Таблица расчет воздуховодов систем аспирации. Учебное пособие: Расчет и выбор аспирационного оборудования

Требования к охране труда и экологическому состоянию окружающей среды вокруг действующих предприятий постоянно возрастают. Совершенствуются и системы очистки. В этой статье кратко рассмотрен процесс аспирации, виды систем и принцип работы.

Система аспирации – это вид фильтрации и очищения воздуха, применяемый в производственных цехах с технологическими процессами повышенной загрязнённости.

В первую очередь – это металлургические, горнодобывающие, лакокрасочные, мебельные, химические и другие вредные производства. Главное отличие аспирации от вентиляции воздуха заключается в том, что загрязнения собираются непосредственно на рабочем месте, глобальное распространение по объёму цеха не допускается.

Типичная конструкция системы аспирации

Схематично конструкция системы аспирации включает:

  1. Вентилятор, который создаёт воздушный поток и всасывает воздух. Используется установки типа «циклон», внутри которых создается центробежная сила. Она притягивает крупные частицы загрязнений к стенкам корпуса устройства. Таким образом производится первичная грубая очистка.
  2. Уловители стружки для сбора крупных отходов.
  3. Фильтрующие элементы различной конструкции, устанавливаемые для очистки воздуха от мельчайших загрязнений. Наиболее производительные установки состоят из нескольких типов фильтров как первичной, так и последующей тонкой очистки. Они улавливают и отделяют 99% всех частиц больше 1 мкн.
  4. Улавливающие устройства и контейнеры, в которых складируются загрязнения.
  5. Связующие воздуховоды и трубы, которые устанавливаются под наклоном для предотвращения забивания твёрдыми загрязнениями.

Отходы разных типов производств различаются по своим физико-химическим свойствам, плотности и массе. Поэтому для каждого предприятия система аспирации разрабатывается индивидуально и включает необходимые элементы. Только при таком подходе вы получите эффективную очистку воздуха.

Типы аспирационных установок

Всё многообразие систем аспирации принято классифицировать по нескольким признакам:

По степени мобильности


По способу вывода отфильтрованного потока воздуха

  • Прямоточные. После очистки выводят воздух за пределы помещения. Такие системы более эффективные и экологичные.
  • Рециркуляционные. Выбрасывают очищенные и тёплые воздушные массы в цех. Главные преимущества таких систем: снижение затрат на нагрев и увлажнение воздуха, меньшая нагрузка на общую принудительную вентиляцию цеха.

Расчёт оборудования для системы аспирации

Правильный расчёт параметров оборудования – основной залог эффективной работы аспирационной установки. Расчёты сложные, так как необходимо учесть множество факторов для каждого отдельно взятого предприятия. Поэтому выполнять такую работу должны только высококвалифицированные специалисты-инженеры. Основные факторы, которые необходимо учитывать при составлении проекта системы аспирации:

  • скорость движения воздуха в системе, которая зависит от материала воздуховода;
  • площадь и объём помещения;
  • влажность и температура воздуха;
  • характер и интенсивность загрязнений;
  • продолжительность рабочей смены.

На основе полученных данных определяется и рассчитываются основные параметры системы:

  • пропускная способность каждого отдельного устройства;
  • необходимый тип фильтров, их производительность;
  • диаметр трубы воздуховода, при этом для каждого производственного участка он может быть разным;
  • проектируются точки и расположение воздуховода.

Особенности монтажа и обслуживания

Для монтажа аспирационной установки не требуется менять компоновку основного оборудования или последовательность технологического процесса. Правильно спроектированные под заказ аспирационные системы учитывают все особенности производства и интегрируются в уже существующую систему.

Эффективность и скорость аспирации установки значительно снижают негерметичные соединения. Поэтому важно не только установить систему, но и регулярно проводить техосмотры и мероприятия, направленные на предупреждение разрывов соединений, вовремя устранять выявленные дефекты. Это повысит производительность установки и снизит энергозатраты при её работе.

Экономить на проектировании и внедрении аспирационных комплексов не стоит. Сомнительное оборудование или неправильно рассчитанная установка может привести не только к повышению заболеваемости среди рабочих и снижению производительности труда, но и к закрытию предприятия.

Монтаж системы аспирации – это обязательная и необходимая техническая процедура на любом современном предприятии. Кроме того – это часть культуры производства. Промышленная аспирация не только улучшает микроклимат в производственном помещении, но и предотвращает загрязнение окружающей среды за стенами завода или фабрики.

2. Расчетная часть 6

2.1. Методика расчета 6

2.1.1. Последовательность расчета 6

2.1.2. Определение потерь давления в воздуховоде 7

2.1.3. Определение потерь давления в коллекторе 8

2.1.4. Расчет пылеулавливающего аппарата 9

2.1.5. Расчет материального баланса процесса пылеулавливания 11

2.1.6. Выбор вентилятора и электродвигателя 12

2.2. Пример расчета 13

2.2.1. Аэродинамический расчет сети аспирации (от местного отсоса до коллектора включительно) 13

2.2.2. Увязка сопротивлений участков 19

2.2.3. Расчет потерь давления в коллекторе 22

2.2.4. Расчет пылеулавливающего аппарата 23

2.2.5. Расчет участков 7 и 8 до установки вентилятора 25

2.2.6. Выбор вентилятора и электродвигателя 28

2.2.7. Уточнение сопротивлений участков 7 и 8 29

2.2.8. Материальный баланс процесса пылеулавливания 31

Библиографический список 32

Приложение 1 33

Приложение 2 34

Приложение 3 35

Приложение 4 36

Приложение 5 37

Приложение 6 38

Приложение 7 39

Приложение 8 40

Приложение 9 41

Приложение 10 42

Приложение 11 43

Приложение 12 44

Приложение 13 46

Приложение 14 48

1. Общие положения

В процессах обработки древесины на деревообрабатывающих станках образуется большое количество как крупных частиц – отходов производства (стружка, щепа, кора), так и более мелких (опилки, пыль). Особенностью данного технологического процесса является значительная скорость, сообщаемая образующимся частицам при воздействии режущего инструмента на обрабатываемый материал, а также большая интенсивность пылеобразования. Поэтому практически все деревообрабатывающие станки оборудованы вытяжными устройствами, которые принято называть местными отсосами.

Система, объединяющая местные отсосы, воздуховоды, коллектор (сборник, к которому подсоединяются воздуховоды - ответвления), пылеулавливающий аппарат и вентилятор, называется аспирационной системой .

Совокупность воздуховодов - ответвлений, подсоединенных к коллектору, называется узлом .

На деревообрабатывающих участках, оборудованных станками, применяются коллекторы различных конструкций (рис.1). Характеристики некоторых видов коллекторов приведены в табл. 1.

Для перемещения образующихся отходов (например, из бункеров хранения отходов к топливным бункерам котельной) используется система пневматического транспорта, ее отличие от аспирационной системы заключается в том, что функции местного отсоса выполняет загрузочная воронка.

Важнейшей характеристикой, используемой при расчетах систем аспирации и пневмотранспорта, является массовая концентрация запыленного воздуха (М, кг/кг) . Массовая концентрация – это отношение количества перемещаемого материала к количеству транспортирующего его воздуха:

Рис. 1. Виды коллекторов:

а) вертикальный коллектор с нижним отводом (барабанный)

б) вертикальный коллектор с верхним отводом ("люстра") в) горизонтальный коллектор

Таблица 1

Характеристика коллекторов

Минимальное количество отводимого воздуха, м³/ч

Входные патрубки

Выходной патрубок

коли-чество

вх

диаметр (размер сечения), мм

коэффициент местного сопротивления ζвых

коллекторы горизонтальные

Дэ = 339 (300х300)

Дэ = 339 (300х300)

Дэ = 391 (400х300)

коллекторы вертикальные

а) с верхним вводом (с нижним отводом)

б) с нижним вводом (с верхним отводом)

кг/кг, (1)

где G Σ n – суммарный массовый расход перемещаемого материала, кг/ч;

L Σ – суммарное количество воздуха, требуемое для перемещения материала (объемный расход), м 3 /ч;

ρ в – плотность воздуха, кг/м 3 . При температуре 20°С и атмосферном давлении В = 101,3 кПа, ρ в = 1,21 кг/м 3 .

При проектировании аспирационных систем важное место занимает аэродинамический расчет, заключающийся в выборе диаметров воздуховодов, подборе коллектора, определении скоростей на участках, расчете и последующей увязке потерь давления на участках, определении суммарного сопротивления системы.

Аспирационные системы используют в самых разных отраслях промышленности, там, где воздух загрязняется мусором, пылью и вредными веществами. Современное деревообрабатывающее, пищевое, химическое производство невозможно представить без такого оборудования, как эффективная, современная и надежная система аспирации.

Также она является обязательным элементом в металлообработке, металлургии, горнодобывающей промышленности. Требования к экологическому состоянию производства постоянно возрастают, поэтому требуются все более совершенные аспирационные системы. Без использования этого оборудования было бы невозможно не только находиться внутри производственного помещения, но и на улице вблизи многих промышленных предприятий.

Типы систем

В настоящее время на предприятиях производят расчет и монтаж аспирационных систем моноблочного или модульного типа.

  1. Моноблочная конструкция. Моноблочная система является абсолютно автономной и мобильной. Ее устанавливают рядом с оборудованием, которое нуждается в сборе отходов. Составные части моноблочной системы - вентилятор, фильтр, емкость для отходов.
  2. Модульная конструкция. Модульные аспирационные системы - сложные конструкции, изготавливаемые по индивидуальному заказу под конкретные требования заказчика. В их состав могут входить воздуховоды для систем аспирации, вентиляторы низкого давления, сепараторы. Такие конструкции могут работать как в пределах одного цеха, так и проектироваться для большого завода.

Также аспирационные системы делятся на прямоточные и рециркуляционные. Разница в том, что первые после захвата грязного воздуха очищают его и выбрасывают в атмосферу, а вторые после очистки возвращают воздух обратно в цех.

Перед монтажом аспирационных комплексов проводят их разработку, которая обязательно включает в себя составление плоскостной схемы исходя из требуемой мощности. При правильном расчете система может не только очистить цех от пыли и вредных веществ, но и вернуть в него теплый и чистый воздух, тем самым снизив расходы на отопление.

Основные компоненты системы

  • Циклон. Использует центробежную силу для того чтобы убрать из воздуха твердые частички пыли. Частички прижимаются к стенкам, затем оседают в выгрузном отверстии.
  • Крышные фильтры. Представляют собой блок фильтров и приемную камеру. Очищают воздух, затем возвращают его внутрь помещения. Эти насадки ставят на наружные бункеры и используют вместо уличных циклонов.
  • Уловители пыли и стружки. Применяются на предприятиях, которые занимаются деревообработкой.
  • Фильтрованные рукава. Внутри этих рукавов выделяются твердая составляющая воздушно-пыльной массы, иными словами воздух отделяется от загрязнений.

Применение рукавных фильтров - очень эффективный способ очистки, благодаря которому улавливается до 99.9% частиц, размер которых больше 1 мкм. А из-за использования импульсной очистки фильтров работает она максимально эффективно, что позволяет экономить электроэнергию.

Монтаж установок аспирации не требует изменения технологических процессов. Поскольку очистные конструкции делаются на заказ, они приспосабливаются к существующим техпроцессам и вписываются в существующее технологическое оборудование, применяемое, например, при деревообработке. Именно благодаря точному расчету и привязке к конкретным условиям достигается высокая эффективность работы.

Отходы удаляются из специальных бункеров с помощью контейнеров, мешков или пневмотранспорта.

Разработкой и монтажом очистных комплексов занимаются многие компании. При выборе фирмы внимательно изучите предложения, основываясь не только на рекламных материалах. Только подробный разговор о характеристиках оборудования со специалистами может помочь сделать вывод о добросовестности поставщика.

Расчет системы

Для того чтобы работа аспирационной системы была эффективной необходимо сделать правильный ее расчет. Поскольку дело это непростое, то заниматься этим должны специалисты с большим опытом.

Если расчеты сделаны неверно, то система не будет нормально работать, а на переделку уйдет много средств. Поэтому чтобы не рисковать временем и деньгами лучше доверить это дело специалистам, для которых проектирование систем аспирации и пневмотранспорта – основная работа.

При расчетах необходимо учесть массу факторов. Рассмотрим лишь некоторые из них.

  • Определяем расход воздуха и потери давления в каждой точке аспирации. Все это можно узнать в справочной литературе. После определения всех расходов проводят расчет - нужно их суммировать и разделить на объем помещения.
  • Из справочной литературы нужно взять сведения о скорости воздуха в аспирационной системе для разных материалов.
  • Определяется тип пылеуловителя. Это можно сделать, имея данные о пропускной производительности конкретного пылеулавливающего устройства. Чтобы рассчитать производительность нужно сложить расход воздуха во всех точках аспирации и увеличить полученное значение на 5 процентов.
  • Рассчитать диаметры воздуховодов. Делается это с помощью таблицы с учетом скорости движения воздуха и его расхода. Диаметр определяется индивидуально для каждого участка.

Даже этот небольшой список факторов говорит о сложности расчета аспирационной системы. Есть и более сложные показатели, с расчетом которых справится только человек со специализированным высшим образованием и опытом работы.

Аспирация просто необходима в условиях современного производства. Он позволяет соответствовать экологическим требованиям и сохранить здоровье персонала.

Введение

Местная вытяжная вентиляция играет наиболее активную роль в комплексе инженерных средств нормализации санитарно-гигиенических условий труда в производственных помещениях. На предприятиях, связанных с переработкой сыпучих материалов, эту роль выполняют аспирационные системы (АС), обеспечивающие локализацию пыли в местах её образования. Общеобменная вентиляция до настоящего времени играла вспомогательную роль – обеспечивала компенсацию воздуха, удаляемого АС. Исследованиями кафедры МОПЭ БелГТАСМ показано, что общеобменная вентиляция является составной частью комплекса систем обеспыливания (аспирация, системы борьбы с вторичным пылеобразованием – гидросмыв или сухая вакуумная пылеуборка, общеобменная вентиляция).

Несмотря на длительную историю развития, аспирация получила фундаментальную научно–техническую основу лишь в последние десятилетия. Этому способствовало развитие вентиляторостроения и совершенствование техники очистки воздуха от пыли. Росла и потребность аспирации со стороны быстро развивающихся отраслей металлургической строительной индустрии. Возник ряд научных школ направленных на решение возникающих экологических проблем. В области аспирации стали известными уральская (Бутиков С.Е. , Гервасьев A.M. , Глушков Л.А. , Камышенко М.Т. , Олифер В.Д. и др.), криворожская (Афанасьев И.И. , Бошняков Е.Н. , Нейков О.Д. , Логачев И.Н. , Минко В.А. , Серенко А.С. , Шелекетин A.В. и американская (Хемеон В. , Принг Р. ) школы, создавшие современные основы конструирования и методики расчета локализаций пылевыделений с помощью аспирации. Разработанные на их основе технические решения в области проектирования систем аспирации закреплены в ряде нормативных и научно–методических материалов .

Настоящие методические материалы обобщают накопленные знания в области проектирования аспирационных систем и систем централизованной вакуумной пылеуборки (ЦПУ). Применение последних расширяется особенно в производстве, где гидросмыв недопустим по технологическим и строительным соображениям. Предназначенные для подготовки инженеров–экологов методические материалы дополняют курс «Промышленная вентиляция» и предусматривают развитие практических навыков у студентов старших курсов специальности 17.05.09. Эти материалы нацелены на то, чтобы студенты умели:

Определить необходимую производительность местных отсосов АС и насадков ЦПУ;

Выбрать рациональные и надёжные системы трубопроводов с минимальными потерями энергии;

Определить необходимую мощность аспирационной установки и выбрать соответствующие тягодутьевые средства

И знали:

Физическую основу расчета производительности местных отсосов АС;

Принципиальное отличие гидравлического расчета систем ЦПУ и сети воздуховодов АС;

Конструктивное оформление укрытий перегрузочных узлов и насадков ЦПУ;

Принципы обеспечения надежности работы АС и ЦПУ;

Принципы подбора вентилятора и особенности его работы на конкретную систему трубопроводов.

Методические указания ориентированы на решение двух практических задач: «Расчет и выбор аспирационного оборудования (практическое задание №1), «Расчет и выбор оборудования вакуумной системы уборки пыли и просыпи (практическое задание №2)».

Апробация этих задач осуществлена в осеннем семестре 1994 года на практических занятиях групп АГ-41 и АГ-42, студентам которых составители выражают признательность за выявленные ими неточности и технические погрешности. Внимательное изучение материалов студентами Титовым В.А., Сероштаном Г.Н., Ереминой Г.В. дали нам основание внести изменения в содержание и редакцию методических указаний.


1. Расчет и выбор аспирационного оборудования

Цель работы: определение необходимой производительности аспирационной установки, обслуживающей систему аспирационных укрытий мест загрузки ленточных конвейеров, выбор системы воздуховодов, пылеуловителя и вентилятора.

Задание включает:

А. Расчет производительности местных отсосов (объемов аспирации).

Б. Расчет дисперсного состава и концентрации пыли в аспирируемом воздухе.

В. Выбор пылеуловителя.

Г. Гидравлический расчет аспирационной системы.

Д. Выбор вентилятора и электродвигателя к нему.

Исходные данные

(Численные значения исходных величин определяются номером варианта N. В скобках указаны значения для варианта N = 25).

1. Расход транспортируемого материала

G м =143,5 – 4,3N, (G м =36 кг/с)

2. Плотность частиц сыпучего материала

2700 + 40N, (=3700 кг/м 3).

3. Исходная влажность материала

4,5 – 0,1 N, (%)

4. Геометрические параметры перегрузочного желоба, (рис 1):


h 1 =0,5+0,02N, ()

h 3 =1–0,02N,

5. Типы укрытий места загрузки ленточного конвейера:

0 – укрытия с одинарными стенками (для четных N),

Д – укрытия с двойными стенками (для нечетных N),

Ширина ленты конвейера B, мм;

1200 (для N=1…5); 1000 (для N= 6…10); 800 (для N= 11…15),

650 (для N = 16…20); 500 (для N= 21…26).

S ж – площадь поперечного сечения желоба.

Рис. 1. Аспирация перегрузочного узла: 1 – верхний конвейер; 2 – верхнее укрытие; 3 – перегрузочный желоб; 4 – нижнее укрытие; 5 – аспирационная воронка; 6 – боковые наружные стенки; 7 – боковые внутренние стенки; 8 – жесткая внутренняя перегородка; 9 – лента конвейера; 10 – торцовые наружные стенки; 11 – торцовая внутренняя стенка; 12 – нижний конвейер


Таблица 1. Геометрические размеры нижнего укрытия, м

Ширина ленты конвейера В, м b H L c h
0,50 1,5 0,60 0,40 0,60 0,25 0,40 0,12
0,65 1,9 0,80 0,50 0,80 0,30 0,50 0,16
0,80 2,2 0,95 0,60 0,95 0,35 0,60 0,20
1,00 2,7 1,20 0,75 1,2 0,40 0,75 0,25
1,20 3,3 1,40 0,90 1,45 0,45 0,90 0,30

Таблица 2. Гранулометрический состав транспортируемого материала

Номер j фракции, j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9
Размер отверстий смежных сит, мм 10 5 5 2,5 2,5 1,25 " 1,25 0,63 0,63 0,4 0,1 0

Средний диаметр фракции d j , мм

15 7,5 3,75 1,88. 0,99 0,515 0,3 0,15 0,05

* z =100(1 – 0,15 ).

2 31 25 24 8 2 3 3 2
30 232,5 93,75 45,12. 7,92 1,03 0,9 0,45 0,1
Интегральная сумма mj 100 98 67 42 18 10 8 5 2

Таблица 3. Длина участков аспирационной сети

Длина участков аспирационной сети Схема 1 Схема 2
для нечетных N для N=25, м для четных N
10
5
4

При разработке технологической части проекта должны комплексно решаться вопросы аспирации и обеспыливания технологического оборудования с обеспечением соответствующих санитарных норм.

При проектировании пылеулавливающих установок для очистки отходящих газов и аспирационного воздуха, выбрасываемых в атмосферу, необходимо учитывать скорости воздухе или газа в аппаратах; физико-химические свойства и гранулометрический состав пыли, начальную запыленность газа или воздуха, вид ткани для рукавных фильтров, температуру и влажность пыли. Количество отходящих газов и аспирационного воздуха от технологических установок определяется расчетным путем при проектировании.

Таким образом, для аспирационной системы мельницы :

Q = 3600·S·V м = 3600· ·V м, (5)

где Q - количество воздуха, проходящего через мельницу за 1 час S - площадь поперечного сечения мельницы; V м - скорость движения воздуха внутри мельницы с учетом подсосов в системе; D - диаметр мельницы.

Температура отходящих газов и аспирационного воздуха (не менее) - 150ºС. V м = 3,5 – 6,0 м/с. Тогда:

Запыленность 1 м 3 отходящих газов и аспирационного воздуха – 131 г. Допустимые концентрации пыли в очищенных газах и воздухе не должны превышать 50 мг/м 3 .

Для очистки аспирационного воздуха, отходящего от шаровой мельницы, принимаем двухступенчатую систему очистки:

1. Циклон ЦН-15, степень очистки 80-90%:

¾ 1 батарея: 262 - 262·0,8 = 52,4 г/м 3 ;

¾ 2 батарея: 52,4 - 52,4·0,8 = 10,48 г/м 3 ;

¾ 3 батарея: 10,48 - 10,48·0,8 = 2,096 г/м 3 ;

¾ 4 батарея: 2,096 - 2,096·0,8 = 0,419 г/м 3 .

2. Электрофильтр Ц-7,5СК, степень очистки 85-99%:

0,419 - 0,419·0,99 = 0,00419 г/м 3 .

Пылеосадительное устройства. Циклон ЦН-15

Циклоны предназначены для очистки запыленного воздуха от взвешенных в нем твердых частиц (пыли) и работают при температуре не выше 400°С.

Рисунок 8 – Группа из двух циклонов ЦН-15

Выбор пылеосадительного устройства для подачи продукта:

Q = 3600· ·V м = 3600· ·5 = 127170/4 = 31792,5 м 3 /ч.

Технологический расчет может быть произведен по формуле:

М = Q/q = 31792,5/20000 = 1,59 (принимаем 2шт.)

Тогда действительный коэффициент загрузки оборудования по времени: К в = 1,59/2 = 0,795.

Таблица 19 - Техническая характеристика группы из двух циклонов ЦН-15

Электрофильтр

Электрофильтр Ц-7,5СК предназначен для обеспыливания газов, отходов из сушильных барабанов, а также для обеслыливания воздуха и газов, отсасываемых из мельниц .

Для удаления осевшей на электродах пыли, нахожящихся в электрофильтре, их встряхивают с помощью механизма встряхивания. Пыль, отделенная от электродов, попадает в сборные бункера и удаляется через шлюзовые затворы.

Электрофильтр уменьшает концентрацию пыли в воздухе на 33,35%, при этом выпуская в атмосферу 1,75 грамм на куб. метр.

Таблица 20 - Техническая характеристика электрофильтра Ц-7,5СК

Показатели Габариты и параметры
Степень очистки воздуха и газов от пыли в % 95 – 98
Максимальная скорость газов в м/сек
Температура газов на входе в электрофильтр в °С 60-150
Температура газов на выходе из электрофильтра Не более чем на 25 °С выше их точки росы
Сопротивление электрофильтра в мм вод. ст. Не более 20
Допускаемое давление или разрежение в электрофильтре в мм вод. ст.
Начальная запыленность газа в г/м 3 не более
Площадь активного сечения электрофильтра в м 3 7,5
Количество электродов в двух полях:
осадительных
коронирующих
Электродвигатель механизма встряхивания:
тип АОЛ41-6
мощность в кВт
Окончание таблицы 20
Показатели Габариты и параметры
число оборотов в 1 мин
Электродвигатель шлюзового затвора:
тип АО41-6
мощность в кВт 1,7
число оборотов в 1 мин
Мощность нагревательных элементов для 8 изоляторов в кВт 3,36
Питание электродов током высокого напряжения производится от электроагрегата типа АФА-90-200
Номинальная мощность трансформатора в кВа
Номинальный выпрямленный ток в ма
Номинальное выпрямленное напряжение в кВ
Габаритные размеры в мм:
длина
ширина (без привода механизма встряхивания)
высота (без шлюзового затвора)
Вес в т 22,7
Завод-изготовитель Павшинский механический завод Московского областного совнархоза

Вентилятор

Вентиляторы центробежные высокого давления типа ВВД предназначены для перемещения воздуха в системах приточно-вытяжной вентиляции промышленных зданий при суммарной потере полного давления до 500 сек/м 2 . Вентиляторы изготавливаются как правого, так и левого вращения и поставляются комплектно с электродвигателями.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва