредственно на фильтр, который инкубируют в растворе, содержащем зонд.

4) Чтобы анализируемая нуклеиновая кислота не перешла в раствор, ее необходимо зафиксировать на фильтре (мембране). Для этого используют два типа фильтров: нитроцеллюлозный и нейлоновый.

Для иммобилизации нуклеиновых кислот на нитроцеллюлозном фильтре используют прожаривание при 80 °С в вакууме, а на нейлоновом фильтре – УФ-облучение в течение 3–5 минут.

5) После инкубации препарата нуклеиновых кислот с меченым изотопом зондом проводят радиоавтографию в специальной кассете или идентификацию нерадиоактивными методами.

Дот-блоттинг позволяет ответить только на один вопрос: есть ли в данном образце искомая последовательность нуклеотидов.

Нозерн-блотт анализ применяется:

1) для выделения и анализа РНК (например, для выяснения того, присутствует ли в данном типе клеток мРНК, считанные с данного гена, т.е. экспрессируется ген или нет;

2) для определения количества этой РНК и его изменения в развитии данного типа клеток;

3) для определения размера транскрипта какого-то гена.

В данном случае молекулы РНК, выделенные из клетки, разделяются по размерам с помощью гель-электрофореза, а затем переносятся на фильтр. После гибридизации с меченым одноцепочечным зондом выявляются места гибридизации (гомологии) РНК и зонда.

Если нуклеотидная последовательность искомого гена (или мРНК) не известна, но известен белок, синтез которого он контролирует, то можно выделить небольшое количество чистого белка, определить аминокислотную последовательность некоторой его части (достаточно знание 5–6 аминокислотных остатков). Пользуясь таблицей генетического кода, можно установить все возможные последовательности нуклеотидов в том участке мРНК (или самого гена), который кодирует данную аминокислотную последовательность. В этом случае можно синтезировать зонд для поиска нужных клонов в библиотеке генов.

Вестерн-блоттин г (иммуноэлектроблоттинг, белковый блоттинг) –это метод идентификации уникальных белков. В его основе лежит явление высокоспецифичного взаимодействия антиген–антитело. Таким образом, антигеном (мишенью) является определяемый белок, а зондом – антитело к нему.

Антитела к исследуемому белку получают различными способами. Наиболее простым является введение очищенной пробы белка в кровяное русло лабораторного животного (обычно кролика). В его организме вырабатываются антитела (иммуноглобулины) к данному чужеродному белку. Это первичные антитела, которые и будут взаимодействовать с белком-мишенью.

Однако было бы не рационально вводить метку для идентификации непосредственно в данные антитела. Для определения разных белков потребовалось бы метить разные антитела, что привело бы к их высокой стоимости. Более разумным оказалось использование универсальных антител конъюгированных антииммуноглобулинов , являющихся, по сути, антителами к антителам, выработанным при использовании идентифицируемого белка как антигена. К примеру, конъюгированные антииммуноглобулины к Ig кролика будут взаимодействовать со всеми иммуноглобулинами, синтезированными у кролика к разным антигенам. Таким образом, именно такие универсальные вторичные антитела несут изотопную или нерадиоактивную метку. Кроме неизотопной метки, которая в ходе ряда реакций приводит к образованию нерастворимого окрашенного соединения (как в случае блоттинга нуклеиновых кислот), очень часто используют хемилюминесцентную метку, обладающую более высокой чувствительностью.

1) Экстракция белков из гомогената

2) Разделение белков по молекулярным массам с помощью SDS-электрофореза в полиакриламидном геле (ПААГ). Метод SDS-электрофореза подразумевает денатурацию нативных белков. Таким образом, молекулы белка, обладающие одинаковой молекулярной массой, пройдут в геле одинаковый путь и выстроятся в виде полосы. Поскольку в смеси присутствуют белковые молекулы разного размера, образуется множество полос. Визуализировать результаты электрофореза можно окрашиванием белка (кумасси бриллиантовый синий, амидо черный, окрашивание серебром). Окрашивание серебром обладает уникальной чувствительностью, что позволяет определить всего 0,1 нг белка в полученной полосе. Это очень важно для контроля количества белка, нанесенного на гель.

3) Перенос белков из геля на мембрану. Это делается потому, что полиакриламид не позволяет диффундировать большим молекулам иммуноглобулинов к белку. А иммобилизованный на мембране белок становится доступным антителам. В отличие от блоттинга нуклеиновых кислот перенос белка на мембрану происходит под воздействием электрических сил, т.е. в электрическом поле.

4) Полученный блот инкубируют с антисывороткой к белку, а затем с антииммуноглобулинами. Результат визуализируют в соответствии с используемым типом метки.

Ограничения:

1) большой размер исследуемых фрагментов, значительно превосходящий длину ДНК-зондов и препятствующий прямому молекулярному анализу;

2) невозможность произвольного выбора концов изучаемых последовательностей, определяющихся наличием соответствующих сайтов рестрикции в исходной молекуле ДНК;

3) необходимость большого количества хорошо очищенной высокомолекулярной геномной ДНК (не менее 10 мкг на одну реакцию, что равноценно 0,5-1 мл крови),

4) для геномной гибридизации - наличие радиоактивных ДНК-зондов с высокой удельной активностью не менее 109 имп./мин*мкг), действующих ограниченный промежуток времени, и специально оборудованного изотопного блока. К тому же длительная экспозиция автографов значительно удлиняет время получения результатов.

5) большая трудоемкость исследований

Конкретного гена предполагает возможность различить специфические сегменты ДНК или молекулы РНК, соответствующие этому гену, среди множества других сегментов ДНК или молекул РНК, присутствующих в образце клеток или ткани. Когда анализируют геномную ДНК, проблема состоит в том, чтобы обнаружить и изучить специфический интересующий фрагмент ДНК в сложной смеси, содержащей несколько миллионов фрагментов, полученных расщеплением геномной ДНК рестриктазами. С образцами РНК сложность в том, чтобы обнаружить и измерить объем и качество конкретной копии мРНК в суммарной РНК ткани, в которой искомая мРНК составляет менее 1 на 1000 от общего числа копий РНК.

Решение проблемы обнаружения одной редкой последовательности среди множества других связано с использование гель-электрофореза для разделения молекул ДНК или РНК по размеру с последующей гибридизацией с нуклеотидным зондом, идентифицирующим интересующую молекулу.

Техника Саузерн-блоттинга (блоттинга по Саузерну) позволяет обнаружить и изучать на грубом уровне множество интересующих фрагментов в, казалось бы, не информативной коллекции из порядка миллиона фрагментов, полученных после обработки ДНК рестриктазами. Саузерн-блоттинг, разработанный в середине 1970-х годов, стал стандартным методом исследования конкретных фрагментов ДНК, расщепленной ферментами рестрикции. Сначала в ходе этой процедуры из доступного источника выделяют ДНК. Как источник ДНК может быть использована любая клетка организма, за исключением зрелых эритроцитов, не имеющих ядра.

В ходе анализа образцов ДНК пациента обычно используют геномную ДНК лимфоцитов, полученных при обычной пункции вены. В 10 мл периферической крови содержится приблизительно 108 лейкоцитов или около 100 микрограмм ДНК - доза, достаточная для расщепления рестриктазами. Геномная ДНК также может быть получена из других тканей, включая культуру фибробластов кожи, амниотических клеток или ворсин хориона, что используют для пренатальной диагностики, или из биопсийного образца ткани различных органов (например, печени, почки, плаценты).

Пробу с миллионами различных фрагментов ДНК , генерируемых ферментативным расщеплением образца геномной ДНК рестриктазами, наносят на поверхность агарозного геля в точку старта. Затем фрагменты ДНК разделяют по размеру с помощью электрофореза в геле агарозы, при котором мелкие частицы перемещаются в электрическом поле быстрее крупных. Когда разделенную таким образом исследуемую ДНК окрашивают флюоресцентным красителем, например этидиум бромидом, фрагменты ДНК проявляются как флюоресцирующие области, распределенные вдоль полосы движения в геле, меньшие фрагменты - выше, большие - ниже. ДНК появляется в геле как смазанное пятно, а не в виде дискретных полос, поскольку обычно образуется слишком много разноразмерных фрагментов ДНК, чтобы отделить один от другого.

Пятно двухнитевых фрагментов ДНК сначала денатурируют сильной щелочью для разделения нитей ДНК. Полученные однонитевые молекулы ДНК затем переносят с геля на бумажные пористые фильтры (отсюда второе название метода - «перенос по Саузерну»).

Для идентификации одного или нескольких интересующих фрагментов среди миллионов других фильтр инкубируют с комплементарным однонитевым меченым зондом в условиях, способствующих спариванию двойных молекул ДНК. Несвязанные зонды удаляют отмывкой, затем фильтр со связанными радиоактивными зондами выдерживают с фотопленкой, что выявляет положение одного или более фрагментов, к которым присоединился зонд. Таким образом, на пленке можно увидеть специфические радиоактивные полосы для каждого интересующего фрагмента ДНК человека на исходном геле.

Способность Саузерн-блоттинга идентифицировать мутации ограниченная, поскольку зонды могут обнаруживать дефекты, только имеющие ощутимое влияние на размер рестрикционного фрагмента, например крупные делеции или инсерции (вставки). Мутация, изменяющая одно или несколько оснований, не может быть обнаружена, если не создает или не уничтожает сайт узнавания рестриктазы, приводя к значительному изменению размера фрагмента, обнаруживаемого зондом. Тем не менее, кроме Саузерн-блоттинга, существует множество методов для обнаружения мутаций, влияющих на одну или несколько пар оснований в гене.

Для идентификации гена молекулу ДНК генома расщепляют с помощью ферментов рестриктаз на куски размером примерно по 15-20 тысяч пар нуклеотидов. Расщепленный таким образом геном подвергается электрофоретическому фракционированию в агарозном геле. После этого фракции ДНК денатурируют нагреванием и переносят из агарозного геля на нитроцеллюлозный фильтр, где их иммобилизуют. Процесс переноса ДНК напоминает промокание (по английский – блоттинг) и называется методом блоттинга по Саузерну. Сущность блоттинга заключается в том, что агарозный гель помещают на фильтровальную бумагу, смоченную в концентрированном солевом растворе; затем на гель накладывают нитроцеллюлозный фильтр и сверху помещают сухую фильтровальную бумагу. Солевой раствор впитывается в сухую бумагу; чтобы это произошло, он должен пройти сквозь агарозный гель и затем через нитроцеллюлозный фильтр. ДНК переносится вместе с раствором, но задерживается нитроцеллюлозой. Иммобилизованную таким образом ДНК можно гибридизовать на месте с радиоактивным зондом. Со специфическим зондом будут гибридизироваться только комплементарные ему фрагменты. Так как зонд радиоактивный, то гибридизацию можно обнаружить с помощью авторадиографии. Каждая комплементарная последовательность проявляется в виде радиоактивной полосы, местоположение которой определяется размером фрагмента ДНК. Схема метода блоттинга по Саузерну представлена на рис. 12.4.

Рис. 12.4. Схема блоттинга по Саузерну: расщепление ДНК генома с помощью рестриктаз на куски 15000-20000 пар нуклеотидов; электрофоретическое разделение этих рестриктаз в агарозном геле, перенос их на нитроцеллюлозный фильтр, гибридизация с ДНК-зондом и выявление образующихся гибридных молекул методом авторадиографии; *)схема переноса (блоттинга).

Метод блоттинга является высокочувствительным и точным и широко применяется в криминалистике, медицине, ветеринарии. В настоящее время метод молекулярной гибридизации разработан для диагностики инфекционных болезней сельскохозяйственных животных, например для обнаружения возбудителя сибирской язвы, бруцеллеза, туберкулеза, ящура, чумы свиней, чумы птиц, энтеровирусов и т.д. Этот метод является» перспективным для изучения племенных качеств животных. Он имеет преимущества перед принятым сегодня в селекции методом изучения маркеров белкового полиморфизма.

Считают, что метод ДНК-гибридизации может успешно использоваться в селекции быков, так как геном быков можно разделить на гены, которые в дальнейшем выявляются блоттингом. При этом необходимо выделить около 75 фрагментов ДНК, чтобы оценить геном по признаку молочной продуктивности.


В последние годы разрабатывается новый метод анализа ДНК, так называемая "геномная дактилоскопия". Геномная дактилоскопия включает следующие этапы: выделение ДНК, фрагментации ее с помощью ферментов - рестриктаз, фракционирование с помощью электрофореза в геле. Фрагменты ДНК, содержащие гипервариабельные участки, выявляют с помощью специального зонда – "пробы Джеффриса", с которой они связываются путем гибридизации. Участки гибридизации выявляются путем авторадиографии.

Исследования показали, что в этой методике в качестве радиоактивного зонда может быть использована ДНК, выделенная из бактериофага Ml3. ДНК этого бактериофага содержит еще один тип гипервариабельной последовательности, который найден также и в геноме человека. Принцип строения этой гипервариабельной последовательности в общих чертах сходен со строением минисателлитной ДНК Джеффриса. Использование этой новой пробы для генной "дактилоскопии" показало ее высокую эффективность и пригодность для решения многих задач. Дело в том, что эти гипервариабельные последовательности обнаружены у разных представителей живой природы – человека, животных, растений и бактерий, а потому ДНК-зонд бактериофага M13 может быть использован в широких масштабах. Например, для идентификации личности, для установления родства любых живых существ. Метод дает возможность решать вопросы генетики и селекции животных, вести отбор по полезным признакам; используя этот метод можно вести генную паспортизацию отдельных высокопродуктивных животных, анализировать родословную и полученные сведения использовать для направленной селекции.

Существует еще одна разновидность гибридизационного анализа ДНК – это метод точечной (дот) гибридизации (рис.9), который выполняется путем внесения исследуемых образцов ДНК в денатурированном состоянии на капроновые мембранные фильтры в виде точек. Например (рис. 12.5), ДНК микобактерий туберкулеза крупного рогатого скота в количестве 3 мкл (1,8 мкг/мл) в виде точек наносится в квадраты (1,5 х 1,5 см).

Рис. 12.5. Дот-гибридизация ДНК-зонда M.bovis: А: 1 - M.bovis: 2,3, - ДНК из пораженной туберкулезом ткани; В: 1,2,3 - ДНК, выделенная из тканей здоровых животных; С: 1 - ДНК возбудителя бруцеллеза;

2 - ДНК возбудителя листерий;

3 - ДНК M. fortuitum.

Одноцепочечные молекулы ДНК (денатурированные) адсорбируются на мембране и фиксируются. После этого на фильтр наносится ДНК-зонд, меченный радиоактивным фосфором, то есть одноцепочечная молекула M.bovis, меченая P 32 . Поскольку в данном случае азотистые основания молекул ДНК M.bovis и меченого P 32 ДНК-зонда комплементарны, то происходит связывание азотистых оснований нитей ДНК и ДНК-зонда с образованием двойной спирали. После этого несвязанные молекулы ДНК-зонда отмываются и образующиеся гибридные молекулы выявляются путем радиоавтографии.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо