Как сделать жидкий пластик своими руками? Технология изготовления и область применения средства. Жидкое дерево своими руками – создаем деревопластик дома Определяемся с литьевым материалом

УДК 674.812

В.Г. Дедюхин, В.Г. Бурындин, Н.М. Мухин, А.В. Артемов

ПОЛУЧЕНИЕ ИЗДЕЛИЙ ПРЕССОВАНИЕМ В ЗАКРЫТЫХ ПРЕСС-ФОРМАХ ИЗ ФЕНОПЛАСТОВ БЕЗ ДОБАВЛЕНИЯ СВЯЗУЮЩИХ

Приведены результаты исследований изучения технологических свойств пресс-композиции из древесных частиц без добавления связующих и физико-механических свойств пластиков из этих композиций; изучено влияние низкомолекулярных (органических и неорганических) модификаторов, а также воды в процессе образования пластиков.

Ключевые слова: древесный пластик, карбамид, текучесть по Рашигу, шлифовальная пыль, фанера.

Запас древесины в России оценивается в 80 млрд м3. Степень ее использования составляет 65 ... 70 %, причем химическим и химико-механическим методом перерабатывают всего 15 ... 17 % (мировой уровень - 50 ... 70 %). На гидролизных предприятиях накапливается 1,5 млн т в год гидролизного лигнина в пересчете на сухое вещество .

Одно из рациональных направлений эффективного использования отходов деревообработки - получение из них пресс-материалов (древесных прессовочных масс) на основе феноло- и карбамидоформальдегидных смол . Однако введение в эти композиции от 11 до 35 % синтетических связующих удорожает стоимость плит и делает их экологически не безопасными.

Поэтому большой интерес представляют древесные пластики, получаемые без добавления связующих. Исходным сырьем могут быть не только мелкие древесные частицы, но и гидролизный лигнин и растительные остатки однолетних растений (костра льна и конопли, стебли хлопчатника, солома и др.). В работе А.Н. Минина такой материал назван пьезотермопла-стиком.

В УГЛТУ ведутся работы по получению материалов из древесных и других растительных отходов без добавления связующих: с 1961 г. в открытых пресс-формах (между обогреваемыми плоскопараллельными плитами) -лигноуглеводный древесный пластик , с 1996 г. в закрытых пресс-формах - древесный пластик без связующего (ДП-БС) .

Технология получения плит и изделий из древесных пластиков без связующего не находит широкого применения из-за длительного цикла прессования, так как пластик охлаждают в пресс-форме под давлением (низкая производительность оборудования и оснастки, а расход тепла большой). Нами предложена технология прессования изделий, основанная на использовании выносных пресс-форм и в качестве тепло- и хладоносителя -воздуха. При этом производительность возрастает в 5 и более раз по сравнению с традиционной технологией для таких пресс-материалов, значительно сокращается расход тепла.

Одним из недостатков древесных пресс-композиций без добавления связующих является их низкая текучесть. Например, текучесть ДП-БС из отходов деревообработки (фракция 0 ... 2 мм) по методу прессования плоского образца-диска при влажности 10 % составляет 78 мм, а при 20 % -95 мм ; текучесть по Рашигу данной пресс-композиции при влажности 10 % - 9 мм, а при 20 % - 29 мм.

Дешевым сырьем для изготовления ДП-БС является шлифовальная пыль от производства фанеры (ТТТП-Ф) и древесностружечных плит (ШП-ДСтП). Так при объеме производства ДСтП 100 тыс. м3/год количество образующейся ШП-ДСтП составляет 7,5 тыс. т . В работе показано, что ШП-ДСтП можно использовать в производстве фенопласта марки 03-010-02, соответствующего требованиям ГОСТ 5689-86 (см. таблицу).

Состав и свойства фенопластов на основе древесной муки и ШП-ДСтП

Показатель Значение показателя для наполнителя

Древесная мука ШП-ДСтП

Состав, %:

фенолформальдегидная смола 42,8 37,5

древесный наполнитель 42,6 42,0

уротропин 6,5 7,0

мумия 4,4 -

известь (гидроксид магния) 0,9 0,7

стеарин 0,7 0,6

каолин - 4,4

нигрозин 1,1 -

Свойства:

прочность при изгибе, МПа 69 66...69

ударная вязкость, кДж/см2 5,9 5,9...7,0

электрическая прочность, кВ/см 14,0 16,7.17,2

Зависимость свойств пресс-материала на основе ШП-Ф без добавления связующего от влажности (при влажности 13 % проведена модификация карбамидом): а -сопротивление сдвигу; б - модуль упругости при изгибе; в - текучесть по Рашигу; г - текучесть по диску

Цель данного исследования - разработка рецептуры ДП-БС на основе ШП-Ф и нахождение оптимальных режимов прессования изделий со свойствами, близкими к свойствам фенопласта 03-010-02.

По текучести ДП-БС на основе ШП-Ф значительно уступает фенопластам, поэтому из него можно изготавливать изделия простой конфигурации. Текучесть материала по Рашигу и по диску в зависимости от его влажности приведена на рисунке.

Известно, что модификация древесины аммиаком значительно увеличивает ее пластичность. Оптимальное количество аммиака составляет 5 % . В качестве источника аммиака предложено использовать карбамид, который в условиях прессования разлагается:

1ЧН2 - С - 1ЧН2 + Н20 -> 2Шз + С02. О

Количество аммиака там и углекислого газа туг, образующихся при разложении карбамида тк можно рассчитать по формулам

там = тк /1,765; туг = 0,733 тк.

По нашему мнению, применение карбамида более целесообразно, так как образующийся углекислый газ создает слабокислую среду, что способствует поликонденсации лигнина и легкогидролизуемой части целлюлозы - гемицеллюлоз. Это совпадает с мнением авторов работ .

Вода в процессе получения древесного пластика без добавления связующего необходима как пластификатор древесины и химический реагент, участвующий в реакциях с компонентами древесины.

Согласно , для протекания химических процессов, происходящих при образовании пластика из сосновых частиц при давлении 2,5 МПа, исходная влажность древесины должна составлять 7 ... 9 %. При использовании лиственных пород (осина, ольха) исходная влажность должна быть несколько выше - 10 ... 12 %. Чтобы придать древесине пластичность, содержание влаги, которое зависит от породы древесины и давления прессования, должно быть еще больше.

Кроме того, при использовании в качестве модификатора карбамида необходимо дополнительное количество воды для его разложения (см. вышеприведенную схему). Количество воды для прохождения реакции можно рассчитать по формуле тв = 0,53 там.

Следовательно, при образовании ДП-БС на основе ШП-Ф с использованием в качестве модификатора карбамида оптимальное содержание воды должно составлять около 13 %.

Для модификации пресс-композиции на основе ШП-Ф было использовано 9 % мас. карбамида. Это позволило значительно повысить вязкоте-кучие свойства пресс-материала. Например, текучесть по Рашигу, при влажности исходного материала 13 % мас., возросла в 3,5 раза, текучесть по диску - с 75 до 84 мм, модуль упругости при изгибе - с 263 до 364 МПа, а сопротивление сдвигу, определенное согласно , уменьшилось с 2,6 до 1,5 МПа

Таким образом можно сделать следующие выводы:

С использованием метода математического планирования эксперимента вида З2 изучено влияние влажности ШП-Ф {Х\ = 11 ± 5 %) и давления прессования (Х2 = 15 ± 10 МПа) на свойства ДП-БС (температура прессования 170 °С);

При обработке результатов экспериментов получены адекватные уравнения регрессии в виде полинома второго порядка:

¥,(аюг) = 34,9 + 6,6 X! + 16,9 Х2 - 1,4 X? - 4,3 Х22 - 3,0 Хх Х2;

Г2(Д:,) = 34,5 - 21,8 X ~ 76,7 Х2 + 26,3 X2 - 3,8 Х22 + 75,5 X Х2.

СПИСОК ЛИТЕРАТУРЫ

1. Базарнова Н.Г. Влияние мочевины на свойства прессованных материалов из древесины, подвергнутой гидротермической обработке / Н.Г. Базарнова, А.И. Галочкин, В.С. Крестьянников // Химия растительного сырья. -1997. - № 1. -С. 17-21.

2. Бурындин В.Г. Изучение возможности использования шлифовальной пыли ДСтП для получения фенопластов / В.Г. Бурындин [и др.] // Технология древесных плит и пластиков: межвуз. сб. - Екатеринбург, УЛТИ, 1994. - С. 82-87.

3. Вигдорович А.И. Древесные композиционные материалы в машиностроении (справочник) / А.И. Вигдорович, Г.В. Сагалаев, А.А. Поздняков. - М.: Машиностроение, 1991.- 152 с.

4. Дедюхин В.Г. Древесные пластики без добавления связующих (ДП-БС): сб. тр., посвященный 70-летию инженерно-экологического факультета УГЛТУ /В.Г. Дедюхин, Н.М. Мухин. - Екатеринбург, 2000. - С. 200-205.

5. Дедюхин В.Г. Исследование текучести древесной пресс-массы без добавления связующего /В.Г. Дедюхин, Н.М. Мухин // Технология древесных плит и пластиков: межвуз. сб. - Екатеринбург: УГЛТА, 1999. - С. 96-101.

6. Дедюхин В.Г. Прессование плитки облицовочной из массы прессовочной без добавления связующего / В.Г. Дедюхин, Л.В. Мясникова, И.В. Пичугин // Технология древесных плит и пластиков: межвуз. сб. - Екатеринбург: УГЛТА, 1997. -С. 94-97.

7. Дедюхин В.Г. Прессованные стеклопластики / В.Г. Дедюхин, В.П. Став-ров. - М.: Химия, 1976. - 272 с.

8. Доронин Ю.Г. Древесные пресс-массы /Ю.Г. Доронин, С.Н. Мирошниченко, И.Я. Шулепов. - М.: Лесн. пром-сть, 1980.- 112 с.

9. Кононов Г.В. Химия древесины и ее основных компонентов /Г.В. Кононов. - М.: МГУЛ, 1999. - 247 с.

10. Минин А.Н. Технология пьезотермопластов /А.Н. Минин. - М.: Лесн. пром-сть, 1965. - 296 с.

11. Отлев И.А. Справочник по производству древесностружечных плит / И.А. Отлев [и др.]. - М.: Лесн. пром-сть, 1990. - 384 с.

12. Плитные материалы и изделия из древесины и других одревесневших растительных остатков без добавления связующих /под ред. В.Н. Петри. - М.: Лесн. пром-сть, 1976. - 360 с.

13. Получение, свойства и применение модифицированной древесины.- Рига: Зинатне, 1973.- 138 с.

14. Щербаков А.С. Технология композиционных древесных материалов /А.С. Щербаков, И.А. Гамова, Л.В. Мельникова. - М.: Экология, 1992. - 192 с.

V. G. Dedyukhin, V. G. Buryndin, N.M. Mukhin, A. V. Artyomov Producing Items out of Phenoplasts by Pressing in Closed Press Molds without Adding Binding Agents

The research results of technological properties of presscomposition made of wood particles without adding binding agents and physicomechanical properties of plastics from these compositions are provided. The influence of low-molecular (organic and inorganic) modifiers and water in plastic formation process are studied.

Задача технологии изготовления изделий из термопластичных древесно-полимерных композиционных материалов принципиально проста - соединить все ингридиенты будущего композита в однородный материал и сформировать из него изделие нужой формы. Однако, для ее реализации требуется некоторый набор достаточно сложного технологического оборудования.

1. Общие принципы технологии.

Исходным сырьем для производства ДПК является древесная мука (или волокно), базовая смола в виде суспензии или гранул и до 6-7 видов необходимых добавок (аддитивов).

Сушествует две принципиально различающихся схемы получения экструзионных изделий из термопластичных ДПК:

  • двухстадийный процесс (компаундирование + экструзия),
  • одностадийный процесс (прямая экструзия).

В двухстадийном процессе сначала из исходных ингридиентов изготавливается древеснополимерный компаунд. Смола и мука находятся в двух силосах. Мука, подсушенная в специальной установке и смола направляются в весовой дозатор, и поступает в смеситель, где тщательно перемешивается в горячем виде с добавлением необходимых аддитивов. Полученная смесь далее формируется в виде некрупных гранул (пеллет), которые затем охлаждается в специальном устройстве (охладителе).

Рис. 1. Схема получения гранулированного древеснополимерного компаунда

Затем, этот компаунд используется для экструзии профильных изделий, см. схему экструзионного участка, Рис. 2.


Рис. 2. Схема экструзионного участка

Гранулят подается в экструдер, разогревается до пластичного состояния и продавливается через фильеру. Выдавленный профиль калибруется, распиливается поперек (а при необходимости и вдоль) и укладывается на приемный стол.

Древеснополимерный компаунд используется также для литья или прессования изделий из термопластичных ДПК.

В случае прямой экструзии ингриденты направляются непосредственно в экструдер, см., например, одну из схем организации процесса прямой экструзии ДПК на Рис. 3.


Рис. 3. Схема прямой экструзии древеснополимерных композитов.

В данном случае, древесная мука подается из бункера в сушильную установку, подсушивается до влажности менее 1 % и поступает в бункер-накопитель. Затем мука и добавки из поступают в дозатор, а из него - в миксер (смеситель). Подготовленный в миксере смесь (компаунд) при помощи транспортной системы подается в накопительную емкость экструдера. Смола, пигмент и смазывающий агент из соответствующих емкостей подаются в экструдер, где происходит их окончательное перемешивание, нагрев и выдавливание через фильеру. Далее происходит охлаждение (и при необходимости) калибровка полученного профиля, а затем обрезка на нужную длину. Такая схема называется прямой экструзией.

В настоящее время в промышленности широко используются обе схемы, хотя многие считают более прогрессивной прямую экструзию.

За рубежом существуют предприятия, специализирующиеся только на производстве гранулята для ДПК, т.е. на продажу. Например, на фирме WTL International мощности установок такого типа составляют до 4500-9000 кгчас.

Примерное расположение оборудования экструзионного участка (линии) для прямой экструзии профильных деталей см. на следующей схеме.

В зависимости от цели проекта, производство экструзионных ДПК может быть реализовано в виде компактного участка на одной установке, либо в форме цеха (завода с большим или меньшим количеством технологических линий.

На крупных предприятиях могут стоять десятки экструзионных установок.

Предельные температуры процесса экструзии для разных видов базовых смол, показаны на диаграмме рис.6.

Рис.6. Предельные температуры рабочей смеси (линия 228 градусов - температура воспламенения древесины)

Примечание. Большинство природных и синтетических полимеров при температуре выше 100 град. С склонно к деградации. Это связано с тем, что энергия отдельных молекул становится достаточной для разрушения межмолекулярных связей. Чем выше температура, тем таких молекул становится больше. В результате сокращается длина полимерных молекулярных цепочек, происходит окисление полимера и существенно ухудшаются физико-механические свойства полимера. При достижении предельных температур деградация молекул полимера происходит в массовом порядке. Поэтому, при горячем компаундировании и экструзии необходимо тщательно контролировать температуру смеси и стремиться к ее снижению и к сокращению операционного времени. Деградация полимеров происходит и во время естественного старения композита при воздействии ультрафиолетового излучения. Деградации подвержен не только пластик, но и молекулы полимеров, составляющих структуру древесной компоненты композита.

Давление расплавленной смеси в цилиндре экструдера обычно составляет от 50 до 300 бар. Оно зависит от состава смеси, конструкции экструдера, формы экструдируемого профиля и скорости истечения расплава. Современные мощные экструдеры создаются с расчетом на рабочее давление до 700 бар.

Скорость экструзии ДПК (т.е. скорость истечения расплава из фильеры) находится в пределах от 1 до 5 метров в минуту.

Главной частью этого технологического процесса является экструдер. Поэтому ниже мы рассмотрим некоторые виды экструдеров.

2. Виды экструдеров

В отечественной литературе экструдеры часто именуются червячными прессами. Принцип работы экструдера - это хорошо известный каждому "принцип мясорубки". Вращающийся шнек (червяк) захватывает из приемного отверстия материал, уплотняет его в рабочем цилиндре и под давлением выталкивает в фильеру. Кроме того, в экструдере происходит окончательное перемешивание и уплотнение материала.

Движение материала в экструдере при вращении шнека происходит вследствие разницы в коэффициентах трения материала о щнек и цилиндр. Как образно высказался один зарубежный специалист: " полимер прилипает к цилиндру и скользит по шнеку".

Основное тепло в рабочем цилиндре выделяется вследствие сжатия рабочей смеси и работы значительных сил трения ее частиц о поверхности экструдера и друг об друга. Для переработки термопластов экструдеры снабжаются дополнительными устройствами для разогрева рабочей смеси, измерения температуры и ее поддержания (нагреватели и охладители).

В пластиковой индустрии наиболее распространенными, в силу относительной простоты и сравнительно низкой цены, являются одноцилиндровые (одношнековые) экструдеры, см. схему и фото, рис. 7.

Рис. 7. Стандартная схема и внешний вид одноцилиндрового экструдера: 1- бункер; 2- шнек; 3- цилиндр; 4- полость для циркуляции воды; 5- нагреватель; 6- решетка; 7- формующая головка. Фазы процесса (I - подача материала, II - нагрев, III - сжатие)

Основные характеристиками экструдера являются:

  • диаметр цилиндра, мм
  • отношение длины цилиндра к его диаметру, L/D
  • скорость вращения шнека, об/мин
  • мощности двигателя и нагревателя, квт
  • производительность, кг/час

Примечание. Паспортная производительность экструдера является величиной условной. Фактическая производительность экструдера может значительно отличаться от паспортной в конкретном технологическом процессе в зависимости от перерабатываемого материала, конструкции фильер, пост-экструзионного оборудования и т.д. Показателями эффективности конкретного экструзионного процесса являются отношения производительности к потребляемой мощности, стоимости оборудования, численности персонала и т.п.

На следующей диаграмме показаны различия в производительности экструдеров серии TEM английской фирмы NFM Iddon Ltd при изготовлении гранул и профиля на разных композициях ДПК.

Следующим видом является экструдер с коническим шнеком . Конструктивно он похож на цилиндрический экструдер, но шнек и рабочая полость выполнены в форме конуса. Это дает возможность более энергично захватывать и проталкивать рыхлый материал в рабочую зону, уплотнять его и быстрее поднимать давление в районе фильеры до необходимого уровня.

Примечание. Цилиндрические и конические одношнековые экструдеры могут использоваться в производстве профилей из термопластичных ДПК в двухстадийном процессе, т.е. при переработке готового ДПК компаунда.

Более производительными являются экструдеры с двумя цилиндрическим или коническими шнеками, см. рис. 8. Кроме того, они обладают существенно лучшими смесительными свойствами. Шнеки экструдера могут вращаться в одну сторону или в противополжных направлениях.

Рис. 8. Схемы шнеков двухцилиндрового и двухконусного экструдеров: зона подачи, зона сжатия, зона вентиляции, зона дозирования

Конструкция двухшнековой машины много сложнее и она дороже.

Шнеки современных экструдеров представляют собой сложную конструкцию, см. рис 6.9.а. и рис. 6.9.б.


Рис.1.9. Окно для реального
наблюдения процесса в экструдере.

В рабочей полости экструдера происходят различные механические, гидравлические и химические процессы,наблюдение и точное описание которых затруднено. На Рис. 9 показано специальное бронированное стеклянное окно для непосредственного наблюдения за экструзионным процессом (фирма FTI)

Благодаря высокой производительности и хорошим смесительным свойствам именно двухшнековые мащины применяются для реализации схемы прямой экструзии термопластичных ДПК. Т.е. в них осуществляется и смешивание компонентов и подача приготовленной рабочей смеси в фильеру. Кроме того, двухшнековые экструдеры часто применяются в двухстадийном процессе в качестве компаундеров для получения ДПК в гранулах.

Шнеки двухшнековых машин не обязательно имеют только винтовые поверхности. Для улучшения их смесительных свойств на шнеках могут быть выполены специальные смесительные участки с другими типами поверхностей, которые обеспечивают существенное изменение направления и характера движения рабочей смеси т тем самым лучшее ее перемешивание.

Недавно японской фирмой Creative Technology & Extruder Co. Ltd для переработки древесно-полимерных композиций была предложена комбинированная схема конструкции экструдера, в котором в одном корпусе цилиндре совмещены двухшнековый и одношнековый экструдеры.

Основные механизмы явлений происходящих при экструзии термопластичных материалов хорошо изучены. В общих чертах см. например приложение " Введение в экструзию "

Примечание. В установке для производства древесно-полимерного листа Ростхиммаша использован дисковый экструдер. В некоторых случаях в производстве ДПКТ вместо шнековой экструзии может использоваться поршневая экструзия.

Существуют специальные методы математического компьютерного моделирования экструзионных процессов, используемые для расчета и конструирования экструдеров и фильер, см Рис. 10. и в системах компъютерного управления экструдерами.

Рис. 10. Система компьютерного моделирования экструзионных процессов.

Экструдеры применяемые производстве ДПК должны быть снабжены эффективным устройством дегазации для отвода паров и газов и иметь износостойкие рабочие поверхности, например, цилиндр с глубоким азотированием и шнек, упрочненный молибденом.

Традиционно, в технологии производства ДПК используется древесная мука влажностью менее 1%. Однако, новые современные экструдеры, разработанные специально для производства ДПК, способны перерабатывать муку влажностью до 8 %, так как снабжены мощной системой дегазации. Некоторые считают, что образующийся в экструдере водяной пар в какой-то степени способствует облегчению процесса экструзии, хотя это спорное утверждение. Например, фирма Cincinnati Extrusion указывает, что выпускаемой фирмой экструдер мод. Fiberex A135 при влажности муки 1-4% будет иметь производительность 700 - 1250 кг/час, а при 5-8 % только 500- 700 кг/час. Таким образом, стандартный экструдер даже оборудованный системой дегазации, все же не является сушилкой, а просто способен более или менее эффективно удалять из рабочкй смеси небольшое количество влаги. Однако, есть и исключения из этого положения, например - описанный далее финский экструдер Conex, способный работать и на влажных материалах.

Как правило, в ходе экструзии вода должна быть полностью удалена из материала для обеспечения получения плотной и долговечной структуры композита. Однако, если изделие будет эксплуатироваться внутри помещения, то оно может быть и более пористым и, соответственно, менее плотным.

Один из экструдеров, разработанный специально для производства древесно-полимерных композитов, показан на Рис. 11.

Рис. 11. Экструдер модели DS 13.27 фирмы Hans Weber Gmbh , технология "Fiberex"

Экструдеры используемые двухстадийном процессе для предварительного гранулирования ДПК вместо профильной фильеры снабжаются специальной гранулирующей головкой. В гранулирующей головке, выходящий из экструдера поток рабочей смеси разделяется на несколько ручейков малого диаметра (стренгов) и разрезается ножом на короткие отрезки.


После охлаждения они превращаются в гранулы. Охлаждение гранул осуществляется на воздухе или в воде. Влажные гранулы высушиваются. Гранулированные ДПК пригодны для хранения, транспортировки и дальнейшей переработки в детали на следующей стадии технологического процесса или на другом предприятии методом экструзии, литья под давлением или прессования.

Раньше экструдеры имели одну зону загрузки. Новые модели экструдеров, разрабатываемые для переработки композиционных материалов могут иметь две или более зон загрузки - отдельно для смолы, отдельно для наполнителей и аддитивов. С целью лучшего приспособления к работе на разных композициях экструдеры - компаундеры часто выполняются разборной секционной конструкции, что позволяет изменять соотношение L/D

3. Фильеры (головки) экструдеров

Фильера (т.н. "головка экструдера") является сменным инструментом экструдера, которая придает расплаву, покидающему рабочую полость экструдера, необходимую форму. Конструктивно фильера представляет собой щель, через которую продавливается (истекает) расплав.

Рис. 12. Фильера, профиль, калибратор.

В фильере происходит окончательное формирование структуры материала. Она в значительной степени определяет точность поперечного сечения профиля,качество его поверхности,механические свойства и т. п. Фильера является важнейшей составной частью динамической системы экструдер-фильера и фактически определяет производительность экструдера. Т.е. с разными фильерами один и тот же экструдер способен произвести различное количество профиля в килограммах или погонных метрах (даже для одного и того же профиля). Это зависит от степени совершенства реологического и теплотехнического расчёта системы (скорость экструзии, коэффициента разбухания экструдата, вязкоэластичные деформации, сбалансированность отдельных потоков экструдата и т. п.) На фотографии рис. 6.13. изображена фильера (слева) из которой выходит горячий профиль (в центре) и направляется в калибратор (справа).

Для получения изделий сложного профиля применяют фильеры, имеющие относительно большое сопротивление движению расплава. Основная задача, которая должна быть решена внутри фильеры в процессе экструзии, и особенно для сложной профильной детали, - выравнивание объемной скорости различных потоков расплава в головке по всему сечению профиля. Поэтому, скорость экструзии сложных профилей меньше, чем простых. Это обстоятельство необходимо учитывать уже на стадии конструировании самого профиля, т.е. изделия (симметрия, толщины, расположение ребер, радиусы переходов и др.).

Рис.13. Сборная двухручьевая фильера для производства оконных профилей.

Экструзионный процесс позволяет на одном экструдере производить одновременно два или более, как правило одинаковых профилей, что позволяет максимально использовать производительность экструдера при производстве некрупных профилей. Для этого используются двухручьевые или многоручьевые фильеры. На фотографии показан внешний вид двухручьевой фильеры, см Рис. 13

Фильеры изготавливаются из прочных и износостойких сталей. Стоимость одной фильеры может находиться в пределах от нескольких тысяч до нескольких десятков тысяч долларов (в зависимости от размеров, сложности конструкции и точности и применяемых материалов).

Кажется, что техническая сложность мощных современных экструдеров и фильер для них (по точности, технологиям производства и применяемым материалам) приближается к сложности авиационных двигателей и далеко не всякому машиностроительному заводу это по плечу. Однако, вполне можно рассматривать возможность организации производства отечественной экструзионной техники, - если использовать готовые комплектующие изделия импортного производства (рабочие цилиндры, шнеки, редукторы и пр.). За рубежом существуют компании, которые специализируются на изготовлении именно такой продукции.

4. Дозаторы и смесители.

В производстве конструкционных материалов вопросы однородности (равномерности структуры) и постоянства состава имеют, как известно, первоочередное значение. Важность этого для древесно-полимерных композитов даже не требует специальных пояснений. Поэтому в технологии ДПК большое внимание уделяется средствам дозирования, перемешивания и подачи материалов. В производстве ДПК реализуются разнообразные технологические приемы и схемы решения этих процессов.

Дозирование материалов осуществляется 5 способами:

  • Простое обьемные дозирование, когда материал насыпается в емкость определенного размера (мерное ведро, бочку или емкость смесителя)
  • Простое весовое дозирование, когда материал насыпается в емкость, расположенную на весах.
  • Непрерывное обьемное дозирование, например при помощи шнекового дозатора. Регулирование осуществляется изменением скорости подачи устройства.
  • Непрерывное весовое (гравиметрическое) дозирование при помощи специальных электронных устройств.
  • Комбинированное дозирование, когда одни компоненты дозируются одним способом, а другие - другим.

Средства обьемного дозирования дешевле, средства весового дозирования точнее. Средства непрерывного дозирования проще организовать в автоматизированную систему.

Смешивание компонентов может осуществляться холодным и горячим способами. Горячий компаунд направляется непосредственно в экструдер для формирования профиля или в гранулятор и охладитель для получения гранул. В роли горячего смесителя может выступать специальный экструдер-гранулятор.

Примечания:

  1. Гранулированные материалы имеют обычно стабильную насыпную массу и могут быть достаточно точно дозированы обьемными методами. С порошками, и тем более с древесной мукой, дело обстоит противоположным образом.
  2. Органические жидкие и пылевидные материалы склонны к возгорания и взрыву. В нашем случае это относится, особенно, к древесной муке.

Смешивание компонентов может быть выполнено различными способами. Для этого существуют сотни различных устройств, как простейших мешалок, так и автоматических смесительных установок, см. , например, смесители лопастного типа для холодного и горячего смешивания.

Рис. 14. Компьютеризированная смесительно-дозирующая станция фирмы Colortonic

На рис. 14. изображена гравиметрическая система автоматического дозирования и смешивания компонентов, разработанная специально для изготовления древесно-полимерных композитов. Модульная конструкция позволяет формировать систему для смешивания любых компонентов в любой последовательности.

5. Питатели

Особенностью древесной муки является ее очень маленькая насыпная плотность и не очень хорошая сыпучесть.

Рис. 15. Конструктивная схема питателя

Как бы быстро не вращался шнек экструдера, - он не всегда в состоянии захватить достаточное количество (по весу) рыхлой смеси. Поэтому, для легких смесей и муки разработаны системы принудительного питания экструдеров. Питатель подает муку в зону загрузки экструдера под некоторым давлением и обеспечивает, тем самым, достаточную плотность материала. Схема устройства такого питателя показана на Рис. 15.

Обычно, принудительные питатели поставляются изготовителем вместе с экструдером по специальному заказу под конкретную смесь, см. например схему организации процесса прямой экструзии, предлагаемую фирмой Coperion , Рис. 16.

Рис. 16. Схема прямой экструзии ДПК с принудительным питанием, фирма Coperion.

Схема предусматривает загрузку отдельных компонентов композита в разные зоны экструдера. Внешний вид подобной установки фирмы Milacron, см. рис.1.17.а.


Рис. 17.а. Двухшнековый конический экструдер TimberEx TC92 c системой принудительного питания производительностью 680 кг/час.

6. Охладитель.

В простейших случаях процесс экструзии ДПК может быть закончен охлаждением профиля. Для этого используется несложный водяной охладитель, например - корыто с душевой головкой. Горячий профиль попадает под струи воды, охлаждается и принимает окончательную форму и размеры. Длина корыта определяется из условия достаточного охлаждения профиля до температуры стеклования смолы. Эта технология рекомендуется, например, фирмами Strandex и TechWood. Она применяется там, где требования к качеству поверхности и точности формы профиля не слишком высоки (строительные конструкции, некоторые декинг-продукты и т.п.) или предполагается последующая обработка, например - шлифование, облицовывание и т.д..

Для изделий с повышенными требованиями к точности размеров изделия (сборные конструкции, элементы интерьера, окна, двери, мебель и т.п.) рекомендуется использовать калибрационные устройства (калибраторs).

Промежуточное положение по точности размеров получаемых изделий занимает технология естественного воздушного охлаждения профиля на рольганге, применяемая, например, немецкой фирмой Pro-Poly-Tec (и кажется одной из корейской фирм).

7. Калибраторы.

Выходящий из фильеры профиль имеет температуру до 200 градусов. При охлаждении происходит температурная усадка материала и профиль обязательно изменяет свои размеры и форму. Задача калибратора - обеспечить принудительную стабилизацию профиля в процессе охлаждения.

Калибраторы бывают воздушного и водяного охлаждения. Существуют комбинированные водо-воздушные калибраторы, обеспечивающего лучший прижим экструдата к формующим поверхностям калибратора. Наиболее точными считаются вакуумные калибраторы, в которых движущиеся поверхности формируемого профиля подсасываются вакуумом к поверхностям формующего инструмента.

Австрийская фирма Технопласт недавно разработала специальную систему водяного калибрования и охлаждения древесно-полимерных профилей, получившую название Лигнум, см. рис. 18.

Рис. 18. Система калибрования Лигнум фирмы Technoplast, Австрия

В этой системе калибрование профиля происходит при помощи специальной приставки к фильере, в которой происходит водяное вихревое охлаждение поверхности профиля.

8. Тянущее устройство и отрезная пила.

На выходе из экструдера горячий композит имеет малую прочность и может быть легко деформирован. Поэтому для облегчения его движения через калибратор часто используется тянущее устройство, обычно гусеничного типа.

Рис. 19. Тянущее устройство с отрезной пилой фирмы Greiner

Профиль деликатно захватывается траками гусениц и уводится из калибратора с заданной стабильной скоростью. В некоторых случаях могут быть использованы и валковые машины.

Для деления профиля на отрезки нужной длины используются подвижные дисковые маятниковые пилы, которые в процессе пиления двигаются вместе с профилем, а затем возвращаются в исходное положение. Пильное устройство, при необходимости, может быть снабжено и продольной пилой. Тянущее устройство может быть выполнено в одной машине с отрезной пилой, см. фотографию на Рис. 19.

9. Приемный стол

Mожет иметь различную конструкцию и степень механизации. Чаще всего используется простейший гравитационный сбрасыватель. Внешний вид см., например, Рис. 20.


Рис. 20. Автоматизированный разгрузочный стол.

Все эти устройства смонтированные вместе, снабженные общей системой управления, образуют экструзионную линию, см. Рис. 21.

Рис. 21. Экструзионная линия для производства ДПК (приемный стол, пила, тянущее устройство, калибратор, экструдер)

Для перемещения профилей по предприятию используются различные тележки, транспортеры и погрузчики.

10. Отделочные работы.

Во многих случаях профиль, изготовленный из ДПК не требует дополнительной обработки. Но есть много применений, в которых по эстетическим соображениям отделочные работы необходимы.

11. Упаковка

Готовые профили собирают в транспортные пакеты и обвязывают полипропиленовой или металлической лентой. Ответственные детали для защиты от повреждений могут быть дополнительно укрыты, например, полиэтиленовой пленкой, картонными прокладками).

Мелкие профили для предохранения от поломки могут требовать жесткой упаковки (картонные ящики, обрешетки).

Отечественные аналоги.

В ходе информационных исследований в области экструзии ДПК был проведен и поиск отечественных технологий. Единственную линию для производства древесно-полимерного листа предлагает завод "Ростхиммаш", сайт http://ggg13.narod.ru

Технические характеристики линии:

Вид продукции - лист 1000 х 800 мм, толщина 2 - 5 мм

Производительность 125 - 150 кг в час

Состав линии:

  • экструдер двухшнековый
  • дисковый экструдер
  • головка и калибр
  • вакуум-калибровочная ванна
  • тянущее устройство
  • режущее устройство, для обрезки кромок и обрезки по длине
  • накопитель-автомат

Габаритные размеры, мм, не более (габарит указан без тепловой станции и комплекта устройств управления – уточняется при расстановке оборудования у заказчика)

  • длина, 22500 мм
  • ширина, 6000 мм
  • высота, 3040 мм

Масса - 30 620 кг

Установленная мощность электрооборудования около 200 квт

Данную установку можно оценить следующим образом:

  • имеет невысокую производительность
  • не приспособлена к производству профильных деталей
  • крайне низкая точность (+/- 10 % по толщине)
  • большая удельная материалоемкость и энергопотребление

Бизнес идея для организации мелкосерийного производства изделий из различных литьевых материалов в домашних условиях. Благодаря инновационным технологиям сегодня при изготовлении пластиковых изделий можно обойтись без дорогих станков термопласт автоматов. Более того, наладить мелкосерийное мини-производство можно прямо на своем рабочем столе. Данную бизнес идею можно рассматривать в двух направлениях:

  1. Как основной бизнес по изготовлению готовых изделий и форм путем литья из:жидкого:
    • пластика;
    • силикона;
    • полиуретана;
    • прозрачных смол и прочих материалов.
  2. Изготовление форм как эффективное дополнение к другим видам бизнеса в области:
    • строительства;
    • пищевой промышленности;
    • мыловарения.

В первом и во втором случаи литье в домашних условиях не требует больших вложений финансовых средств. Начать литьевой бизнес можно просто сейчас.

Изготовление с помощью жидких пластиков

Процесс изготовления осуществляется с помощью жидких пластиков и силиконовых форм. Теперь появилась возможность в домашних условиях производить пластиковые изделия мелкими сериями:

  • сувенирную продукцию;
  • игрушки;
  • бижутерию;
  • запчасти для автотюнинга;
  • запчасти для разных механических устройств;
  • обувь;
  • посуду.

Существуют компоненты для изготовления деталей из тонкостенного пластика, которыми можно существенно расширить ассортимент продукции и производить детали любой сложности. Например, смешивание двух компонентов марки Axson FASTCAST F32 от французского производителя позволяет получить супер-жидкий пластик, который оттекает мельчайшие складки рельефа формы модели. К тому же он безвредный для детей и не имеет запаха.

Подготовка к производству

Для организации производства потребуется в первую очередь модель-образец. По ней сначала нужно сделать форму из специальных силиконовых или полиуретановых компонентов. С опытом и качеством материалов можно научиться снимать формы с моделей на таком высоком уровне, что будут даже видны отпечатки пальцев на изделиях (при необходимости). То есть копия получиться на уровне идентичности, которую нельзя отличить не вооруженным глазом. Пластиковым изделиям можно придать сложные компаунды с любым рельефом. Если нет готовой модели для образца, а нужно сделать уникальные изделия, ее можно заказать у владельцев 3D принтера. Кстати литье существенно превышает по показателям производительности 3D печати из пластика.

Когда ваше изделие готово его можно оформить с помощью сопутствующей продукции, которая прилагается к жидким пластикам:

  • краски для художественных эффектов;
  • грунтовки;
  • клея.

Естественно в некоторых случаях без творчества не обойтись, и придется вручную разрисовать изделия, что может отразиться на производительности. Но создания каждого бизнеса это бесспорно творческий процесс. Ведь управление финансами - это искусство.

Изготавливаем изделие из жидкого пластика

Технология создания идеального мелкого рельефа при изготовлении в силиконовой форме своими руками. Для начала необходимо подготовить все компоненты и материалы. Нам потребуются:

  1. Селикон Platinum.
  2. Жидкий пластик Axson FASTCAST F18 (цвет белый, имеет консистенцию воды, без запаха!).
  3. Краситель для силикона алого цвета.
  4. Полиуретановый лак.
  5. Весы.
  6. Шприц.
  7. Пилка-баф.

Надежно закрепляем модель-образец на дне опалубки для формирования формы, с помощью нейтрального воскового пластилина (чтобы избежать подтекания силикона). Красим силикон, из которого получиться готовая форма в алый цвет, чтобы на форме четко было видно качество вымешивания компонентов жидкого, белого на цвет пластика. Полезный совет: чтобы форма была идеальна, следует предварительно модель-образец обмазать силиконом с помощью широкой кисточки. Таким образом, аккуратно заполнить все углубления рельефа компаунды. Только после этого, заливаем форму полностью. Силиконом заполняем всю опалубку. Оставляем на закрепления структуры формы 7-8 часов. Самое трудное позади.

Поздравляем!!! Теперь у вас есть готовая форма для неоднократного производства изделий-копий модели-образца. Перед началом литья убедитесь в том, что форма полностью высушена, дабы избежать образования пузырьков. Потом очень тщательно смешиваем компоненты пластика 1:1 по весу (для этого лучше использовать аптечные или лабораторные электронные весы). Время схватывания 7 минут, но для полного закрепления потребуется еще 20 минут. Этот пластик нейтрален к силикону и не прилипает к нему. Но после многократного использования компаунды со временем, возможно, понадобится смазка-разделитель с защитными свойствами EaseRelease. После истечения необходимого времени достаем готовое изделие, которое скопировано точно по образцу.

Полиуретановые формы для строительства

Вместе с пластиковыми изделиями можно производить формы для литья. Применение литьевых форм в строительстве сейчас очень популярно. Можно производить компаунды для производства строительных материалов. Они долговечны и не требуют обработки специальными разделяющими смазками при изготовлении. Ведь бетон абсолютно нейтрален к полиуретану. Например, жидкие полиуретановые компаунды позволять изготавливать формы для заливки:

  • бетонных декоративных изделий (плитки, заборы и др.);
  • гипсовых элементов декорации интерьера (балясины, лепины и др.);
  • жидкого пластика при создании самых разных изделий (сувениры, игрушки, статуэтки и др.).

Силиконовые формы для кондитера и мыловарения

Применение технологии литья в формах в пищевой промышленности вполне очевидно. Новые инновационные решения в области химии сегодня предлагают жидкие: пластики, силиконы, силиконовые массы, которые соответствуют всем нормам здравоохранения и имеют соответствующие сертификаты. Такими безопасными компонентами можно изготавливать формы для пищевой промышленности. Например, для производства:

  • шоколада;
  • карамели;
  • изомальта;
  • льда;
  • мастики.

Также компаунды пользуются большим спросом у мыловаров. Они всегда нуждаются в новых оригинальных формах, для создания продаваемых сувениров сделанных из мыла. Совершенно не сложно найти заказчика желающего изготавливать свою продукцию с уникальной формой.

Возможности небольшой бизнес-идеи

Данная бизнес-идея позволяет легко создавать востребованную продукцию своими руками. Готовые работы можно продавать через интернет-магазин. Также можно предоставлять услуги или продавать готовые компаунды для других производителей в других отраслях. Самое главное, что при всех этих широких возможностях домашнего бизнеса стоимость компонентов более чем доступна. Ассортимент компонентов широк и позволяет выбрать необходимые материалы для создания форм или их заливки. Все что потребуется это модель-образец, с которой будет снята форма. Такая бизнес-идея весьма привлекательна для домашнего бизнеса. Она не требует много затрат, позволяет производить полезные товары и увлекает творческим процессом производства.

22.05.2015


Пластики из древесной пресс-массы (МДП) изготовляют путем ее пьезотермической обработки в пресс-формах, обеспечивающих получение деталей требуемой конфигурации.
Материалы. Для изготовления древесных пресс-масс различных видов применяют кусковой шпон толщиной 0,5-1,8 мм, влажностью до 12%, отходы древесных слоистых пластиков, отходы деревообрабатывающих производств - стружки и опилки. Отходы древесины не должны содержать включений коры и гнили, а отходы ДСП разрезают на отрезки длиной до 120 мм для возможности их загрузки в дробилку.
В качестве связующих при изготовлении пресс-масс применяют бакелитовые лаки СБС-1 и ЛБС-3, фенолоформальдегидную смолу СФЖ-3011 и фенолоспирты Б и В. Концентрация бакелитового лака перед пропиткой должна быть 43-45 %, а фенолоформальдегидной смолы 28-35 %. В качестве добавок, улучшающих свойства изделий из МДП, используют минеральное масло, олеиновую кислоту, красители, алюминиевую пудру, серебристый графит, медный порошок и др.
Технологический процесс производства МДП. Технологический процесс производства МДП состоит из следующих операций: подготовки кондиционных- древесных частиц, приготовления рабочего раствора связующего, дозирования и смешивания древесных частиц со связующим и модификатором и сушки массы.
Особенности технологического процесса производства МДП связаны с видом применяемых древесных отходов, при изготовлении пресс-массы из опилок (рис. 106, а) они просеиваются на вибросите с ячейками размером 10x10 мм для крупной фракции и 2x2 мм - для мелкой. Кондиционные частицы поступают в сушилку, где высушиваются при 80-90 °С до влажности 3-8 %. Для сушки применяют барабанные, ленточные и аэрофонтанные сушилки.
При использовании в качестве сырья кускового шпона и отходов ДСП технологический процесс включает в себя операцию измельчения древесины в дробилках (рис. 106, б). Для измельчения шпона применяют молотковые дробилки, например ДКУ-М. Дробление шпона производится ножами и молотками, установленными на роторе машины. По мере измельчения до нужной фракции частицы выбрасываются через сменное сито и удаляются пневмотранспортом в бункер. В результате образуются частицы древесины игольчатой формы длиной 5-60 мм, шириной 0,5-5 мм, толщиной 0,3-2 мм. Для измельчения отходов ДСП применяют молотковую дробилку С-218, раздрабливающую и сортирующую древесные частицы. Длина частиц после дробления 12-36 мм, ширина 2-7 мм, толщина 0,5-1,2 мм. Размеры частиц зависят от назначения МДП.
Древесные частицы со связующим смешиваются в червячно-лопастных смесителях, а опилки - ив смесителях-бегунах. Катки бегунов при движении по слою опилок дробят их в волокна, что в дальнейшем обеспечивает повышенные физико-механические свойства изделий из МДП. Древесные частицы и связующее дозируются по массе. Смешивание их производится путем подачи древесных частиц порциями в 80-100 кг. Температура пропиточного раствора в зависимости от его вязкости 20-45 °С. Продолжительность смешивания в червячных смесителях зависит от вида частиц. Опилки, стружки и частицы шпона смешиваются в течение 10-30 мин, а частицы ДСП - 15-20 мин. Количество сухой смолы в МДП должно быть соответственно 25-30 % и 12-15 %). Продолжительность смешивания в бегуновых смесителях 30-40 мин, а содержание сухой смолы в пресс-массе 25-35 %.
Модификаторы в смесители подаются после загрузки пропиточного раствора в следующем количестве, %: олеиновая кислота 0,8-1,5, уротропин 1-3, красители 2-5, графит 2,5- 10, алюминиевая пудра или медный порошок 1,5-3, минеральное масло 10-20.
Сушка пресс-массы производится при 40-50 °С в течение 30-60 мин до влажности 5-7 %. Для этого используются те же агрегаты, что и для сушки сырых частиц древесины.
Технологический процесс производства изделий из МДП. Для изготовления изделий МДП можно применять в виде сыпучей массы или в виде брикета, полученного в результате ее предварительного уплотнения. Применение брикетов позволяет более точно дозировать МДП, в 2-3 раза уменьшить объем загрузочной камеры пресс-формы, ускорить процесс предварительного прогрева. Брикеты формой, соответствующей форме изделия (цилиндры, параллелепипеды и др.), изготовляются в специальных брикетирующих прессах или пресс-формах. Брикетирование производится под давлением 20 МПа. При температуре до 25 °С продолжительность выдержки под давлением 1 мин, при 50-60 °С - 0,5 мин.
Для сокращения цикла прессования изделий из МДП ее предварительно подогревают. При 60-70 °С прогрев ведут 30-60 мин, а при 140 °С - до 5 мин. Наиболее равномерный прогрев достигается в поле ТВЧ. Применяется также конвективный, индукционный и другие виды нагрева.
Изделия из МДП изготовляют горячим прессованием в гидравлических прессах в стальных пресс-формах закрытого типа. Прессование осуществляется прямым и литьевым способами (рис. 107). При прямом прессовании давление воздействует непосредственно на массу, находящуюся в полости пресс-формы. При литьевом прессовании МДП под давлением перетекает из загрузочной полости в формующую, прямое прессование применяют при изготовлении несложных и крупногабаритных изделий. Литьевым способом изготовляют изделия с тонкими стенками и сложной конфигурацией. В процессе прессования МДП нагревается, размягчается, уплотняется, растекаясь в полости пресс-формы, и отверждается.

Давление при прессовании МДП, обладающей слабой текучестью, зависит от конфигурации деталей и способа прессования. При прямом прессовании деталей с прямым контуром оно равно 40-50 МПа. При литьевом прессовании деталей с фигурным контуром в процессе продавливания пресс-массы в форму давление 80-100 МПа, при прессовании - 40- 50 МПа.
Температура пресс-формы при прямом прессовании 145± 5 °С. Продолжительность прессования зависит от толщины стенок изделия. Для изделий с толщиной стенок до 10 мм при обогреве матрицы и пуансона она равна 1 мин/мм, при обогреве только матрицы - 1,5-2 мин/мм, для изделий с толщиной стенок более 10 мм - соответственно 0,5 и 1 мин/мм.
при литьевом прессовании МДП вначале уплотняется при температуре пресс-формы 120-125 °С в течение 1-2 мин. Продавливание массы в форму производится при той же температуре. Окончание этого периода прессования определяется моментом начала падения давления. Прессование производится при 145-165 °С в течение 4 мин. После окончания прессования изделия охлаждают.
Изделия с большой поверхностью соприкосновения с пресс-формой охлаждают вместе с ней до 40-60 °С. Тонкостенные изделия охлаждают в зажатом состоянии в специальных приспособлениях под давлением 0,2-0,3 МПа. Детали несложной конфигурации и детали, к размерам которых не предъявляют высоких требований, охлаждают в свободном состоянии.
Механическая обработка изделий из МДП состоит в основном в удалении облоя и литников. Дополнительная механическая обработка с целью изменения формы и размеров деталей производится на металлорежущих станках.
При производстве 1 т МДП расходуется: сухой древесины 1,8-2 м3, смолы 600 кг, этилового спирта 340 л, пара 2 т, электроэнергии 70 кВт*ч.

480 руб. | 150 грн. | 7,5 долл. ", MOUSEOFF, FGCOLOR, "#FFFFCC",BGCOLOR, "#393939");" onMouseOut="return nd();"> Диссертация - 480 руб., доставка 10 минут , круглосуточно, без выходных и праздников

Савиновских Андрей Викторович. Получение пластиков из древесных и растительных отходов в закрытых пресс-формах: диссертация... кандидата технических наук: 05.21.03 / Савиновских Андрей Викторович;[Место защиты: Уральский государственный лесотехнический университет].- Екатеринбург, 2016.- 107 с.

Введение

ГЛАВА 1. Аналитический обзор 6

1.1 Древесно-композиционные материалы с синтетическими связующими 6

1.2 Лигноуглеводные и пьезотермопластики 11

1.3 Способы модификации древесных частиц 14

1.4 Лигнин и лигноуглеводный комплекс 19

1.5 Кавитация. Кавитационная обработка растительного сырья 27

1.6 Биоактивация древесных и растительных частиц ферментами.. 33

1.7 Выбор и обоснование направления исследований 35

ГЛАВА 2. Методическая часть 36

2.1 Характеристика исходных веществ 36

2.2 Методики проведения измерений 41

2.3 Подготовка биоактивированного пресс-сырья 41

2.4 Изготовление образцов ДП-БС 41

2.5 Приготовление навески пресс-сырья для пластика 42

ГЛАВА 3. Получение и изучение свойств древесных пластиков без связующего с использованием модификаторов 43

ГЛАВА 4. Влияние химической модификации шелухи пшеницы на свойства РП-БС 57

ГЛАВА 5. Получение и изучение свойств древесных пластиков без связующего с использованием биоактивированого пресс-сырья 73

ГЛАВА 6. Технология получения ДП-БС 89

6.1 Расчет производительности экструдера 89

6.2 Описание технологического процесса производства 93

6.3 Оценка себестоимости готовой продукции 95

Заключение 97

Список литературы

Введение к работе

Актуальность темы исследования. Объемы производства продуктов переработки древесного и растительного сырья постоянно увеличиваются. При этом возрастает и количество различных отходов переработки древеси-ны(опилки, стружка, лигнин) и сельскохозяйственных растений (солома и оболочка семян злаков).

Во многих странах существуют производства древесных композиционных материалов с использованием в качестве полимерной матрицы синтетических термореактивных и термопластичных органических и минеральных связующих, в качестве наполнителей – измельченных отходов растительного происхождения.

Известна возможность получения древесных композиционных материалов плоским горячим прессованием из отходов деревообработки без добавления синтетических связующих, которые получили название пьезотермо-пластики (ПТП), лигноуглеводные древесные пластики (ЛУДП). При этом отмечается, что исходные пресс-композиции обладают низкими показателями пластично-вязкостных свойств, а полученные композиты имеют невысокие показатели физико-механических свойств, особенно водостойкости. И это требует поиска новых способов активации лигнин-углеводного комплекса.

Таким образом, работы, направленные на применение древесных и растительных отходов без использования синтетических связующих с целью создания изделий, являются актуальными.

Работа выполнялась по заданию Минобрнауки РФ, проект № 2830 «Получение древесных пластиков из отходов биомассы дерева и сельскохозяйственных растений» на 2013-2016 гг.

Цель и задачи работы. Целью работы является получение пластиков из древесных (ДП-БС) и сельскохозяйственных отходов (РП-БС) без добавления синтетических связующих с высокими эксплуатационными свойствами.

Для достижения поставленной цели необходимо решить следующие задачи:

Исследовать процесс формирования ДП-БС и РП-БС на основе древесных (опилки сосны) и растительных (шелуха пшеницы) отходов.

Изучить влияния химических модификаторов, а также технологических параметров (температура, влажность) на физико-механические свойства ДП-БС и РП-БС.

Определить рациональные условия получения ДП-БС и РП-БС из древесных и растительных отходов.

Установить влияние биоактивации пресс-сырья активным илом на физи-

ко-механические свойства ДП-БС.

Степень разработанности темы исследования. Анализ научно-технической и патентной литературы показал очень низкую степень разработанности вопросов, связанных с закономерностями формирования структуры и свойств древесного пластика без синтетического связующего.

Научная новизна

    Методом ДСК установлены кинетические закономерности процесса формирования ДП-БС и РП-БС (энергия активации, предэкспоненциальный множитель, порядок реакции).

    Установлено влияние химических модификаторов (пероксид водорода, уротропин, изометилтетрагидрофталевый ангидрид, кавитационный лигнин, гидролизный лигнин) на скорость процесса формирования ДП-БС и РП-БС.

    Получены кинетические закономерности получения ДП-БС с использованием биоактивированных древесных отходов.

Теоретическая значимость работы заключается в установлении закономерностей влияния ряда модификаторов и влажности пресс-сырья из древесных и сельскохозяйственных отходов на физико-механические свойства ДП-БС и РП-БС.

Практическая значимость работы состоит в использовании отходов возобновляемого сырья и экспериментальном доказательстве возможности получения ДП-БС и РП-БС с повышенными физико-механическими свойствами. Предложена рецептура получения ДП-БС и РП-БС. Изделия из ДП-БС обладают низкой эмиссией формальдегида.

Методология и методы исследования. В работе использовались традиционная методология научных исследований и современные методы исследования (дифференциальная сканирующая калориметрия, ИК Фурье-спектроскопия, ПМР 1 Н).

На защиту выносятся

Результаты исследования термокинетики образования ДП-БС, РП-БС и влияния модификаторов и влажности на данный процесс.

Закономерности формирования свойств ДП-БС и РП-БС в закрытых пресс-формах под воздействием температуры, влажности пресс-сырья и его химической модификации.

Степень достоверности результатов исследований обеспечена многократным повторением экспериментов, применением методов статистической обработки полученных результатов измерений.

Апробация работы. Результаты работы доложены и обсуждены на VIII международной научно-технической конференции «Научное творчество молодежи – лесному комплексу» (Екатеринбург, 2012), IX международной научно-технической конференции «Научное творчество молодежи – лесному комплексу» (Екатеринбург, 2013), Международная конференция «Композиционные материалы на древесных и других наполнителях» (г.Мытищи, 2014).

Публикации. По материалам диссертации опубликовано 12 статей, в том числе 4 статьи в изданиях, рекомендованных ВАК.

Объём работы

Диссертация изложена на 107 страницах машинописного текста, содержит 40 таблиц и 51 рисунков. Работа состоит из введения, 6 глав, заключения, списка литературы, включающего 91 ссылки на отечественные и зарубежные работы.

Лигноуглеводные и пьезотермопластики

Лигноуглеводные и пьезотермопластики. Эти материалы изготавливаются из древесных опилок или другого растительного сырья высокотемпературной обработкой пресс-массы без ввода специальных синтетических связующих. Технологический процесс производства лигноуглеводных древесных пластиков состоит из следующих операций: подготовки, сушки и дозирования древесных частиц; формирования ковра, холодной его подпрессовки, горячего прессования и охлаждения без снятия давления. При подготовке пресс-массы древесные частицы сортируют, затем фракция крупностью более 0,5 мм дополнительно измельчается, кондиционные опилки поступают в сушилку, а затем в расстилочную машину. Ковер формируется на поддонах, покрытых слоем талька или антиадгезионной жидкости. Сначала готовый ковер подается в пресс для холодной подпрессовки, которая длится в течение 1,5 мин при давлении 1- 1,5 МПа, после чего направляется на горячее прессование при давлении 1,5-5 МПа и температуре 160-180 С. Прессование плит толщиной 10 мм продолжается 40 мин.

Под воздействием температуры происходят частичный гидролиз полисахаридов древесины и образование органических кислот, которые являются катализаторами, способствующими деструкции лигноуглеводного комплекса. Образовавшиеся химически активные продукты (лигнин и углеводы) взаимодействуют между собой при прессовании. В результате образуется более плотный и прочный материал, чем древесина.

Сырье для производства лигноуглеводного древесного пластика получают обработкой древесины хвойных и лиственных пород. Наряду с опилками, станочной стружкой, дробленкой, для получения пластика могут быть использованы кора в смеси с древесиной, дробленые лесосечные отходы и некоторые одревесневшие сельскохозяйственные отходы. Примеси в сырье частично сгнившей древесины улучшают физико-механические свойства лигноуглеводных пластиков.

По сравнению с древесностружечными плитами, лигноуглеводные пластики обладают рядом преимуществ: они не подвержены старению из-за деструкции органического вяжущего и их прочностные показатели не снижаются со временем; при эксплуатации нет токсичных выделений в окружающую среду. Существенными недостатками производства лигноуглеводных пластиков являются необходимость мощного прессового оборудования и длительность цикла прессования .

Отмечено что под влиянием давления и температуры размельченная растительное сырье приобретает способность образовывать прочный и твердый материал темного цвета, который может формоваться. Этот материал получил название пьезотермопластик (ПТП) .

Исходным сырьем, наряду с опилками, могут служить измельченная древесина хвойных и лиственных пород, льняная и конопляная костра, камыш, гидролизный лигнин, одубина.

Существует несколько способов получения ПТП, прошедших глубокую проработку и внедрение в производство, но не нашедшего дальнейшего применения в связи с высокими энергозатратами: 1) одностадийный способ получения ПТП (А.Н. Минин. Белорусский технологический институт) ; 2) двухстадийный способ получения пластиков из гидролизованных опилок (Н.Я. Солечник, Ленинградская ЛТА) ; 3) технология получения лигноуглеводных древесных пластиков (ЛУДП) (ВН. Петри, Уральский ЛТИ) ; 4) технология парового взрыва (Я.А. Гравитис, Институт химии древесины. Латвийская АН) . Пьезотермопластики подразделяют на изоляционные, полутвердые, твердые и сверхтвердые.

При средней плотности 700-1100 кг/м3 пьезотермические пластики, изготовленные из березовых опилок, имеют предел прочности при статическом изгибе 8-11 МПа. При повышении средней плотности до 1350-1430 кг/м3 предел прочности при статическом изгибе достигает 25-40 МПа.

Высокие физико-механические свойства пьезотермопластиков позволяют применять их для изготовления полов, дверей, а также в качестве отделочного материала. Разновидностью древесных пластиков является вибролит, технологические особенности которого, заключаются в частичном измельчении опилок и мелкой стружки на вибромельнице, перемешивании тонко размолотой массы с водой и затем получаем шлам. Из смеси шлама с частицами величиной 0,5-2 мм в отливной машине формируется ковер, обезвоживаемый вакуум-насосом. Полученная пресс-масса поступает на холодное и горячее прессование. Готовые плиты транспортируют в закалочную камеру, где в течение 3-5 ч при температуре 120-160 С они подвергаются термической обработке, вследствие чего почти в 3 раза снижается их водопоглощение и более чем в 2 раза - разбухание.

Вибролит применяют для настила черного пола, устройства перегородок, облицовки панелей стен в общественных зданиях, изготовлении встроенной мебели и щитовых дверей.

Начиная с 30-х годов в СССР получением плитных материалов путём пьезотермической обработки растительного сырья без применения традиционных связующих занимались многие исследователи. Работы велись в следующих направлениях: 1) прессование естественных, ничем не обработанных опилок ; 2) прессование опилок, подвергнутых предварительно автоклавной обработке водяным паром (предгидролиз) или водяным паром с катализатором (минеральная кислота) ; 3) прессование опилок, предварительно обработанных химическими реагентами: а) желатинирование пресс-массы (хлором, аммиаком, серной кислотой и др. веществам) для её частичного гидролиза и обогащения веществами, обладающими связующими свойствами ; б) химическая поликонденсация пресс-массы с участием других химических веществ (фурфурол, фенол, формальдегид, ацетон, щелочной и гидролизный лигнины и др.) .

Подготовка биоактивированного пресс-сырья

Эндотермический минимум отвечает процессу гидролизу лигнин – углеводного комплекса и легкогидрализуемой части целлюлозы (полисахаридов).

Экзотермический максимум соответствует процессам поликонденсации, которые и обуславливают процесс образования ДП-БС. Так как процесс катализируется кислотами, которые образуются при пиролизе древесины, а также за счет наличия смоляных кислот, содержащихся в составе экстрактивных веществ – это реакция n-го порядка с автокатализом.

Для древесных отходов с модифицирующими добавками (пероксид водорода, уротропин, ИМТГФА) максимумы пиков на кривых ДСК сдвигаются влево, что указывает на то, что данные соединения выступают в качестве катализаторов вышеуказанных процессов (Т1 100-120 0С, Т2 180-220 0С), ускоряя процесс гидролиза полисахаридов древесины, а также лигнин-углеводного комплекса.

Из табл.3.2 видно, что на первой стадии с увеличением влажности пресс-сырья увеличивается эффективная энергия активации (с 66,7 до 147,3 кДж/моль), что свидетельствует о большей степени гидролитической деструкции древесины. Применение модификаторов приводит к уменьшению эффективной энергии активации, что указывает на их каталитическое действие.

Значения эффективной энергии активации на второй стадии процесса для модифицированного пресс-сырья с увеличением влажности изменяется незначительно.

Применение модификаторов приводит к снижению эффективной энергии активации и на второй стадии процесса. Анализ кинетических уравнений показал, что наилучшей моделью на первой стадии процесса является реакцией n-порядка, на второй стадии – n-порядка с автоускорением: A 1 B 2 C.

Используя кинетические параметры процесса, были рассчитаны t50 и t90 (время, необходимое для достижения степени превращения 50 и 90%) для не модифицированного и модифицированного пресс-сырья (табл.3.3), а также представлены кривые степени превращения (рис.3.4-3.6).

Зависимость степени превращения от времени при различных температурах (сосна, исходная влажность пресс-сырья– 8%) Рисунок 3.5 - Зависимость степени превращения от времени при различных температурах (сосна, модификатор – уротропин, исходная влажность пресс-сырья – 12%)

Зависимость степени превращения от времени при различных температурах (сосна, модификатор – пероксид водорода, исходная влажность пресс-сырья – 12%) Таблица 3.3 – Значения времени достижения степени превращения 50% и 90% при различных температурах № п/п Степень превращения Пресс-сырье с влажностью 8% Пресс-сырье свлажностью 12%(модификатор -1,8% H2O2, %) Пресс-сырье свлажностью 12%(модификатор - 4%C6H12N4, %)

Использование пероксида водорода приводит к ускорению процесса на первой стадии более чем в 4 раза, чем при модификации пресс-сырья уротропином. Аналогичная закономерность наблюдается и на второй стадии процесса. По суммарному времени формирования ДП-БС активность пресс-сырья можно расположить в следующий ряд: (немодифицированное пресс-сырье) (пресс-сырье модифицированное уротропином) (пресс-сырье модифицированное перекисью водорода). С целью установления влияния влажности и содержания количества модификатора в пресс-сырье на эксплуатационные свойства ДП-БС, было проведено математическое планирование эксперимента. Предварительно проведено исследование влияние влажности исходного пресс-сырья на физико-механические свойства ДП-БС. Результаты приведены в табл. 3.4. Установлено, что чем больше исходная влажность пресс-сырья, тем меньше физико-механические свойства, такие как прочность при изгибе, твердость, модуль упругости при изгибе. По нашему мнению это связано с большей степенью термогидролитической деструкцией лигноуглеводного комплекса. Таблица 3.4 - Физико-механические свойства ДП-БС полученные при различной влажности пресс-материала

Таким образом, физико-механические свойства ДП-БС зависят от рецептуры и условий его получения. Так для пластика с высокими физико механическими свойствами нужно использовать следующий состав: содержание лигнина 3%, содержание ИМТГФА 4%, исходная влажность пресс-сырья 6% и температура горячего прессования 1800C. Для пластика с низкими значениями водопоглощения и разбухания требуется использовать состав: содержание лигнина 68%, содержание ИМТГФА 2%, исходная влажность пресс-сырья 17% и температура горячего прессования 195 C0.

Влияние химической модификации шелухи пшеницы на свойства РП-БС

Глубина протекания термогидролитической деструкции лигнина древесины и растительного сырья зависит от вида применяемого химического модификатора.

Проведенные нами исследования формальной кинетики получения пластиков показывают, что лигнин хвойных пород (сосна) имеет большую реакционноспособность, чем лигнин однолетних растений (шелуха пшеницы). Эти результаты согласуются с результатами по окислению модельных соединений лигнина хвойных, лиственных пород и лигнина растительного происхождения. Анализ литературных показал, что теоретические исследования особенностей превращения древесины при энзиматическом воздействий дали возможность разработать биотехнологию древесных пластиков на основе частичной биодеградации лигноуглеводного комплекса.

Известно, биотрансформированные древесные частицы существенно изменяют свою пластичность. Также породный состав древесного сырья оказывает значительные влияние на физико-механические свойства пластика.

Биоактивированая обработка древесных отходов различными видами лигноразрушающими грибами, бактериями, в нашем случае активным илом, является перспективным для изготовления пресс-сырья для ДП-БС(Аи).

Первоначально были изучены закономерности процесса получения ДП-БС(Аи) на основе древесных отходов с использованием активного ила (рис 5.1) с различным сроком биоактивации. 0,5 7 суток 14 суток

Исследование процесса формирования ДП-БС(Аи) методом ДСК показало, что на кривых w = f(T) (рис. 5.2) имеется два экзотермических максимума. Это указывает на то, что процесс можно представить как две параллельные реакции, соответствующие для биоактивированного и неактивированного пресс-сырья, т.е. A 1 B и C 2 D. При этом реакции 1 и 2 являются реакциями n-порядка).

Определены кинетические параметры процесса образования ДП-БС(Аи). Результаты приведены в табл. 5.1. Таблица 5.1 - Кинетические параметры процесса образования ДП-БС(Аи)

На второй стадий процесса получения ДП-БС(Аи) значения эффективной энергии активации имеет один и тот же порядок, что и для древесного пресс-сырья (см. гл. 3). Это указывает на то, что этот экзотермический пик соответствует не биоактивированного древесного пресс-сырью. С использованием кинетических параметров процесса, были рассчитаны t50 и t90 (время, необходимое для достижения степени превращения 50 и 90%) модифицированного пресс-сырья (рис.5.3, 5.4).

Рисунок 5.3 - Значения времени превращения ДП-БС(Аи) при различных температурах (время биоактивации 7 суток) Рисунок 5.4 - Значения времени превращения ДП-БС(Аи) при различных температурах (время биоактиваций 14 суток)

С целью установления влияния активного ила и кавитационного лигнина на физико-механические свойства ДП-БС(Аи) была составлена матрица планирования эксперимента на основе регрессионного дробного математического планирования вида 25-1 (см. табл 5.2).

В качестве независимых факторов были использованы: Z 1 – содержание кавитационного лигнина, %, Z 2 – температура горячего прессования, C, Z 3 – расход активного ила, %, Z 4 – продолжительность выдержки (биоактивации), сут; Z 5 – исходная влажность пресс-сырья, %.

За выходные параметры взяты: плотность (P, кг/м3), прочность при изгибе (П, МПа), твердость (Т, МПа), водопоглощение (В), разбухание (L, %), модуль упругости при изгибе (Eи, МПа), ударная вязкость (А, кДж/м2).

Согласно плану эксперимента были изготовлены образцы в виде дисков и определены их физико-механические свойства. Экспериментальные данные были обработаны и получены изучения уравнении регрессий в виде линейной, полинома 1 и 2 степени с оценкой значимости факторов и адекватности уравнений, которые представлены в табл.5.2-5.4. Таблица 5.2 - Матрица планирования и результаты эксперимента (трехуровневый пятифакторный математический план) а) температуры горячего прессования и содержания кавитационного лигнина; б) расхода иловой смеси и температуры прессования; в) влажности пресс-сырья и продолжительности биоактивации; г) продолжительности биоактивации и содержания кавитационного лигнина.

Установлено, плотность ДП-БС(Аи) при увеличении содержания кавитационного лигнина в пресс-сырье носит экстремальный характер: минимальная плотность 1250 кг/м3 достигается при содержании КЛ - 42%. Зависимость плотности ДП-БС(Аи) от продолжительности биоактивации пресс-сырья также имеет экстремальный характер и максимальное значение достигается при 14 суток биоактивации (рис 5.5в).

Оценка себестоимости готовой продукции

Проведенные исследования по получению ДП-БС, ДП-БС(Аи) и РП-БС (см. гл. 3,4,5) показывают что физико-механические свойства пластика зависят от рецептуры пресс-сырья, вида химического модификатора и условия его изготовления.

В табл. 6.1 приведены физико-механические свойства пластиков (ДП-БС, ДП-БС(Аи) и РП-БС), полученных при рациональных условиях.

Из анализа полученных результатов (табл. 6.1) видно, что для изготовления изделий имеющих высокие физико-механические свойства, рекомендуется пресс-композиция следующего состава: древесные отходы (сосновые опилки), модификатор – пероксид водорода (расход - 1,8%) исходная влажность – 12%.

Для повышения производительности предлагается экструзионный способ, который позволяет изготавливать погонажные изделия.

В диссертационной работе рассмотрено производство плинтуса. Для соблюдения условий, определенных при горячем прессовании в закрытых пресс-формах, экструзионная головка состоит из двух частей (обогреваемая часть головки и вторая – без обогрева). При этом время пребывания пресс-композиции в обогреваемой части экструзионной головки – 10 мин.

Для определения годового объема производства был выполнен расчет производительности экструдера.

Для одношнекового экструдера с переменной (уменьшающейся) глубинной нарезки спирального канала расчет объемной производительности (Q, см3/мин) можно проводить следующим образом :

Здесь А1, В1, С1 – постоянные соответственно прямого и двух обратных потоков при переменной глубине нарезки шнека, см3; Таблица 6.1 – Физико-механические свойства ДП-БС, ДП-БС(Аи) и РП-БС (сводная таблица) № п/п1245 6 Показатель Влажностьпресс-сырья,% Модификатор ДП-БС(Аи) ДП-БС РП-БС 12% (4%-C6H12N4) 12% (1,8%-Н202) КЛ - 3% Расход АИ-37% Влажность - 10% ГЛ - 3% ИМТГФА-4% Влажность - 6% ГЛ - 68% ИМТГФА-2,5% Влажность-17,9% Влажность - 12% ГЛ - 3%Пероксидводорода–0,06%Влажность- 12% ГЛ - 35%Пероксидводорода- 5%Влажность– 12%

Прочность при изгибе, МПа 8 12,8 10,3 9,6 12,0 - 8 9,7 Твердость, МПа 29 29,9 27,7 59 69 20 19 34 Модуль упругости при изгибе, МПа 1038 2909,9 1038,6 732,6 2154 1402 1526 1915 Водопоглощение, % 59,1 148 121,7 43 59 34 143 139 Разбухание, % 6,0 12 8 3 5,0 1,0 7 7,0 1 К – коэффициент геометрической формы головки, К=0,00165 см3; n – частота вращения шнека, n=40 об/мин. где t – шаг нарезки, см принято t = 0,8D; - число заходов нарезки шнека, =1; e – ширина гребня шнека, см; e = 0,08D; – коэффициент геометрических параметров шнека:

Коэффициенты,a,b зависят от геометрической размеров шнека. Их легко рассчитать, если имеется чертеж шнека, из которого берут следующие величины: h1 – глубина спирального канала в начале зоны питания, см; h2 – глубина спирального канала в начале зоны сжатия, см; h3 – глубина спирального канала в зоне дозирования, см; Если размеры шнека неизвестны (за исключением D и L, которые известны из марки экструдера), то принимают h1=0,13D. После этого вычисляют остальные параметры: где L – длина шнека, см; L0 – длина шнека до зоны сжатия, см; где Lн – длина напорной части шнека, см; Lн=0,5L. где і - степень сжатия материала; і=2,1. Полученные результаты расчетов по вышеприведенным формулам позволяют рассчитать некоторые другие параметры шнека.

Древесные отходы сортируются на виброситах (поз.1) от крупных частиц, затем древесные частицы проходят металлоискатель (поз.3). Крупная фракция попадает в молотковую дробилку (поз.2) и после этого возвращается на вибросито (поз.1). С вибросита мелкие частицы пневмотранспортом подаются в циклон (поз.4), а затем в бункер (поз.5), откуда порционным винтовым транспортером подаются в сушилку барабанного типа (поз.6), древесные частицы сушат до влажности 6%. Измельченные древесные отходы поступают в циклон (поз.7), затем в бункер сухих измельченных отходов (поз.8) с винтовым транспортером, посредством которого они подаются на ленточные весы (поз.9).

Приготовление раствора пероксида водорода происходит в баке (поз.10) для смешения с водой. Пероксид водорода дозируется с помощью весов (поз.11). Подача необходимого количества воды регулируется расходомером. Концентрация пероксида водорода должна составлять 1,8%. Ленточные весы подают необходимое количество измельченных частиц древесины в смеситель непрерывного действия (поз.12), куда также поступает определенное количество раствора модификаторов. В смесителе осуществляется тщательное перемешивание компонентов, влажность пресс-сырья должна составлять 12%.

Затем пресс-сырье попадает в распределительную воронку (поз.13), откуда поступает в бункер (поз.14) готового пресс-сырья. Бункер является основным буферным складом для обеспечения бесперебойной работы установок. Бункер (поз.14) снабжен шнековым дозатором (поз.15), при помощи которого осуществляется загрузка готовой композицией в бункер экструзионной установки (поз.16), при помощи которого готовая композиция подается в экструзионную головку.

Канал экструзионной установки (поз.17) разогревается до температуры 1800С, время пребывания в обогреваемой части составляет 10 мин, в необогреваемой так же 10 мин.

Отпрессованное изделие (поз.18) направляется на стадию обрезки, выбраковки и сортировки, затем поступает на стадию механической обработки. После стадии контроля, готовые изделия направляется на склад готовой продукции. Рисунок 6.1 Технологическая схема производства изделия в форме плинтуса ДП-БС из отходов деревообработки без добавления связующих методом экструзии

В таблице 6.2 представлен расчет годовой потребности в сырье для производства плинтуса. Предполагаемая годовая производительность линии по производству данного вида продукции составляет 1 тонна. Таблица 6.3 – Расчет потребности в сырье и материалах Вид сырья Норма расхода (1 т), Стоимость 1 кг сырья, руб. Сумма затрат на 1т продукции, тыс.руб. Сосновые опилки 0,945 8 7,56 Техническая вода 0,048 7 0,33 Пероксид водорода 0,007 80 0,56 Итого: 8,45 Сумма затрат для приобретения сырья на одну тонну готовой продукции производства составит 8,456 тысяч рублей. По сравнению с производством данного вида продукции из ДПКТ, которое составила 47,65 тысяч рублей. Таким образом, производство плинтуса из ДП-БС является экономически целесообразным. При производстве 50 т/г экономия по сырью составит 1,96 млн.руб.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва