Расчет потерь тепла в доме. Расчет теплопотерь (и потерь денег) через ограждающие конструкции

Сегодня многие семьи выбирают для себя загородный дом как место постоянного проживания или круглогодичного отдыха. Однако его содержание, и в особенности оплата коммунальных услуг, - довольно затратны, при этом большинство домовладельцев - вовсе не олигархи. Одна из наиболее значительных статей расхода для любого домовладельца - это расходы на отопление. Чтобы минимизировать их, необходимо ещё на стадии строительства коттеджа задуматься об энергосбережении. Рассмотрим этот вопрос более подробно.

«О проблемах энергетической эффективности жилья обычно вспоминают в ракурсе городского ЖКХ, однако владельцам индивидуальных домов эта тема подчас гораздо ближе, - считает Сергей Якубов , заместитель директора по продажам и маркетингу , ведущего производителя кровельных и фасадных систем в России. - Расходы на отопление дома могут составлять гораздо больше половины стоимости его содержания в холодное время года и достигают порой десятков тысяч рублей. Однако при грамотном подходе к теплоизоляции жилого дома эту сумму можно существенно сократить ».

Собственно, отапливать дом нужно для того, чтобы постоянно поддерживать в нём комфортную температуру, независимо от того, что творится на улице. При этом нужно учитывать теплопотери как через ограждающие конструкции, так и через вентиляцию, т.к. тепло уходит вместе с нагретым воздухом, взамен которого поступает охлаждённый, а также тот факт, что некоторое количество тепла выделяют люди, находящиеся в доме, бытовая техника, лампы накаливания и т.п.

Чтобы понять, сколько тепла мы должны получить от своей системы отопления и сколько денег на это придётся потратить, попробуем оценить вклад каждого из прочих факторов в тепловой баланс на примере расположенного в Московской области кирпичного двухэтажного дома с общей площадью помещений 150 м2 (для упрощения вычислений мы считали, что размеры коттеджа в плане примерно 8,7х8,7 м и он имеет 2 этажа высотой по 2,5 м).

Теплопотери через ограждающие конструкции (кровлю, стены, пол)

Интенсивность теплопотерь определяется двумя факторами: разницей температур внутри и снаружи дома и сопротивлением его ограждающих конструкций теплопередаче. Разделив разницу температур Δt на коэффициент сопротивления теплопередаче Ro стен, кровли, пола, окон и дверей и умножив на площадь S их поверхности, можно вычислить интенсивность теплопотерь Q:

Q = (Δt/R o)*S

Разница температур Δt - величина непостоянная, она меняется от сезона к сезону, в течение дня, в зависимости от погоды и т.д. Однако нашу задачу упрощает то обстоятельство, что нам необходимо оценить потребность в тепле суммарно за год. Поэтому для приближённого расчёта мы вполне можем использовать такой показатель, как среднегодовая температура воздуха для выбранной местности. Для Московской области это +5,8°C. Если принять за комфортную температуру в доме +23°C, то наша усреднённая разница составит

Δt = 23°C - 5,8°C = 17,2°C

Стены. Площадь стен нашего дома (2 квадратных этажа 8,7х8,7 м высотой 2,5 м) будет примерно равна

S = 8,7 * 8,7 * 2,5 * 2 = 175 м 2

Однако из этого нужно вычесть площадь окон и дверей, для которых мы рассчитаем теплопотери отдельно. Предположим, что входная дверь у нас одна, стандартного размера 900х2000 мм, т.е. площадью

S двери = 0,9 * 2 = 1,8 м 2 ,

а окон - 16 штук (по 2 на каждой стороне дома на обоих этажах) размером 1500х1500 мм, суммарная площадь которых составит

S окон = 1,5 * 1,5 * 16 = 36 м 2 .

Итого - 37,8 м 2 . Оставшаяся площадь кирпичных стен -

S стен = 175 - 37,8 = 137,2 м 2 .

Коэффициент сопротивления теплопередаче стены в 2 кирпича равен 0,405 м2°C/Вт. Для простоты пренебрежём сопротивлением теплопередаче слоя штукатурки, покрывающей стены дома изнутри. Таким образом, тепловыделение всех стен дома составит:

Q стен = (17,2°C / 0,405м 2 °C/Вт) * 137,2 м 2 = 5,83 кВт

Кровля. Для простоты расчётов будем считать, что сопротивление теплопередаче кровельного пирога равно сопротивлению теплопередаче слоя утеплителя. Для лёгкой минераловатной теплоизоляции толщиной 50-100 мм, чаще всего применяемой для утепления кровель, оно примерно равно 1,7 м 2 °C/Вт. Сопротивлением теплопередаче чердачного перекрытия пренебрежём: допустим, что в доме есть мансарда, которая сообщается с другими помещениями и между всеми ними тепло распределяется равномерно.

Площадь двускатной кровли при уклоне в 30° составит

S кровли = 2 * 8,7 * 8,7 / Cos30° = 87 м 2 .

Таким образом, её тепловыделение составит:

Q кровли = (17,2°C / 1,7м 2 °C/Вт) * 87 м 2 = 0,88 кВт

Пол. Сопротивление теплопередаче деревянного пола - примерно 1,85 м2°C/Вт. Произведя аналогичные расчёты, получим тепловыделение:

Q пола = (17,2°C / 1,85м 2 °C/Вт) * 75 2 = 0,7 кВт

Двери и окна. Их сопротивление теплопередаче приблизительно равно соответственно 0,21 м 2 °C/Вт (двойная деревянная дверь) и 0,5 м 2 °C/Вт (обычный двухкамерный стеклопакет, без дополнительных энергоэффективных «примочек»). В итоге получим тепловыделение:

Q двери = (17,2°C / 0,21Вт/м 2 °C) * 1,8м 2 = 0,15 кВт

Q окна = (17,2°C / 0,5м 2 °C/Вт) * 36м 2 = 1,25 кВт

Вентиляция. По строительным нормам коэффициент воздухообмена для жилого помещения должен быть не менее 0,5, а лучше - 1, т.е. за час воздух в помещении должен обновляться полностью. Таким образом, при высоте потолков 2,5 м - это примерно 2,5 м 3 воздуха в час на квадратный метр площади. Этот воздух необходимо нагреть от уличной температуры (+5,8°C) до температуры помещения (+23°C).

Удельная теплоёмкость воздуха - это количество теплоты, необходимое для повышения температуры 1 кг вещества на 1°C - равна примерно 1,01 кДж/кг°C. При этом плотность воздуха в интересующем нас диапазоне температур составляет примерно 1,25 кг/м 3 , т.е. масса 1 его кубометра равна 1,25 кг. Таким образом, для нагрева воздуха на 23-5,8=17,2°C на каждый квадратный метр площади потребуется:

1,01 кДж/кг°C * 1,25 кг/м 3 * 2,5 м 3 /час * 17,2°C = 54,3 кДж/час

Для дома площадью 150 м2 это будет:

54,3 * 150 = 8145 кДж/час = 2,26 кВт

Подведём итог
Теплопотери через Разница температур, °C Площадь, м2 Сопротивление теплопередаче, м2°C/Вт
Теплопотери, кВт
Стены
17,2
175
0,41
5,83
Кровля
17,2
87
1,7
0,88
Пол
17,2
75
1,85
0,7
Двери
17,2
1,8
0,21
0,15
Окна
17,2
36
0,5
0,24
Вентиляция
17,2
-
-
2,26
Итого:



11,06

Сейчас надышим!

Предположим, что в доме живёт семья из двоих взрослых с двумя детьми. Норма питания взрослого человека - 2600-3000 калорий в сутки, что эквивалентно мощности тепловыделения в 126 Вт. Тепловыделение ребёнка будем оценивать в половину тепловыделения взрослого. Если все обитали дома находятся в нём 2/3 всего времени, то получим:

(2*126 + 2*126/2)*2/3 = 252 Вт

Допустим, что в доме 5 комнат, освещённых обыкновенными лампами накаливания мощностью 60 Вт (не энергосберегающими), по 3 на комнату, которые включены в среднем по 6 часов в сутки (т.е. 1/4 всего времени). Примерно 85% потребляемой лампой мощности превращается в тепло. Итого получим:

5*60*3*0,85*1/4 = 191 Вт

Холодильник - очень эффективный нагревательный прибор. Его тепловыделение - 30% от максимальной потребляемой мощности, т.е. 750 Вт.

Другая бытовая техника (пусть это будут стиральная и посудомоечная машины) выделяет в виде тепла около 30% максимальной потребляемой мощности. Средняя мощность указанных приборов - 2,5 Квт, работают они примерно по 2 часа в сутки. Итого получим 125 Вт.

Стандартная электроплита с духовкой имеет мощность примерно в 11 кВт, однако встроенный ограничитель регулирует работу нагревательных элементов таким образом, чтобы их одновременное потребление не превышало 6 кВт. Впрочем, вряд ли мы когда-то используем больше, чем половину конфорок одновременно или сразу все тэны духовки. Поэтому будем исходить из того, что средняя рабочая мощность плиты - примерно 3 кВт. Если она работает часа 3 в день, то получим тепла 375 Вт.

Каждый компьютер (а их в доме 2) выделяет примерно 300 Вт тепла и работает 4 часа в сутки. Итого - 100 Вт.

Телевизор - это 200 Вт и 6 часов в сутки, т.е. на круг - 50 Вт.

В сумме получаем: 1,84 кВт .

Теперь вычислим требуемую тепловую мощность системы отопления:

Q отопления = 11,06 - 1,84 = 9,22 кВт

Расходы на отопление

Собственно, выше мы вычислили мощность, которая будет необходима для нагрева теплоносителя. А греть его мы будем, естественно, с помощью котла. Таким образом, расходы на отопление - это расходы на топливо для этого котла. Поскольку мы рассматриваем самый общий случай, то сделаем расчёт для наиболее универсального жидкого (дизельного) топлива, т.к. газовые магистрали есть далеко не везде (а стоимость их подведения - это цифра с 6 нулями), а твёрдое топливо нужно, во-первых, как-то привозить, а во-вторых - каждые 2-3 часа подбрасывать в топку котла.

Чтобы узнать, какой объём V дизтоплива в час нам придётся жечь для обогрева дома, нужно удельную теплоту его сгорания q (количество тепла, выделяемое при сжигании единицы массы или объёма топлива, для дизтоплива - примерно 13,95 кВт*ч/л) умножить на КПД котла η (примерно 0,93 у дизельных) и затем требуемую мощность системы отопления Qотопления (9,22 кВт) поделить на полученную цифру:

V = Q отопления /(q*η) = 9,22 кВт / (13,95 кВт*ч/л) * 0,93) = 0,71 л/ч

При средней для Московской области стоимости дизтоплива 30 руб./л в год на отопление дома у нас уйдёт

0,71 * 30руб. * 24часа * 365дней = 187 тыс. руб. (округленно) .

Как сэкономить?

Естественное желание любого домовладельца - снизить затраты на отопление ещё на стадии строительства. Куда же имеет смысл вкладывать деньги?

В первую очередь следует подумать об утеплении фасада, на долю которого, как мы убедились ранее, приходится основной объём всех теплопотерь дома. В общем случае для этого может использоваться внешнее или внутреннее дополнительное утепление. Однако внутреннее утепление гораздо менее эффективно: при монтаже теплоизоляции изнутри граница раздела тёплой и холодной областей «перемещается» внутрь дома, т.е. в толще стен будет конденсироваться влага.

Существует два способа утепления фасадов: «мокрый» (штукатурка) и путём установки навесного вентилируемого фасада. Практика показывает, что из-за необходимости постоянного ремонта «мокрое» утепление с учётом эксплуатационных расходов оказывается в итоге почти вдвое дороже вентилируемого фасада. Основным недостатком штукатурного фасада является высокая стоимость его обслуживания и содержания. «Первоначальные затраты на обустройство такого фасада ниже, чем для навесного вентилируемого, всего на 20-25%, максимум на 30%, - объясняет Сергей Якубов («Металл Профиль»). - Однако с учётом расходов на текущий ремонт, который нужно делать не реже чем раз в 5 лет, уже по истечении первой пятилетки штукатурный фасад сравняется по стоимости с вентилируемым, а за 50 лет (срок службы вентфасада) - окажется дороже его в 4-5 раз ».

Что же представляет собой навесной вентилируемый фасад? Это наружный «экран», закреплённый на лёгком металлическом каркасе, который крепится к стене специальными кронштейнами. Между стеной дома и экраном размещается лёгкий утеплитель (например, Isover «ВентФасад Низ» толщиной от 50 до 200 мм), а также ветрогидрозащитная мембрана (например, Tyvek Housewrap). В качестве наружной облицовки могут использоваться различные материалы, но в индивидуальном строительстве чаще всего применяется стальной сайдинг. «Использование при производстве сайдинга современных высокотехнологичных материалов, таких как сталь с покрытием Colorcoat Prisma™, позволяет подобрать практически любое дизайнерское решение, - говорит Сергей Якубов. - Этот материал обладает превосходной устойчивостью как к коррозии, так и к механическим воздействиям. Срок гарантии на него составляет 20 лет при реальном сроке эксплуатации в 50 лет и более. Т.е. при условии использования стального сайдинга вся фасадная конструкция прослужит 50 лет без ремонта ».

Дополнительный слой фасадного утеплителя из минваты имеет сопротивление теплопередаче примерно 1,7 м2°C/Вт (см. выше). В строительстве, чтобы вычислить сопротивление теплопередаче многослойной стены, складывают соответствующие значения для каждого из слоёв. Как мы помним, наша основная несущая стена в 2 кирпича имеет сопротивление теплопередаче 0,405 м2°C/Вт. Поэтому для стены с вентфасадом получим:

0,405 + 1,7 = 2,105 м 2 °C/Вт

Таким образом, после утепления тепловыделение наших стен составит

Q фасад = (17,2°C / 2,105м 2 °C/Вт) * 137,2 м 2 = 1,12 кВт,

что в 5,2 раза меньше аналогичного показателя для неутеплённого фасада. Впечатляет, не правда ли?

Снова вычислим требуемую тепловую мощность системы отопления:

Q отопления-1 = 6,35 - 1,84 = 4,51 кВт

Расход дизтоплива:

V 1 = 4,51 кВт / (13,95 кВт*ч/л) * 0,93) = 0,35 л/ч

Сумма на отопление:

0,35 * 30руб. * 24часа * 365дней = 92 тыс. руб.

Энергоэффективная реконструкция здания поможет сэкономить тепловую энергию и повысить комфортность жизни. Наибольший потенциал экономии заключается в хорошей теплоизоляции наружных стен и крыши. Самый простой способ оценить возможности эффективного ремонта – это потребление тепловой энергии. Если в год потребляется более 100 кВт ч электроэнергии (10 м³ природного газа) на квадратный метр отапливаемой площади, включая площадь стен, то энергосберегающий ремонт может быть выгодным.

Потери тепла через внешнюю оболочку

Основная концепция энергосберегающего здания – это сплошной слой теплоизоляции над нагретой поверхностью контура дома.

  1. Крыша. С толстым слоем теплоизоляции потери тепла через крышу можно уменьшить;

Важно! В деревянных конструкциях теплозащитное уплотнение крыши затруднено, так как древесина набухает и может повреждаться от большой влажности.

  1. Стены. Как и с крышей, потери тепла снижаются при применении специального покрытия. В случае внутренней теплоизоляции стен существует риск того, что конденсат будет собираться за изоляцией, если влажность в помещении слишком высокая;

  1. Пол или подвал. По практическим соображениям тепловая изоляция производится изнутри здания;
  2. Термические мосты. Тепловые мосты представляют собой нежелательные охлаждающие ребра (теплопроводники) снаружи здания. Например, бетонный пол, который одновременно является балконным полом. Многие тепловые мосты находятся в области почвы, парапетах, оконных и дверных рамах. Существуют также временные тепловые мосты, если детали стен закреплены металлическими элементами. Термомосты могут составлять значительную часть потерь тепла;
  3. Окна. За последние 15 лет теплоизоляция оконного стекла улучшилась в 3 раза. Сегодняшние окна обладают специальным отражающим слоем на стеклах, что уменьшает потери излучения, это одно,- и двухкамерные стеклопакеты;
  4. Вентиляция. Обычное здание имеет воздушные утечки, особенно в области окон, дверей и на крыше, что обеспечивает необходимый воздухообмен. Однако в холодное время года это вызывает значительные теплопотери дома от выходящего нагретого воздуха. Хорошие современные здания достаточно воздухонепроницаемы, и необходимо регулярно вентилировать помещения, открывая окна на несколько минут. Чтобы уменьшить потери тепла за счет вентиляции, все чаще устанавливаются комфортные вентиляционные системы. Этот вид теплопотерь оценивается в 10-40%.

Термографические съемки в здании с плохой изоляцией дают представление о том, как много тепла теряется. Это очень хороший инструмент для контроля качества ремонта или нового строительства.

Способы оценки теплопотерь дома

Существуют сложные методики расчетов, учитывающие различные физические процессы: конвекционный обмен, излучение, но они часто являются излишними. Обычно используются упрощенные формулы, а при необходимости можно добавить к полученному результату 1-5%. Ориентация здания учитывается в новых постройках, но солнечное излучение также не влияет значительно на расчет теплопотерь.

Важно! При применении формул для расчетов потерь тепловой энергии всегда учитывается время нахождения людей в том или ином помещении. Чем оно меньше, тем меньшие температурные показатели надо брать за основу.

  1. Усредненные величины. Самый приблизительный метод, не обладает достаточной точностью. Существуют таблицы, составленные для отдельных регионов с учетом климатических условий и средних параметров здания. Например, для конкретной местности указывается значение мощности в киловаттах, необходимое для нагрева 10 м² площади помещения с потолками высотой 3 м и одним окном. Если потолки ниже или выше, и в комнате 2 окна, показатели мощности корректируются. Этот метод совершенно не учитывает степень теплоизоляции дома и не даст экономии тепловой энергии;
  2. Расчет теплопотерь ограждающего контура здания. Суммируется площадь внешних стен за вычетом размеров площадей окон и дверей. Дополнительно находится площадь крыши с полом. Дальнейшие расчеты ведутся по формуле:

Q = S x ΔT/R, где:

  • S – найденная площадь;
  • ΔT – разность между внутренней и наружной температурами;
  • R – сопротивление передаче тепла.

Результат, полученный для стен, пола и крыши, объединяется. Затем добавляются вентиляционные потери.

Важно! Такой подсчет теплопотерь поможет определиться с мощностью котла для здания, но не позволит рассчитать покомнатное количество радиаторов.

  1. Расчет теплопотерь по комнатам. При использовании аналогичной формулы рассчитываются потери для всех комнат здания по отдельности. Затем находятся теплопотери на вентиляцию путем определения объема воздушной массы и примерного количества раз в день ее смены в помещении.

Важно! При расчете вентиляционных потерь нужно обязательно учитывать назначение помещения. Для кухни и ванной комнаты необходима усиленная вентиляция.

Пример расчета теплопотерь жилого дома

Применяется второй способ расчета, только для внешних конструкций дома. Через них уходит до 90 процентов тепловой энергии. Точные результаты важны, чтобы выбрать необходимый котел для отдачи эффективного тепла без излишнего нагрева помещений. Также это показатель экономической эффективности выбранных материалов для теплозащиты, показывающий, как быстро можно окупить затраты на их приобретение. Расчеты упрощенные, для здания без наличия многослойного теплоизоляционного слоя.

Дом обладает площадью 10 х 12 м и высотой 6 м. Стены толщиной в 2,5 кирпича (67 см), покрытые штукатуркой, слоем 3 см. В доме 10 окон 0,9 х 1 м и дверь 1 х 2 м.

Расчет сопротивления передаче тепла стен:

  1. R = n/λ, где:
  • n – толщина стен,
  • λ – удельная теплопроводность (Вт/(м °C).

Это значение ищется по таблице для своего материала.

  1. Для кирпича:

Rкир = 0,67/0,38 = 1,76 кв.м °C/Вт.

  1. Для штукатурного покрытия:

Rшт = 0,03/0,35 = 0,086 кв.м °C/Вт;

  1. Общая величина:

Rст = Rкир + Rшт = 1,76 + 0,086 = 1,846 кв.м °C/Вт;

Вычисление площади внешних стен:

  1. Общая площадь внешних стен:

S = (10 + 12) х 2 х 6 = 264 кв.м.

  1. Площадь окон и дверного проема:

S1 = ((0,9 х 1) х 10) + (1 х 2) = 11 кв.м.

  1. Скорректированная площадь стен:

S2 = S – S1 = 264 – 11 = 253 кв.м.

Тепловые потери для стен будут определяться:

Q = S x ΔT/R = 253 х 40/1,846 = 6810,22 Вт.

Важно! Значение ΔT взято произвольно. Для каждого региона в таблицах можно отыскать среднее значение этой величины.

На следующем этапе идентичным образом высчитываются теплопотери через фундамент, окна, крышу, дверь. При вычислении показателя тепловых потерь для фундамента берется меньшая разность температур. Затем надо просуммировать все полученные цифры и получить итоговую.

Чтобы определить возможный расход электроэнергии на отопление, можно представить эту цифру в кВт ч и рассчитать ее за отопительный сезон.

Если использовать только цифру для стен, получается:

  • за сутки:

6810,22 х 24 = 163,4 кВт ч;

  • за месяц:

163,4 х 30 = 4903,4 кВт ч;

  • за отопительный сезон 7 месяцев:

4903,4 х 7 =34 323,5 кВт ч.

Когда отопление газовое, определяется расход газа, исходя из его теплоты сгорания и коэффициента полезного действия котла.

Тепловые потери на вентиляцию

  1. Найти воздушный объем дома:

10 х 12 х 6 = 720 м³;

  1. Масса воздуха находится по формуле:

М = ρ х V, где ρ – плотность воздуха (берется из таблицы).

М = 1, 205 х 720 = 867,4 кг.

  1. Надо определить цифру, сколько раз сменяется воздух во всем доме за сутки (например, 6 раз), и высчитать теплопотери на вентиляцию:

Qв = nxΔT xmx С, где С – удельная теплоемкость для воздуха, n – число раз замены воздуха.

Qв = 6 х 40 х 867,4 х 1,005 = 209217 кДж;

  1. Теперь надо перевести в Квт ч. Так как в одном киловатт-часе 3600 килоджоулей, то 209217 кДж = 58,11 кВт ч

Некоторые методики расчета предлагают взять потери тепла на вентиляцию от 10 до 40 процентов общих теплопотерь, не высчитывая их по формулам.

Для облегчения расчетов теплопотерь дома есть калькуляторы онлайн, где можно вычислить результат для каждой комнаты или дома целиком. В предлагаемые поля просто вводятся свои данные.

Видео

Каждое здание, независимо от конструктивных особенностей, пропускает тепловую энергию через ограждения. Потери тепла в окружающую среду необходимо восстанавливать с помощью системы отопления. Сумма теплопотерь с нормируемым запасом – это и есть требуемая мощность источника тепла, которым обогревается дом. Чтобы создать в жилище комфортные условия, расчет теплопотерь производят с учетом различных факторов: устройства здания и планировки помещений, ориентации по сторонам света, направления ветров и средней мягкости климата в холодный период, физических качеств строительных и теплоизоляционных материалов.

По итогам теплотехнического расчета выбирают отопительный котел, уточняют количество секций батареи, считают мощность и длину труб теплого пола, подбирают теплогенератор в помещение – в общем, любой агрегат, компенсирующий потери тепла. По большому счету, определять потери тепла нужно для того, чтобы отапливать дом экономно – без лишнего запаса мощности системы отопления. Вычисления выполняют ручным способом либо выбирают подходящую компьютерную программу, в которую подставляют данные.

Как выполнить расчет?

Сначала стоит разобраться с ручной методикой – для понимания сути процесса. Чтобы узнать, сколько тепла теряет дом, определяют потери через каждую ограждающую конструкцию по отдельности, а затем складывают их. Расчет выполняют поэтапно.

1. Формируют базу исходных данных под каждое помещение, лучше в виде таблицы. В первом столбце записывают предварительно вычисленную площадь дверных и оконных блоков, наружных стен, перекрытий, пола. Во второй столбец заносят толщину конструкции (это проектные данные или результаты замеров). В третий – коэффициенты теплопроводности соответствующих материалов. В таблице 1 собраны нормативные значения, которые понадобятся в дальнейшем расчете:

Чем выше λ, тем больше тепла уходит сквозь метровую толщину данной поверхности.

2. Определяют теплосопротивление каждой прослойки: R = v/ λ, где v – толщина строительного или теплоизоляционного материала.

3. Делают расчет теплопотерь каждого конструктивного элемента по формуле: Q = S*(Т в -Т н)/R, где:

  • Т н – температура на улице, °C;
  • Т в – температура внутри помещения,°C;
  • S – площадь, м2.

Разумеется, на протяжении отопительного периода погода бывает разной (к примеру, температура колеблется от 0 до -25°C), а дом обогревается до нужного уровня комфорта (допустим, до +20°C). Тогда разность (Т в -Т н) варьируется от 25 до 45.

Чтобы сделать расчет, нужна средняя разница температур за весь отопительный сезон. Для этого в СНиП 23-01-99 «Строительная климатология и геофизика» (таблица 1) находят среднюю температуру отопительного периода для конкретного города. Например, для Москвы этот показатель равен -26°. В этом случае средняя разница составляет 46°C. Для определения расхода тепла через каждую конструкцию складывают теплопотери всех ее слоев. Так, для стен учитывают штукатурку, кладочный материал, внешнюю теплоизоляцию, облицовку.

4. Считают итоговые потери тепла, определяя их как сумму Q внешних стен, пола, дверей, окон, перекрытий.

5. Вентиляция. К результату сложения добавляется от 10 до 40 % потерь на инфильтрацию (вентиляцию). Если установить в дом качественные стеклопакеты, а проветриванием не злоупотреблять, коэффициент инфильтрации можно принять за 0,1. В отдельных источниках указывается, что здание при этом вообще не теряет тепло, поскольку утечки компенсируются за счет солнечной радиации и бытовых тепловыделений.

Подсчет вручную

Исходные данные. Одноэтажный дом площадью 8х10 м, высотой 2,5 м. Стены толщиной 38 см сложены из керамического кирпича, изнутри отделаны слоем штукатурки (толщина 20 мм). Пол изготовлен из 30-миллиметровой обрезной доски, утеплен минватой (50 мм), обшит листами ДСП (8 мм). Здание имеет подвал, температура в котором зимой составляет 8°C. Потолок перекрыт деревянными щитами, утеплен минватой (толщина 150 мм). Дом имеет 4 окна 1,2х1 м, входную дубовую дверь 0,9х2х0,05 м.

Задание: определить общие теплопотери дома из расчета, что он находится в Московской области. Средняя разность температур в отопительный сезон – 46°C (как было сказано ранее). Помещение и подвал имеют разницу по температуре: 20 – 8 = 12°C.

1. Теплопотери через наружные стены.

Общая площадь (за вычетом окон и дверей): S = (8+10)*2*2,5 – 4*1,2*1 – 0,9*2 = 83,4 м2.

Определяется теплосопротивление кирпичной кладки и штукатурного слоя:

  • R клад. = 0,38/0,52 = 0,73 м2*°C/Вт.
  • R штук. = 0,02/0,35 = 0,06 м2*°C/Вт.
  • R общее = 0,73 + 0,06 = 0,79 м2*°C/Вт.
  • Теплопотери сквозь стены: Q ст = 83,4 * 46/0,79 = 4856,20 Вт.

2. Потери тепла через пол.

Общая площадь: S = 8*10 = 80 м2.

Вычисляется теплосопротивление трехслойного пола.

  • R доски = 0,03/0,14 = 0,21 м2*°C/Вт.
  • R ДСП = 0,008/0,15 = 0,05 м2*°C/Вт.
  • R утепл. = 0,05/0,041 = 1,22 м2*°C/Вт.
  • R общее = 0,03 + 0,05 + 1,22 = 1,3 м2*°C/Вт.

Подставляем значения величин в формулу для нахождения теплопотерь: Q пола = 80*12/1,3 = 738,46 Вт.

3. Потери тепла через потолок.

Площадь потолочной поверхности равна площади пола S = 80 м2.

Определяя теплосопротивление потолка, в данном случае не берут во внимание деревянные щиты: они закреплены с зазорами и не являются барьером для холода. Тепловое сопротивление потолка совпадает с соответствующим параметром утеплителя: R пот. = R утепл. = 0,15/0,041 = 3,766 м2*°C/Вт.

Величина теплопотерь сквозь потолок: Q пот. = 80*46/3,66 = 1005,46 Вт.

4. Теплопотери через окна.

Площадь остекления: S = 4*1,2*1 = 4,8 м2.

Для изготовления окон использован трехкамерный ПВХ профиль (занимает 10 % площади окна), а также двухкамерный стеклопакет с толщиной стекол 4 мм и расстоянием между стеклами 16 мм. Среди технических характеристик производитель указал тепловые сопротивления стеклопакета (R ст.п. = 0,4 м2*°C/Вт) и профиля (R проф. = 0,6 м2*°C/Вт). Учитывая размерную долю каждого конструктивного элемента, определяют среднее теплосопротивление окна:

  • R ок. = (R ст.п.*90 + R проф.*10)/100 = (0,4*90 + 0,6*10)/100 = 0,42 м2*°C/Вт.
  • На базе вычисленного результата считаются теплопотери через окна: Q ок. = 4,8*46/0,42 = 525,71 Вт.

Площадь двери S = 0,9*2 = 1,8 м2. Тепловое сопротивление R дв. = 0,05/0,14 = 0,36 м2*°C/Вт, а Q дв. = 1,8*46/0,36 = 230 Вт.

Итоговая сумма теплопотерь дома составляет: Q = 4856,20 Вт + 738,46 Вт + 1005,46 Вт + 525,71 Вт + 230 Вт = 7355,83 Вт. С учетом инфильтрации (10 %) потери увеличиваются: 7355,83*1,1 = 8091,41 Вт.

Чтобы безошибочно посчитать, сколько тепла теряет здание, используют онлайн калькулятор теплопотерь. Это компьютерная программа, в которую вводятся не только перечисленные выше данные, но и различные дополнительные факторы, влияющие на результат. Преимуществом калькулятора является не только точность расчетов, но и обширная база справочных данных.

Комфорт – штука капризная. Приходят минусовые температуры, сразу становится зябко, и безудержно тянет к домашнему обустройству. Начинается «глобальное утепление». И здесь есть одно «но» — даже просчитав теплопотери дома и смонтировав обогрев «согласно плану», можно остаться лицом к лицу с быстро уходящим теплом. Процессом визуально не заметным, зато отлично чувствующимся через шерстяные носки и большие счета за отопление. Остается вопрос – куда «драгоценное» тепло ушло?

Естественные теплопотери хорошо прячутся за несущие конструкции или «добротно» сделанное утепление, где прорех по умолчанию не должно быть. Но так ли это? Давайте рассмотрим вопрос тепловых утечек для разных элементов конструкции.

Холодные места на стенах

До 30% от всех теплопотерь дома приходится на стены. В современном строительстве они представляют собой многослойные конструкции из разных по теплопроводности материалов. Расчеты для каждой стены можно проводить индивидуально, но есть общие для всех погрешности, через которые из помещения уходит тепло, а снаружи в дом поступает холод.

Место, где изоляционные свойства ослаблены, называется — «мостик холода». Для стен это:

  • Кладочные швы

Оптимальный шов кладки – 3мм. Достигается он чаще клеевыми составами мелкой текстуры. Когда объем раствора между блоками увеличивается – растет теплопроводность всей стены. Причем температура шва кладки может быть на 2-4 градуса холоднее основного материала (кирпича, блока и т.п.).

Кладочные швы как «термомост»

  • Бетонные перемычки над проемами.

Один из высоких коэффициентов теплопроводности среди строительных материалов (1,28 — 1,61 Вт/ (м*К)) у железобетона. Это делает его источником теплопотерь. Вопрос полностью не решают и ячеистые или пенобетонные перемычки. Разница температур железобетонной балки и основной стены часто близится к 10 градусам.

Изолировать перемычку от холода можно сплошным наружным утеплением. А внутри дома — собрав короб из ГК под карниз. Так создается дополнительная воздушная прослойка для тепла.

  • Монтажные отверстия и крепежные элементы.

Подключение кондиционера, ТВ-антенны оставляет прорехи в общем утеплении. Сквозной металлический крепеж и проходное отверстие необходимо плотно заделать утеплителем.

А по возможности, не выводить металлические крепления наружу, зафиксировав их внутри стены.

Дефекты с теплопотерями есть и у утепленных стен

Монтаж поврежденного материала (со сколами, сдавливанием и т.п.) оставляет уязвимые области для утечек тепла. Это хорошо видно при обследовании дома тепловизором. Яркие пятна показывают бреши в наружном утеплении.


При эксплуатации важно следить за общим состоянием утепления. Ошибка в выборе клея (не специального для теплоизоляции, а плиточного) может выдать трещины в конструкции уже через 2 года. Да и основные утеплительные материалы так же имеют свои минусы. Например:

  • Минвата – не гниет, и не интересна грызунам, но очень чувствительна к влаге. Поэтому срок ее добротной службы в наружном утеплении около 10 лет — затем появляются повреждения.
  • Пенопласт – имеет хорошие изоляционные свойства, но легко поддается грызунам, и не устойчив к силовому воздействию и ультрафиолету. Слой утепления после монтажа требует скорой защиты (в виде конструкции или слоя штукатурки).

В работе с обоими материалами важно соблюсти четкую подгонку замков утеплительных плит и перекрестное расположение листов.

  • Пенополиуретан – создает бесшовное утепление, удобен для неровных и изогнутых поверхностей, но уязвим для механических повреждений, и разрушается под УФ-лучами. Покрывать его желательно штукатурной смесью — крепление каркасов сквозь слой утеплителя нарушает общую изоляцию.

Опыт! Потери тепла могут нарастать во время эксплуатации, ведь у всех материалов есть свои нюансы. Лучше периодически оценивать состояние утепления и повреждения устранять сразу. Трещина на поверхности – это «скоростная» дорога к разрушениям утеплителя внутри.

Теплопотери фундамента

Бетон – преобладающий материал в строительстве фундаментов. Его высокая теплопроводность и прямой контакт с грунтом дают до 20% теплопотерь по всему периметру здания. Фундамент особенно сильно проводит тепло из подвального помещения и неправильно смонтированного теплого пола на первом этаже.


Потери тепла увеличивает и лишняя влага, не отведенная от дома. Она разрушает фундамент, создавая лазейки для холода. К влажности чувствительны и многие теплоизоляционные материалы. Например, минвата, которая часто переходит на фундамент с общего утепления. Она легко повреждается влагой, и поэтому требует плотного защитного каркаса. Керамзит так же теряет свои теплоизоляционные свойства на постоянно влажном грунте. Его структура создает воздушную подушку и хорошо компенсирует давление грунтов при замерзании, но постоянное присутствие влаги сводит к минимуму полезные свойства керамзита в утеплении. Именно поэтому создание рабочего дренажа – обязательное условие долгой жизни фундамента и сохранения тепла.

Сюда же по важности можно отнести и гидроизоляционную защиту основания, а так же многослойную отмостку, шириной не меньше метра. При столбчатом фундаменте или пучинистом грунте отмостка по периметру утепляется, что бы защитить от промерзания грунт у основания дома. Утепляется отмостка керамзитом, листами пенополистирола или пенопласта.

Листовые материалы для утепления фундамента лучше выбирать с пазовым соединением, и его обрабатывать специальным силиконовым составом. Герметичность замков перекрывает доступ холоду и гарантирует сплошную защиту фундамента. В этом вопросе бесшовное напыление пенополиуретана имеет бесспорное преимущество. Вдобавок, материал эластичный и не трещит при пучении грунта.

Для всех видов фундаментов можно использовать разработанные схемы утепления. Исключением может быть фундамент на сваях, за счет своей конструкции. Здесь при обработке ростверка важно учитывать пучинистость грунта и выбрать технологию, не разрушающую сваи. Это сложный расчет. Практика же показывает, что дом на сваях защищает от холода грамотно утепленный пол первого этажа.

Внимание! Если в доме есть подвал, и он часто затопляется, то с утеплением фундамента это необходимо учесть. Так как утеплитель/изолятор в данном случае будет закупоривать влагу в фундаменте, и его разрушать. Соответственно – тепло будет теряться еще больше. Первым необходимо решить вопрос с затоплением.

Уязвымые места пола

Неизолированное перекрытие отдает весомую часть тепла фундаменту и стенам. Это особенно заметно при неправильном монтаже теплого пола – нагревательный элемент быстрее остывает, увеличивая затраты на обогрев помещения.


Чтобы тепло от пола уходило в комнату, а не на улицу, нужно проследить, что бы монтаж шел по всем правилам. Основные из которых:

  • Защита. На стены по всему периметру помещения крепится демпферная лента (либо фольгированные полистирольные листы шириной до 20 см и толщиной в 1 см). Перед этим обязательно устраняются щели, и поверхность стены выравнивается. Лента фиксируется максимально плотно к стене, изолируя теплопередачу. Когда нет воздушных «карманов» — нет утечек тепла.
  • Отступ. От наружной стены до нагревающего контура должно быть не меньше 10 см. Если теплый пол монтируется ближе к стене, то он начинает обогревать улицу.
  • Толщина. Характеристики необходимого экрана и утеплителя под теплый пол рассчитывается индивидуально, но к полученным цифрам лучше прибавить 10-15% запаса.
  • Отделка. Стяжка поверх пола не должна содержать керамзит (он изолирует тепло в бетоне). Оптимальная толщина стяжки 3-7 см. Присутствие пластификатора в смеси бетона улучшает теплопроводность, а значит и отдачу тепла в помещение.

Серьезное утепление актуально для любого пола, и не обязательно с подогревом. Плохая теплоизоляция превращает пол в большой «радиатор» для грунта. Стоит ли его отапливать зимой?!

Важно! Холодные полы и сырость появляются в доме при не рабочей или не сделанной вентиляции подпольного пространства (не организованы продухи). Ни одна система отопления не компенсирует такой недочет.

Места примыкания строительных конструкций

Соединения нарушают целостные свойства материалов. Поэтому углы, стыки и примыкания настолько уязвимы для холода и влаги. Места соединения бетонных панелей отсыревают первыми, там же проявляются грибок и плесень. Разница температур угла комнаты (место стыковки конструкций) и основной стены может колебаться от 5-6 градусов, до минусовых температур и конденсата внутри угла.


Подсказка! На местах таких соединений мастера рекомендуют делать снаружи увеличенный слой изоляции.

Тепло часто уходит через межэтажное перекрытие, когда плита укладывается на всю толщину стены и ее края выходят на улицу. Здесь увеличиваются теплопотери как первого, так и второго этажа. Формируются сквозняки. Опять же, если на втором этаже есть теплый пол — наружное утепление должно быть на это рассчитано.

Утечки тепла через вентиляцию

Тепло из помещения выводится по обустроенным вентиляционным каналам, обеспечивающим здоровый воздухообмен. Вентиляция, работающая «наоборот», затягивает холод с улицы. Происходит это, когда в помещении создается дефицит воздуха. Например, когда включенный вентилятор в вытяжке забирает слишком много воздуха из помещения, за счет чего он начинает затягиваться с улицы через другие вытяжные каналы (без фильтров и обогрева).

Вопросы, как не выводить большое количество тепла наружу, и как не впускать холодный воздух в дом, давно имеют свои профессиональные решения:

  1. В вентиляционную систему устанавливаются рекуператоры. Они возвращают до 90% тепла в дом.
  2. Обустраиваются приточные клапаны. Они «подготавливают» уличный воздух перед помещением – его очищают и согревают. Клапаны идут с ручной регулировкой или автоматической, которая ориентируется на разницу температур снаружи и внутри помещения.

Комфорт стоит хорошей вентиляции. При нормальном воздухообмене не образуется плесень, и создается здоровый микроклимат для обитания. Именно поэтому хорошо утепленный дом с комбинацией изолирующих материалов обязательно должен иметь рабочую вентиляцию.

Итог! Для уменьшения теплопотерь через вентиляционные каналы необходимо устранить ошибки перераспределения воздуха в помещении. В добротно работающей вентиляции только теплый воздух покидает дом, часть тепла из которого можно вернуть обратно.

Теплопотери через окна и двери

Через дверные и оконные проемы дом теряет до 25% тепла. Слабые места для дверей это — прохудившийся уплотнитель, который можно легко переклеить на новый и сбившаяся внутри теплоизоляция. Заменить ее можно, сняв кожух.

Уязвимые места для деревянных и пластиковых дверей похожи на «мостики холода» в аналогичных конструкциях окон. Поэтому общий процесс на их примере и рассмотрим.

Что выдает «оконную» потерю тепла:

  • Явные щели и сквозняки (в раме, вокруг подоконника, на стыке откоса и окна). Плохое прилегание створок.
  • Отсыревшие и покрытые плесенью внутренние откосы. Если пена и штукатурка со временем отстали от стены, то влага снаружи подбирается ближе к окну.
  • Холодная поверхность стекла. Для сравнения – энергосберегающее стекло (при -25° снаружи, а внутри комнаты +20°) имеет температуру в 10-14 градусов. И, естественно, не промерзает.

Створки могут неплотно прилегать, когда окно не отрегулировано, и резинки по периметру износились. Положение створок можно настроить самостоятельно, равно, как и поменять уплотнитель. Полную его замену лучше проводить раз в 2-3 года, и желательно на уплотнитель «родного» производства. Посезонная чистка и смазка резинок сохраняет их эластичность при перепадах температур. Тогда уплотнитель долго не пропускает холод.

Щели в самой раме (актуально для деревянных окон) заполняются силиконовым герметиком, лучше прозрачным. Когда он попадает на стекло – не так заметно.

Стыки откосов и профиля окна так же заделываются герметиком или жидким пластиком. В сложной ситуации, можно использовать самоклеящийся пенополиэтилен – «утепляющий» скотч для окон.

Важно! Стоит проследить, что бы в отделке наружных откосов утеплитель (пенопласт и т.п.) полностью закрывал шов монтажной пены и расстояние до середины рамы окна.

Современные способы уменьшить теплопотери через стекло:

  • Использование PVI-пленок. Они отражают волновое излучение и на 35-40% уменьшают потерю тепла. Пленки можно наклеить на стеклопакет уже установленный, если нет желания его менять. Важно не перепутать стороны стекла и полярность пленки.
  • Установка стекла с низкоэмиссионными характеристиками: k- и i-стекла. Стеклопакеты с k-стеклами пропускают энергию коротких волн светового излучения в помещение, аккумулируя в нем тело. Длинноволновое излучение комнату уже не покидает. В итоге, стекло на внутренней поверхности имеет температуру в два раза выше, чем у обычных стекол. i-стекло удерживает тепловую энергию в доме за счет отражения до 90% тепла обратно в помещение.
  • Использование стекол с серебряным напылением, которые в 2х камерных стеклопакетах сберегают на 40% больше тепла (в сравнении с обычными стеклами).
  • Выбор стеклопакетов с увеличенным количеством стекол и расстоянием между ними.

Полезно! Уменьшают теплопотери через стекло — организованные воздушные завесы над окнами (можно в виде теплых плинтусов) или защитные роллеты на ночь. Особенно актуально при панорамном остеклении и сильных минусовых температурах.

Причины утечки тепла в системе отопления

Теплопотери касаются и отопления, где утечки тепла чаще происходят по двум причинам.


  • Не все радиаторы полностью прогреваются.

Соблюдение нехитрых правил уменьшает теплопотери и не дает системе отопления работать «в холостую»:

  1. За каждым радиатором стоит установить отражающий экран.
  2. Перед запуском отопления, раз в сезон, необходимо стравить воздух с системы и просмотреть, все ли радиаторы полностью прогреваются. Засоряться система отопления может за счет скопившего воздуха или мусора (отслоений, некачественной воды). Раз в 2-3 года систему необходимо полностью промывать.

Заметка! При новом заполнении в воду лучше добавить антикоррозийные ингибиторы. Это поддержит металлические элементы системы.

Теплопотери через крышу

Тепло изначально стремится к верхней части дома, что делает крышу одним из самых уязвимых элементов. На нее приходится до 25% всех теплопотерь.

Холодное чердачное помещение или жилая мансарда утепляются одинаково плотно. Основные теплопотери идут на стыках материалов, не важно, утепление это или элементы конструкции. Так, часто упускаемым мостиком холода является граница стен с переходом в крышу. Этот участок желательно обрабатывать вместе с мауэрлатом.


Основное утепление тоже имеет свои нюансы, связанные больше с использованными материалами. Например:

  1. Утепление минватой нужно беречь от влаги и желательно менять каждые 10 – 15 лет. Со временем она слеживается и начинает пропускать тепло.
  2. Эковата, имеющая отличные свойства «дышащего» утеплителя, не должна находиться вблизи горячих источников – при нагревании она тлеет, оставляя прорехи в утеплении.
  3. При использовании пенополиуретана, необходимо обустроить вентиляцию. Материал паронепроницаем, а лишнюю влагу под крышей лучше не скапливать — повреждаются другие материалы, и в утеплении появляется брешь.
  4. Плиты в многослойной теплоизоляции должны укладываться в шахматном порядке и обязательно вплотную прилегать к элементам.

Практика! В верхних конструкциях любая брешь может отводить много дорогого тепла. Здесь важно поставить акцент на плотном и непрерывном утеплении.

Заключение

Места теплопотерь полезно знать не только для того, что бы обустроить дом и жить в комфортных условиях, но и что бы не переплачивать за отопление. Грамотное утепление на практике окупается за 5 лет. Срок долгий. Но ведь и дом мы не на два года строим.

Видеоматериалы по теме

Безусловно, основные очаги теплопотери в доме - двери и окна, но при просмотре картины через экран тепловизора легко увидеть, что это не единственные источники утечки. Тепло теряется и через неграмотно монтированную кровлю, холодный пол, не утепленные стены. Теплопотери дома сегодня рассчитываются при помощи специального калькулятора. Это позволяет подобрать оптимальный вариант отопления и провести дополнительные работы по утеплению строения. Интересно, что для каждого типа строений (из бруса, бревен, уровень теплопотерь будет разным. Поговорим об этом подробнее.

Основы расчета теплопотерь

Контроль над теплопотерями систематично проводится только для помещений, отапливающихся в соответствии с сезоном. Помещения, не предназначенные для сезонного проживания, не подпадают под категорию зданий, поддающихся тепловому анализу. Программа теплопотери дома в этом случае не будет иметь практического значения.

Чтобы провести полный анализ, рассчитать теплоизоляционные материалы и подобрать систему отопления с оптимальной мощностью, необходимо обладать знаниями о реальной теплопотере жилища. Стены, крыша, окна и пол - не единственные очаги утечки энергии из дома. Большая часть тепла уходит из помещения через неправильно монтированные вентиляционные системы.

Факторы, влияющие на теплопотери

Основными факторами, влияющими на уровень теплопотерь, являются:

  • Высокий уровень перепада температур между внутренним микроклиматом помещения и температурой на улице.
  • Характер теплоизоляционных свойств ограждающих конструкций, к которым относятся стены, перекрытия, окна и др.

Величины измерения теплопотери

Ограждающие конструкции выполняют барьерную функцию для тепла и не позволяют ему свободно выходить наружу. Такой эффект объясняется теплоизоляционными свойствами изделий. Величина, использующаяся для измерения теплоизоляционных свойств, зовется теплопередающим сопротивлением. Такой показатель отвечает за отражение перепада значения температур при прохождении n-ого количества тепла через участок оградительных конструкций площадью 1 м 2. Итак, разберемся с тем, как рассчитать теплопотери дома.

К основным величинам, необходимым для вычисления теплопотери дома, относятся:

  • q - величина, обозначающая количество тепла, уходящего из помещения наружу через 1 м 2 барьерной конструкции. Измеряется в Вт/м 2 .
  • ∆T - разница между температурой в доме и на улице. Измеряется в градусах (о С).
  • R - сопротивление теплопередаче. Измеряется в °С/Вт/м² или °С·м²/Вт.
  • S - площадь здания или поверхности (используется по необходимости).

Формула расчета теплопотери

Программа теплопотери дома рассчитывается по специальной формуле:

Проводя расчет, помните, что для конструкций, состоящих из нескольких слоев, суммируется сопротивление каждого слоя. Итак, как рассчитать теплопотери каркасного дома, обложенного кирпичом снаружи? Сопротивление потере тепла будет равно сумме сопротивления кирпича и дерева с учетом воздушной прослойкой между слоями.

Важно! Обратите внимание, что расчет сопротивления проводится для самого холодного времени года, когда разница температур достигает своего пика. В справочниках и пособиях всегда указывается именно это опорное значение, использующееся для дальнейших расчетов.

Особенности расчета теплопотерь деревянного дома

Расчет теплопотерь дома, особенности которого при вычислении необходимо учитывать, проводится в несколько этапов. Процесс требует особого внимания и сосредоточенности. Вычислить теплопотери в частном доме по простой схеме можно так:

  • Определяют через стены.
  • Рассчитывают через оконные конструкции.
  • Через дверные проемы.
  • Производят расчет через перекрытия.
  • Вычисляют теплопотери деревянного дома через напольное покрытие.
  • Складывают полученные ранее значения.
  • Учитывая тепловое сопротивление и потерю энергии через вентиляцию: от 10 до 360%.

Для результатов пунктов 1-5 используется стандартная формула расчета теплопотери дома (из бруса, кирпича, дерева).

Важно! Теплосопротивление для оконных конструкций берется из СНИП ІІ-3-79.

Строительные справочники зачастую содержат информацию в упрощенной форме, то есть результаты расчета теплопотери дома из бруса приводятся для разных типов стен и перекрытий. Например, вычисляют сопротивление при разнице температур для нетипичных помещений: угловых и не угловых комнат, одно- и многоэтажных строений.

Необходимость расчета теплопотерь

Обустройство комфортного жилища требует строгого контроля процесса на каждом из этапов выполнения работ. Поэтому организацию системы отопления, которой предшествует выбор самого метода обогрева помещения, нельзя упускать из виду. Работая над возведением дома, немало времени придется уделить не только проектной документации, но и расчету теплопотери дома. Если в дальнейшем вы собираетесь работать в области проектирования, то инженерные навыки расчета теплопотерь вам точно пригодятся. Так почему бы не потренироваться выполнять эту работу на опыте и сделать подробный расчет теплопотерь для собственного дома.

Важно! Выбор способа и мощности системы отопления напрямую зависит от проведенных вами расчетов. Вычислив показатель теплопотери неверно, вы рискуете мерзнуть в холодное время или изнемогать от жары из-за чрезмерного обогрева помещения. Необходимо не только правильно выбрать прибор, но и определить количество батарей или радиаторов, способное обогреть одну комнату.

Оценка теплопотери на расчетном примере

Если у вас нет необходимости изучать расчет теплопотери дома подробно, остановимся на оценочном разборе и определении потери тепла. Иногда в процессе расчетов возникают погрешности, поэтому лучше прибавлять минимальное значение к предполагаемой мощности отопительной системы. Для того чтобы приступить к расчетам, необходимо знать показатель сопротивления стен. Он отличается в зависимости от типа материала, из которого изготовлена постройка.

Сопротивление (R) для домов из керамического кирпича (при толщине кладки в два кирпича - 51 см) равно 0,73 °С·м²/Вт. Минимальный показатель толщины при таком значении должен составлять 138 см. При использовании в качестве базового материала керамзитбетона (при толщине стены 30 см) R составляет 0,58 °С·м²/Вт при минимальной толщине в 102 см. В деревянном доме или постройке из бруса с толщиной стен в 15 см и уровнем сопротивления 0,83 °С·м²/Вт требуется минимальная толщина в 36 см.

Стройматериалы и их сопротивление теплопередаче

Опираясь на эти параметры, можно с легкостью проводить расчеты. Найти значения сопротивлений вы можете в справочнике. В строительстве чаще всего используются кирпич, сруб из бруса или бревен, пенобетон, деревянный пол, потолочные перекрытия.

Значения сопротивления теплопередаче для:

  • кирпичной стены (толщ. 2 кирпича) - 0,4;
  • сруба из бруса (толщ. 200 мм) - 0,81;
  • сруба из бревна (диаметром 200 мм) - 0,45;
  • пенобетона (толщ. 300 мм) - 0,71;
  • деревянного пола - 1,86;
  • перекрытия потолка - 1,44.

Исходя из поданной выше информации, можно сделать вывод, что для правильного расчета теплопотерь потребуется всего две величины: показатель перепада температур и уровень сопротивления теплопередаче. Например, дом сделан из дерева (бревна) толщиной 200 мм. Тогда сопротивление равно 0,45 °С·м²/ Вт. Зная эти данные, можно вычислить процент теплопотери. Для этого проводят операцию деления: 50/0,45=111,11 Вт/м².

Расчет теплопотери по площади выполняется так: теплопотери умножаются на 100 (111,11*100=11111 Вт). С учетом расшифровки величины (1 Вт=3600) полученное число умножаем на 3600 Дж/час: 11111*3600=39,999 МДж/час. Проведя такие простые математические операции, любой хозяин может узнать о теплопотерях своего дома за час.

Расчет теплопотери помещения в онлайн-режиме

В интернете есть множество сайтов, предлагающих услугу онлайн-расчета теплопотери здания в режиме реального времени. Калькулятор представляет собой программу со специальной формой для заполнения, куда вы введете свои данные и после автоматического проведения подсчета увидите результат - цифру, которая и будет означать количество выхода тепла из жилого помещения.

Жилое помещение - это постройка, в которой проживают в течение всего отопительного сезона. Как правило, дачные строения, где отопительная система работает периодически и по необходимости, к категории жилых строений не относятся. Чтобы провести переоснащение и достичь оптимального режима теплообеспечения, придется провести ряд работ и по необходимости увеличить мощность системы отопления. Такое переоснащение может затянуться на длительный период. В целом весь процесс зависит от конструктивных особенностей дома и показателей увеличения мощности системы отопления.

Многие даже не слышали о существовании такого понятия, как «теплопотери дома», и впоследствии, сделав конструктивно правильный монтаж отопительной системы, всю жизнь мучаются от недостатка или избытка тепла в доме, даже не догадываясь об истинной причине. Именно поэтому так важно учитывать каждую деталь при проектировании жилища, заниматься лично контролем и построением, чтобы в итоге получить качественный результат. В любом случае жилище, независимо от того, из какого материала оно строится, должно быть комфортным. А такой показатель, как теплопотеря строения жилого характера, поможет сделать пребывание дома еще приятнее.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва