Защита литиевых аккумуляторов схема. Перезаряд аккумулятора: причины, чем опасен перезаряд, защита от перезаряда

Так как я довольно часто делал обзоры аккумуляторов, а также упоминал о переделке аккумуляторного инструмента, то в личке меня часто спрашивают о тех или иных нюансах переделок.
Спрашивают разные люди и вопросы часто примерно одинаковы, потому я решил сделать небольшой обзор и одновременно ответить на некоторые общие вопросы, связанные с выбором комплектующих и переделкой батарей.

Возможно кому нибудь обзор покажется неполным, так как переделке подверглась только сама батарея, но не волнуйтесь, я планирую сделать вторую часть обзора, где попробую ответить на вопросы по переделке зарядного устройства. А заодно хотелось бы узнать, как считает общественность, что лучше - универсальная плата совмещенная с БП, плата сама по себе, платы DC-DC или другие варианты.

Шуруповерты, да и просто любой другой аккумуляторный инструмент, производится уже довольно много лет. Потому на руках у пользователей накопилась довольно большая масса как старых батарей, так и лежащего иногда мертвым грузом инструмента.
Путей решения данной проблемы несколько:
1. Просто ремонт батареи, т.е. замена старых элементов на новые.
2. Переделка с аккумуляторного питания на сетевое, вплоть до установки БП в аккумуляторный отсек.
3. Замена Никель-кадмиевых и Никель-Металл гидридных на Литиевые.

В качестве небольшого отступления, иногда смысла переделывать/ремонтировать просто нет. Например если у вас совсем дешевый шуруповерт, купленный на мегараспродаже за 5 баксов, то вас может несколько удивить, что стоимость переделки выйдет как несколько таких шуруповертов (я утрирую). Потому надо сначала для себя прикинуть плюсы/минусы от переделки и ее целесооразность, иногда проще купить второй инструмент.

Первый вариант наверняка многие уже проходили, как впрочем и я. Он дает результат, хотя в случае фирменного инструмента часто хуже, чем был изначально. По цене выходит немного дешевле, по трудоемкости проще и значительно.

Второй вариант также имеет право на жизнь, особенно если работа происходит дома и неохота тратиться на замену аккумуляторов.

Третий вариант самый трудоемкий, но позволяет существенно улучшить эксплуатационные характеристики инструмента. Это и увеличение емкости аккумулятора и отсутствие «эффекта памяти», а иногда и увеличение мощности.
Но кроме трудоемкости появляется побочный эффект, литиевые аккумуляторы немного хуже работают на морозе. Хотя при условии, что многие фирмы без проблем производят такой инструмент, то я считаю, что иногда проблема преувеличена, хотя и справедлива.

Батареи имеют разную конструкцию, хотя в общем они имеют много общего, потому я буду рассказывать, а заодно и показывать на примере одного из представителей такой категории, шуруповерта Bosch PSR 12 VE-2. Этот шуруповерт моего товарища, он же и выступил «спонсором» обзора, предоставив для переделки сам шуруповерт, аккумуляторы, плату защиты и расходники.
Шуруповерт довольно неплохой, имеется блокировка шпинделя, две скорости, потому переделывать имеет смысл.

Так получилось, что аккумуляторных блоков было даже три, но переделывать будем один, еще один оставлю для другого обзора:)

Кстати, аккумуляторы разные, но оба на 12 Вольт, емкость 1.2Ач, соответственно 14.4 Втч.

Разбираются аккумуляторные блоки по разному, но чаще всего корпус скручен при помощи нескольких саморезов. Хотя мне попадались варианты как на защелках, так и склеенные.

В любом случае внутри вы увидите примерно такую картину. В данном случае сборка из 10 никель-кадмиевых аккумуляторов, причем обычно применяются аккумуляторы одного типоразмера, но вот их укладка может иногда отличаться. На фото один из распространенных вариантов, 9 штук внизу и один в вертикальной части.

Первым делом предстоит выбор аккумуляторов для замены .

В электроинструменте применяются аккумуляторы, рассчитанные на большой разрядный ток.
Я не так давно делал разных аккумуляторов, в конце которого привел табличку, которая может помочь в этом вопросе, но если не уверены, то просто найдите документацию по аккумуляторам, которые планируете купить. Благо у фирменных аккумуляторов обычно с этим проблем нет.

Следует помнить, что часто заявленная емкость аккумулятора обратно пропорциональна максимально отдаваемому току. Т.е. чем на больший ток рассчитан аккумулятор, тем у него меньше емкость. Пример конечно довольно условный, но очень близок к реальности. Например очень емкие аккумуляторы Panasonic NCR18650B для электроинструмента не подходят, так как их максимальный ток всего 6.8 Ампера, шуруповерт же потребляет 15-40 Ампер.

А теперь что нельзя применять:
Аккумуляторы показанные на фото ниже, а также всякие Ультрафайр, Мегафайр, а также любые 18650 с заявленной емкостью 100500мАч.
Кроме того я категорически не рекомендую применять старые аккумуляторы от батарей ноутбуков. Во первых, они не рассчитаны на такой ток, во вторых, они скорее всего будут иметь большой разброс характеристик. Причем не только по емкости, а и по внутреннему сопротивлению. Лучше примените их где нибудь в другом месте, например в ПоверБанке для заряда вашего смартфона.

Альтернативный вариант, модельные батареи, например для катеров, квадракоптеров, машин и т.п.
Применять вполне можно, но я бы предпочел привычные 18650 или 26650 и виду наличия прочного корпуса, а также более реальной замены в будущем. 18650 и 26650 купить легко, а модельные могут убрать из продажи, заменив их батареями другого формфактора.

Но кроме всего прочего следует помнить, что нельзя применять аккумуляторы разной емкости. А вообще желательно использовать аккумуляторы из одной партии купив сразу необходимое количество (в идеале +1 про запас, если все таки попадутся разные). Т.е. если у вас на полке год лежит 2 аккумулятора, а потом вы покупаете к ним пару новых и соединяете последовательно, то это лишний шанс получить проблемы и балансировка здесь уже может не помочь, не говоря о аккумуляторах с изначально разной емкостью.

Для переделки батареи данного шуруповерта были выбраны аккумуляторы LGDBHG21865.
Шуруповерт не очень мощный, потому я думаю что проблем быть не должно. Аккумуляторы рассчитаны на длительный разрядный ток в 20 Ампер, при выборе аккумуляторов следует найти в документации на аккумулятор соответствующую строку и посмотреть какой ток там указан.

Литиевые аккумуляторы имеют заметно большую емкость при меньших габаритах, чем кадмиевые. На фото слева сборка 10.8В 3Ач (32Втч), справа родная, 12В 1.2Ач (14.4Втч).

При выборе количества требуемых аккумуляторов для замены следует руководствоваться тем, что условно один литиевый (LiIon, LiPol) заменяет 3 штуки обычных. В 12 Вольт батарее стоит 10 штук, потому обычно их меняют на 3 штуки литиевых. Можно поставить 4 штуки, но инструмент будет работать с перегрузкой и возможны ситуации, когда может пострадать.
Если у вас 18 Вольт батарея, то там скорее всего стоит 15 обычных, которые меняются на 5 литиевых, но такой инструмент встречается реже.
Или говоря простым языком,
2-3 NiCd = 1 литиевый,
5-6-7 NiCd = 2 литиевых,
8-9-10 NiCd = 3 литиевых,
11-12-13 NiCd = 4 литиевых
и т.д.

Перед сборкой необходимо проверить емкость аккумуляторов, потому как даже в одной партии аккумуляторы могут иметь разброс, причем чем «безроднее» производитель, тем больше будет разброс.
Например табличка из одного моего , где я тестировал, а попутно отбирал комплекты аккумуляторов для переделки радиостанций.

После этого следует полностью зарядить все аккумуляторы чтобы уравнять их заряд.

Соединение аккумуляторов.
Для соединения аккумуляторов применяют несколько решений:
1. Кассеты
2. Пайка
3. Точечная сварка.

1. Кассета, очень просто и доступно, но категорически не рекомендуется для больших токов, так как имеет высокое сопротивление контакта.
2. Пайка. Вполне имеет право на жизнь, я сам так делаю иногда, но данный способ имеет нюансы.
Как минимум паять надо уметь. Причем уметь паять правильно, а главное - быстро.
Кроме того надо иметь соответствующий паяльник.
Пайка происходит следующим образом: Зачищаем место контакта, покрываем это место флюсом (я использую F3), берем залуженный провод (лучше не очень большого сечения, 0.75мм.кв достаточно), набираем на жало паяльника много припоя, прикасаемся к проводу и вместе с ним прижимаем к контакту аккумулятора. Либо прикладываем провод к месту пайки и паяльником с большой каплей припоя прикасаемся к месте между проводом и аккумулятором.
Но как я писал выше, способ имеет нюансы, необходим мощный паяльник с массивным жалом. Аккумулятор имеет большую теплоемкость и при легком жале он банально его остудит до такой температуры, что припой «примерзает», иногда вместе с жалом (зависит от паяльника). В итоге вы будете долго пытаться прогреть место контакта и в итоге перегреете аккумулятор.
Потому берут старый паяльник с большим медным жалом, желательно хорошо прогретый, тогда прогреваться будет только место пайки и после тепло просто распределится и общая температура будет не очень высокой.
Проблемы касаются минусового вывода аккумулятора, с пайкой плюсового обычно сложностей нет, он легче, но тоже сильно перегревать не советую.

В любом случае, если у вас нет опыта пайки, то крайне не рекомендую этот способ.

3. Самый правильный способ - точечная сварка, мгновенно, без перегрева. Но сварочный станок должен быть правильно настроен чтобы не сделать сквозную дыру в дне аккумулятора, потому лучше обратиться к профессионалам. За небольшую денежку на рынке вам сварят вашу батарею.
Альтернативный вариант, в некоторых онлайн магазинах предлагается услуга (вернее варианты лотов, с лепестками и без) по привариванию контактных лепестков, это не очень дорого, но гораздо безопаснее пайки.

Данную сборку «сварил» тот же товарищ, который и дал мне шуруповерт для обзора.
На фото видно, что между лепестком и корпусом аккумулятора проложен тряпичный изолятор. Это важно, так как без него вы можете перегреть лепесток и он проплавит изоляцию аккумулятора, последствия думаю понятны.

Внимательные читатели наверняка заметили непонятные пластмассовые проставки между аккумуляторами.
Данное решение относится к классу - как делать правильно.
Инструмент в работе подвержен вибрации и возможна ситуация повреждения изоляции между банками (я такого не встречал, но теоретически). Установка проставок исключает данную ситуацию. Можно не ставить, но так более правильно. Вот только где их купить, не подскажу, но можно поискать на рыках в батарейных киосках.

Затем необходимо вывести провода для подключения к плате защиты и клеммной колодке.
Для силовых проводов я использую провод сечением не менее 1.5мм.кв, а для менее нагруженных цепей 0.5мм.кв.
Конечно вы спросите, зачем провод 0.5мм.кв если там тока нет и можно применить гораздо более тонкий провод. Провод большего сечения имеет толще изоляцию и обеспечивает большую механическую прочность, т.е. его сложнее повредить. Вы конечно можете использовать любой провод, я лишь показал вариант, который считаю более правильным.
В идеале провода сначала залудить с обеих сторон, а свободные концы изолировать, но такое возможно при второй переделке одного и того же аккумулятора, когда длина проводов уже известна. Для первой я обычно беру провода с запасом.

Если присмотреться, то на верхнем фото заметны отверстия в крайних клеммах аккумулятора, это также делается для повышения надежности соединения. Незалуженный провод вставляется в отверстие и запаивается, в таком варианте меньше риск получить плохой контакт.
В общем паяем провода, заодно желательно дополнительно изолировать клеммы при помощи термоусадки.

В итоге у нас получится такая сборка. От плюсового контакта отходит два провода, это обусловлено особенностью подключения платы защиты.

Последний шаг в подготовке сборки скорее желателен, чем обязателен. Так как сборка «живая», то необходимо зафиксировать элементы друг относительно друга. Для этого я использую термоусадочную трубку, хотя в данном случае корректнее - трубу. Она довольно тонкая, но весьма прочная, ее цель именно сжать всю конструкцию.

Надеваем термоусадку и при помощи фена усаживаем ее. Привычный вариант с зажигалкой скорее всего не пройдет, так как желательно делать это равномерно.
В тоге у нас вполне заводская, на вид, сборка аккумуляторов.

Примеряем собранную сборку в корпусе. Вообще конечно обычно это делают сначала, этот момент я как то упустил, но думаю что это вполне логично:)

Монтаж.

Дальше следует этап установки сборки в батарейный отсек. Тривиальная на первый взгляд операция кроет в себе небольшие подводные камни.
Для начала вымываем пыль и грязь из отсека. Я сделал ошибку и протер только нижнюю часть, остальное потом вычищал щеткой и ваткой. Потому проще помыть с мылом и просушить.

Дальше приклеивание сборки. В исходном варианте аккумуляторы просто были зажаты половинками корпуса, но в нашем случае такое редко возможно, потому сборки чаще всего приклеивают.
Здесь как и раньше, есть несколько вариантов, рассмотрим их.
1. Двухсторонний скотч
2. Термоклей
3. Силиконовый герметик
4. Прибить насквозь 150 гвоздями, а с обратной стороны загнуть. :)

Так как последний вариант больше подходит для любителей экстрима, то распишу более «приземленные».
1. Очень просто и удобно, но так как место контакта маленькое, то держит не очень хорошо, а кроме того надо использовать хороший скотч.

2. Вариант хороший, сам иногда пользуюсь (кстати, применяю черный термоклей). Но в данном случае не советовал бы. Дело в том, что термоклей имеет свойство «плыть» при нагреве. Для этого достаточно забыть шуруповерт летом на улице и получить в итоге болтающуюся внутри батарею. Я не скажу что такое будет обязательно, но такое свойство клей имеет, факт. Кроме того, термоклей не очень хорошо липнет к массивным элементам и при нагрузке может просто отвалиться.

3. На мой взгляд самый удобный вариант. Герметик не боится нагрева, не течет со временем и имеет хорошую адгезию к большинству материалов. Кроме того он довольно эластичен и при этом практически не теряет эластичность со временем.

Я использовал санитарный герметик Церезит. На фото может показаться что он еле намазан, это не так, герметика довольно много. Кстати, следует учитывать, что большинство герметиков не клеит к предыдущему слою герметика.
Кроме того можно применить похожий монтажный клей в таких же тубах, например «Момент», но силикон мне кажется более подходящим.

В общем наносим герметик, вставляем нашу сборку, прижимаем и оставляем сохнуть.

Плата защиты.

Вот мы и дошли до собственно предмета данного обзора, платы защиты. Заказаны они были еще весной, но посылка потерялась, их потом выслали заново, в итоге они таки пришли.
Почему были заказаны именно эти платы я уже не вспомню, но они смирно лежали и ждали своего часа, дождались:)

Данная плата рассчитана на подключение трех аккумуляторов и имеет заявленный рабочий ток 20 Ампер.
Только сейчас я обратил внимание, что плата имеет довольно высокий порог срабатывания защиты по превышению напряжения, 4.325 Вольта. Возможно я неправ, но считаю что лучше 4.25-4.27.
Также указано, что ток 20 Ампер это максимальный длительный, ток срабатывания при перегрузке составляет 52 Ампера.

Табличка очень похожа на таблички от других плат, потому я выделю отдельные важные пункты.
1. Ток балансировки, так как данная плата этого не умеет, то здесь прочерк
2. Максимальный длительный ток, для большинства применения надо 20-25 Ампер. На менее мощном инструменте достаточно и 15-20, более мощный потребует 25-35 и более.
3. Максимальное напряжение на элементе, при котором плата отключает батарею. Зависит от типа примененных аккумуляторов.
4. Минимальное напряжение на элементе при котором плата отключит нагрузку. 2.5 Вольта это довольно мало, лучше выбирать этот параметр таким же, как заявлено в даташите на аккумулятор.
5. Ток, при котором срабатывает защита от перегрузки. Не надо стремится к запредельным величинам. Хотя этот ток напрямую связан с максимальным рабочим, потому обычно здесь проблем нет. Даже если сработала защита, то чаще всего достаточно просто отпустить кнопку шуруповерта и потом нажать опять.
6. Данный пункт отвечает за автоматический сброс срабатывания защиты.
7. Сопротивление ключевых транзисторов, чем меньше, тем лучше.

Внешне к плате претензий нет, качество сборки вполне аккуратное.

Снизу ничего нет, это и к лучшему, не будет проблем с приклеиванием платы:)

О платах защиты я расскажу немного подробнее.
Для начала отвечу на вопрос - а можно без платы защиты? Нет.
Плата защиты как минимум обеспечивает отключение при перегрузке, это вредно как для аккумуляторов, так и для инструмента.
Кроме того плата защищает от перезаряда и переразряда. По сути можно сказать, что переразряд можно почувствовать по падению мощности, но это относится не ко всем инструментам, а кроме того можно попасть в ситуацию, когда один элемент сильно «устал» и напряжение на нем падает очень резко. В таком варианте легко получить переполюсовку, т.е. аккумулятор не просто уйдет в «ноль», а через него будет проходить ток в обратной полярности. Такой эффект получается только при последовательном соединении элементов и он нем почему то часто забывают.
Литиевые аккумуляторы довольно опасны и плата защиты для них обязательна!

Платы в основном делятся на два типа (хотя на самом деле их больше), с возможностью балансировки и без.

Объясню, что такое балансировка и зачем она вообще нужна.
Сначала вариант «пассивной» балансировки.
Такой вариант применяется на подавляющем большинстве плат как самый простой в реализации.
По мере достижения аккумулятором порогового напряжения он начинает нагружаться на резистор, который берет на себя часть зарядного тока. Пока этот аккумулятор «борется», другие успевают зарядиться до своего максимума.
Дальше несколько картинок с этой .

1. Один из аккумуляторов либо заряжен больше других, либо имеет немного меньшую емкость.
2. В случае простого заряда на нем будет напряжение выше, чем на остальных
3. Балансир отбирает на себя часть тока заряда, не давая напряжению подняться вше максимального.
4. В итоге все аккумуляторы заряжены равномерно.

Кроме того немного я рассказывал о балансирах в отдельном видео.

Второй вариант балансира, «активный». Он имеет совсем другую реализацию и не подходит для работы с большими токами заряда. Его задача, всегда поддерживать одинаковое напряжение на элементах. Работает он по принципу «перекачки» энергии от аккумулятора с большим напряжением в аккумулятор с меньшим. В одном из своих я делал такой балансир, кому интересно, могут прочитать чуть более подробно.
А в этом я делал вариант правильной зарядки с активным балансиром и оттуда табличка, по которой можно увидеть процесс балансировки без подключения батареи и платы к зарядному устройству… Да, он медленный, но он протекает всегда, а не только во время заряда.

Мы немного отвлеклись.
Плата защиты с балансировкой обычно содержит несколько больших SMD резисторов, количество которых кратно количеству каналов. при 3 каналах это 3 или 6. На них чаще всего написано что то типа - 470, 510, 101 и т.п.
Слева плата 4 канала, справа - 3 канала.

Здесь балансира нет, зато есть токоизмерительные шунты в виде SMD резисторов с низким сопротивлением. На них обычно написано R010, R005. Потому плату с балансиром и без отличить можно по внешнему виду.
Кстати, платы могут не иметь токоизмерительного шунта. Это не всегда означает, что плата не умеет измерять ток. Просто иногда контроллер умеет использовать в качестве «шунта» полевые транзисторы.

Бывают и отдельно платы балансиров, а также комплекты балансир + плата защиты.
Такой вариант вполне имеет право на жизнь, если устраивает по цене, но проводов будет больше.

Попутно я часто встречаю заблуждение насчет возможности использования данных плат как зарядного устройства. Людей обычно сбивает с толку слово Charge в указании лота.
Эти платы не умеют управлять зарядом, они только защищают аккумуляторы. Но неграмотность продавцов или кривой перевод делает свое дело и люди продолжают ошибаться.
Но существуют и платы «все в одном», правда они не рассчитаны на высокие токи и для электроинструмента не подходят.

На данной плате установлено восемь ключевых транзисторов, а точнее - четыре пары.
Применены транзисторы и они соответственно имеют сопротивление и максимальный ток - 5.9мОм 46 Ампер и 4мОм 85 Ампер.
Слева виден токоизмерительный шунт. Данный вариант более предпочтителен чем SMD резисторы, которые иногда имеют свойство «подгорать» из-за больших импульсных токов.

Плата не имеет центрального контроллера и собрана по довольно примитивной схемотехнике, канальные мониторы напряжения и дальше схема, сводящая все к управлению полевыми транзисторами. Это просто, но это работает. Хотя наверное сейчас я бы выбрал что нибудь более «продвинутое».
Кроме того плата не имеет балансира. Вы спросите, как так, ведь я выше расписывал преимущества балансира.
Балансир это хорошо, и я рекомендую покупать платы именно с ним. Но также я считаю, что нормально подобранные аккумуляторы в балансире особо и не нуждаются, от сильного падения он не спасет, а проблем может добавить. Были случаи, когда неисправный балансир высаживал батарею.
Кроме того большинство производителей электроинструмента не ставит балансиры в свои батарейные блоки. Правда там действует принцип «запланированного устаревания», потому я все таки больше за балансир, чем против него.

Кроме того на плате есть контакты для подключения термодатчика (а выше на фотографии из другого магазина есть пример такой платы с термодатчиком). Термодатчик это хорошо и в моих планах разобраться как подключить родной термодатчик батареи шуруповерта.
Предположительно надо выпаять резистор RT, заменить резистор RY на номинал, соответствующий номиналу нового датчика, а новый датчик припаять к контактам RK.

С платами вроде немного разобрались, переходим к продолжению переделки.

Так как плата в процессе работы может нагреваться (хотя и не сильно), то для защиты аккумуляторов от лишнего тепла я решил сделать прокладку. Кроме того она защитит аккумуляторы в случае разрыва полевых транзисторов и сквозного прогорания платы (такое бывает, но крайне редко, потому скорее теоретически).
Я взял обрезок стеклотекстолита и снял фольгу.

Затем при помощи все того же силиконового герметика приклеил прокладку к аккумуляторной сборке, а потом приклеил саму плату.
Конструкция конечно страшная, но в данном случае это самое простое и довольно надежное решение.
Плата приклеивалась не «на обум», предварительно я прикинул как удобнее ее потом будет подключать.

Схема подключения была на странице магазина, но на самом деле она практически не отличается от схем подключения других плат. Аккумуляторы последовательно, минус к плате, первая средняя точка считая от минуса - В1+, вторая В2+, третья В3+. Но так как аккумуляторов всего три, то В3+ это плюс всей сборки.
Второй провод от плюсового вывода идет к нагрузке.
Минусовой провод нагрузки (как и зарядного) подключается к отдельному контакту платы.

Дальше подключаем провода.
Порядок подключения проводов может быть критичным, я обычно подключаю сначала минус сборки, затем плюс, а уже потом средние точки начиная от минусового вывода (В1, В2 и т.д.).
Есть информация, что неправильная последовательность подключения может выжечь контроллер, хотел добавить в обзор, но не нашел ссылок.
Кроме того паять надо очень аккуратно, чтобы не замкнуть контакты, иначе будет печальная картина. Пожалуй это один из самых сложных, для новичка, этапов в переделке… Я сначала залуживаю площадки платы, а потом паяю, так легче.

В идеале провода потом также зафиксировать при помощи герметика, чтобы не болтались.

В самом начале я показал блок аккумуляторов, который вынул из батарейного отсека.
Сверху виден клеммник, выбрасывать его нельзя, так как он очень важен для переделки. Клеммники бывают разные, но суть у них одна, быстрое соединение с инструментом или зарядным устройством.
Сначала, когда я начал переделывать, я решил что резистор здесь задает напряжение заряда (зарядное рассчитано на 7.2-14.4 Вольта), но проверка показала, что зарядное даже не имеет для него соответствующего контакта, как и шуруповерт:(
На еще один из контактов выведен терморезистор для контроля температуры батареи, правда это не сильно помогло, один из аккумуляторных блоков имеет явные следы перегрева и деформированной пластмассы.

Но перед подключением следует подумать о фиксации клемника. Изначально его держали аккумуляторы, но так как аккумуляторов уже нет, то придется импровизировать.
Для фиксации я измерил внутреннюю ширину выступающей части, а затем вырезал кусочек пластмассы соответствующей ширины. Правда все равно немного прогадал и вырезал чуть меньше, пришлось намотать изоленты:)

Обычно отпаивается оба провода, но в моем случае минусовой провод был достаточной длины и я его не стал убирать, а заменил только плюсовой.
Кстати, так как клеммная колодка изготовлена из пластмассы, а сами клеммы довольно массивные, то здесь либо применяем тот же принцип, что и при пайке аккумуляторов, либо просто откусываем старый провод в 7-10мм от конце клеммы и припаиваем новый провод к нему. Второй вариант не хуже, но заметно проще.

1. Припаиваем плюсовой провод сборки к клеммнику. Термоусадка это скорее уже перфекционизм, коротить там особо некуда, но хотелось аккуратно.
2. Вставляем клеммник на родное место, забиваем (или очень сильно вдавливаем) пластмассовый фиксатор, который я вырезал выше.

Припаиваем минусовой провод от клемника к плате и покрываем плату защитным лаком. А вот последнее уже не перфекционизм, а вполне полезное дело, так как плата находится под напряжением и может эксплуатироваться в условиях большой влажности. Если не покрывать плату лаком, то возможна коррозия открытых частей дорожек и выводов компонентов.
Я использую лак Пластик 70.

На этом с аккумулятором все, ставим обратно пружины, фиксаторы и собираем в кучку.
Предварительно лучше перевернуть всю конструкцию и вытрусить то, что могло случайно попасть внутрь, у меня это был обрезок изоляции провода.
Заодно можно протереть/смазать механизм фиксации аккумулятора в шуруповерте.

Программа минимум выполнена, аккумулятор работает, но так как родное зарядное еще не переделано, то подключил пока к блоку питания.

Так как в данный обзор скорее всего уже не влезет переделка зарядного (и не только), да и хочется сделать это красиво и правильно, то планируется еще один обзор на эту тему, где я расскажу о возможных доработках, переделке зарядного и вариантах правильного заряда.

Для заряда можно конечно использовать распространенное зарядное устройство типа Imax. Но я считаю такой вариант неудобным.
Кроме того, иногда выводят разъем для балансировки аккумуляторов шуруповерта. Вещь конечно полезная, но как по мне, то немного лишняя, а кроме того не всегда безопасная. На мой взгляд достаточно просто один раз подобрать аккумуляторы и дальше просто заряжать без балансировки. Либо купить плату защиты с балансиром, а торчащие разъемы это увеличение шанса их закоротить, поломать, да и это скорее вариант для дома.

Для более реального применения лучше либо переделать родное зарядное, либо полностью заменить его «начинку».
Первый вариант технически сложен, так как алгоритм заряда литиевого аккумулятора заметно отличается от кадмиевого, а кроме того некоторые родные зарядные устройства и назвать то так язык не поворачивается, внутри только трансформатор, диодный мост и пяток деталей, никакого контроля в помине нет.
Например у Боша еще и «продвинутый» вариант, с контроллером.

В качестве второго варианта можно использовать родной трансформатор зарядного устройства, его диодный мост и кусок печатной платы в качестве клеммной колодки.

Для переделки надо докупить плату типа такой как на фото.
Либо любую другую, которая умеет стабилизировать напряжение и ток. Обычно у этих плат как минимум два подстроечных резистора. Но в данном случае даже три, третий регулирует порог включения индикации окончания заряда.

Если по фото, то первый - напряжение, второй - индикация, третий - ток заряда.

В таком варианте подключается плата вместо родной, придется добавить только электролитический конденсатор емкостью 1000-2200мкФ.

Но такое решение имеет и свои минусы. Плата зарядного только отображает завершение процесса заряда, но не отключает аккумулятор. Не то чтобы это совсем плохо-плохо, но ничего хорошего в этом также нет.
Для решения данной проблемы можно применить простейшее решение, отключать выход после окончания процесса заряда.
Для этого придется добавить четыре детали, реле на 24 Вольта, оптрон PC817, диод и кнопку.
Светодиод оптрона включается вместо светодиода отображающего процесс заряда, а транзистор оптрона управляет реле.
Но в данном варианте реле не может включиться само, потому параллельно контактам необходима кнопка (как я говорил, решение очень простое). Т.е. вставили аккумулятор, нажали на кнопку, пошел процесс заряда, после окончания заряда реле отключилось и аккумулятор обесточился.
Кнопку можно подключить параллельно контактам транзистора оптрона, тогда подойдет и обычная тактовая кнопка. Естественно в обоих случаях нужна кнопка без фиксации.

Оптрон и реле.

Также можно использовать и другие платы, наверняка многие их видели на просторах Али.
Первая попроще, регулируется только ток и напряжение, индикация заряда выставлена фиксировано, светодиод погасает когда ток упадет меньше 1/10 от установленного тока заряда (стандартный алгоритм заряда лития).
Вторая по сути как первая, но в более «продвинутом» варианте, отображается напряжение аккумулятора и ток его заряда.
Обзор , и .

Кстати, для заряда можно даже использовать плату без стабилизации тока, но придется ее немного доработать, я даже показывал .

Все приведенные варианты используют родной трансформатор зарядного устройства, но если его нет, то преобразователь просто надо дополнить блоком питания., например таким.
но стоит учитывать, БП должен быть на напряжение выше, чем напряжение окончания заряда аккумулятора, разница нужна примерно 3-5 Вольт или больше.
Т.е. в данном случае 15 Вольт БП не подходит, но обычно такие БП имеют регулировки выходного напряжения ±20% и его можно немного поднять. Но можно просто купить БП на 24 Вольта и ничего не регулировать.

Если же у вас в наличии только БП на 12 Вольт, а заряжать надо аккумулятор как в обзоре, то можно использовать универсальный преобразователь, например , правда и стоит он дороже.

О доработках.
Можно добавить индикацию заряда батареи, например звуковую или звуковую + световую.

Либо измерять напряжение при помощи небольшого , а то и вообще поставить гибрид вольтметр + звук.

Но лично мне больше нравятся простые варианты, измерение напряжения с индикацией несколькими светодиодами.

Причем последний вариант я уже делал и схему и изготовление.

Почти такой же вариант применен в одном из моих , а точнее в его батареях.

Краткое видео результата переделки. На видео видно, что в тяжелых случаях происходит срабатывание защиты. Аккумулятор был уже чуть подсажен, потому в режиме трещотки на второй скорости защита срабатывала не всегда. При полностью заряженном аккумуляторе это происходит чаще. Но также видно, что срабатывание защиты происходит корректно, нагрузка, отключение. После этого я отпускаю кнопку, нажимаю опять и шуруповерт работает.

Для большего удобства можно использовать пластиковые рамки, которые я показывал в своих видео.


А для заряда использовать подобное зарядное устройство.

На этом в общих чертах все, по поводу переделки батарей рассказал вроде все, что вспомнил, а по поводу зарядного устройства более подробно расскажу как нибудь в другой раз, так как есть много идей.

Да, чуть не забыл, собственно о предмете обзора, плате защиты.
Плата работает, работает отлично, по крайней мере проблем с ней я не обнаружил.
При зажатии патрона, установке трещотки на максимум (вроде уровень 5) и второй скорости, плата уходит в защиту с шансом примерно 50/50. Если включить первую скорость, то тока для срабатывания защиты не хватает. В общем вполне нормальное поведение. Можно уменьшить номинал шунта и защита будет срабатывать позже, но я не вижу в этом смысла.

Да, теперь о стоимости переделки. Цена трех аккумуляторов около 15 долларов + 5-8 плата защиты + доллар за всякую мелочевку, итого выходит около 20-25 долларов за одну батарею.
Дорого? Я считаю что весьма дорого, потому дешевый инструмент переделывать просто нет смысла. Но в любом случае переделка не так сложна, как кажется на первый взгляд, главное начать.

В обзоре я не писал про аккумуляторы LiFe, по большому счету с ними все абсолютно также, за исключением того, что к ним надо специальные платы, так как напряжение этих аккумуляторов немного ниже, чем у привычных LiIon. Аккумуляторы отличные, надежность с ними будет выше, но емкость батареи - ниже.

Надеюсь, что обзор был полезен, как всегда жду вопросов в комментариях.
Естественно возможны варианты, и я тоже могу где то ошибаться, потому вышенаписанное лишь мое видение процесса.

Планирую купить +354 Добавить в избранное Обзор понравился +249 +508

Есть две вещи, которые очень не любят аккумуляторы: перезарядка и переразрядка. И если первую проблему успешно решают современные зарядные устройства (кроме простейших выпрямителей), то с разрядом ниже критического уровня дела обстоят хуже - почти никогда питаемые от батарей устройства не обеспечивают предохранение от сверхразрядки. Не исключается и случайный разряд - когда просто забыли отключить прибор и он разряжается, разряжается... Для решения этой проблемы предлагается к самостоятельной сборке простой низковольтный модуль отключения цепи. Такая схема довольно проста и применима к любой литиевой или свинцово-кислотной аккумуляторной батарее. Естественно порог отключения можно настроить соответственно АКБ.

Схема блока защиты АКБ

Как это работает. Когда кнопка сброса нажата, положительное напряжение поступает на затвор N-канального MOSFET силового транзистора.

Если напряжение на выходе стабилитрона U1 выше 2.5 вольт, а это определяется делителем напряжения, состоящим из R4, R5 и R6, катод U1 оказывается подключен к его аноду, что делает его отрицательным по отношению к его эмиттеру, R2 ограничивает базовый ток до безопасного значения и обеспечивает достаточный ток для работы U1. И транзистор Q1 будет удерживать схему открытой, даже когда вы отпустите кнопку сброса.

Если напряжение на U1, падает ниже 2,5 вольт, стабилитрон отключается и подтягивает положительное напряжение эмиттера R1, выключив его. Резистор R8 также выключает полевой транзистор, приводя к отключению нагрузки. Причём нагрузка не будет включена снова до нажатия кнопки сброс.

Большинство малогабаритных полевых транзисторов рассчитаны только для +/- 20 вольт на затворе - источник напряжения, а это означает, что схема блока подходит для не более чем 12 вольтовых устройств: если требуется рабочее напряжение выше, необходимо будет добавить дополнительные элементы схемы, чтобы сохранить безопасность работы полевика. Пример использования такой схемы: простой контроллер заряда солнечных батарей показанный на фото.


Если требуется более низкое напряжение, чем 9 вольт (или выше 15) - надо будет пересчитывать значения резисторов R4 и R6, чтобы изменить диапазон регулировки.

В схему можно поставить практически любой кремниевый PNP транзистор с номиналом не менее 30 вольт и любой N-канальный MOSFET с номинальным напряжением не менее 30 вольт и током более чем в 3 раза от того, что вы собираетесь коммутировать. Проходное сопротивление доли Ома. Для прототипа использовался F15N05 - 15 ампер, 50 вольт. Для высоких токов подойдут транзисторы IRFZ44 (50 А Макс.) и PSMN2R7-30PL (100 А Макс.). Также можно параллельно соединить несколько однотипных полевых транзисторов по мере необходимости.

Это устройство не должно оставаться подключенным к АКБ долговременно, так как потребляет само несколько миллиампер из-за светодиода и тока потребления U1. В выключенном состоянии его ток потребления ничтожно мал.

Современные приборы и устройства стали намного более надежными и функциональными, чем их предшественники. Но это не значит, что они могут работать в любых условиях и не требуют соблюдения правил эксплуатации. Перезаряд аккумулятора на автомобиле или мотоцикле - такая же серьезная проблема, как его глубокий разряд или работа при минусовых температурах. Более того, работа при полном разряде или на холоде скажется только на состоянии устройства, а вот избыточный заряд автомобильного аккумулятора опасен для здоровья владельца авто (или человека, который будет обслуживать батарею).

Условно ситуации, связанные с перезарядкой батареи, можно разделить на случайные и намеренные. Намеренное увеличение заряда используется некоторыми автолюбителями и владельцами мотоциклов для повышения плотности электролита. Для этого к уже заряженной АКБ продолжают подавать электрический ток, вода выкипает, процентная доля кислоты повышается.

Делать это нужно очень осторожно, соблюдая некоторые правила:

  • использовать только слабый ток;
  • прекращать перезаряд, как только плотность достигнет 1,27 г/см 3 ;
  • не доводить процесс до оголения пластин.

Это единственный вариант действий, который при перезаряде не испортит батарею, но подарит ей новую жизнь.

Причины случайных перезарядок обычно кроются не в самом аккумуляторе, а в генераторе:

  • Сломано реле устройства. Эта деталь ответственна за отключение генератора после полной зарядки батареи. Если она не работает - ток продолжает поступать в полностью заряженный источник питания. Это несложная поломка, заменить реле просто, да и деталь недорогая.
  • Сломан сам генератор. Схема действия та же, но последствия серьезнее. Это более дорогая автозапчасть.
  • Проблема может скрываться и в неверном выборе зарядного устройства или использовании неподходящих настроек.
  • Необычный вариант - сломан датчик напряжения (если установлен). То есть перезарядки нет, но электроника показывает, что она есть. Лечится заменой датчика.

В некоторых случаях причиной постоянной перезарядки батареи может стать неправильное подсоединение запчастей друг к другу (например, такое может встречаться у автомобиля ваз 2106 при некорректном подключении щеток генератора).

Последствия

Даже однократная перезарядка батарей может привести к весьма неприятным последствиям. Но почему излишний заряд может оказаться опаснее для человека, чем для батареи? Чтобы понять причину, нужно представлять себе схему работы (этот используют для автомобилей и в мотоциклах). Основные рабочие элементы батареи - электроды, выполненные из сплава свинца с различными добавками, и водный раствор серной кислоты (65% - вода), являющийся электролитом.

При заряде АКБ в ней начинаются окислительные и восстановительные реакции, которые рассчитаны на определенное количество поступающего электрического тока. Если начинается его переизбыток, то электролит попросту закипает.

  • человек был поблизости и получил ожоги;
  • нагретый раствор кислоты попал на клеммы, радиатор, другие детали автомобиля, повредив их.

С точки зрения гуманизма, второй вариант предпочтительнее, машину починить все-таки проще, но это все равно не самое приятное занятие. Разумнее не перезаряжать батарею, так как это опасно для всех участников процесса.

Кипящий электролит не является единственным последствием избыточно заряженного аккумулятора, приводящим к порче имущества. При лишней зарядке АКБ начинается реакция, высвобождающая определенное количество водорода и кислорода. Газы скапливаются в замкнутом пространстве, а АКБ получает возможность взорваться, разбрызгав кислоту по всему подкапотному пространству.

Существует только один тип автомобильных батарей, излишняя зарядка которых относительно безвредна с точки зрения безопасности. Это так называемый , который находится в герметичном корпусе. В схемы таких устройств входит специальный клапан, через который будут выведены скопившиеся газы. Но электролит все равно будет безвозвратно потерян, так что придется обзавестись новой автомобильной батареей. Возможный вариант развития событий на гелевой или необслуживаемой АКБ - вспучивание батареи не вышедшими вовремя газами. Последствия - крушение пластин и сепаратора, приобретение новой батареи. Поэтому важно знать, .

Другие последствия перезаряда аккумулятора:

  • нагревшееся реле может стать причиной пожара;
  • кипящий электролит оголяет пластины, что приводит к их нагреванию и, в перспективе, разрушению;
  • возможна поломка предохранителей.

Как бороться?

В автомобильные аккумуляторы и генераторы защита от перезаряда не встраивается. Избавиться от избыточной зарядки и связанных с ней проблем можно разными способами. Например, приобрести зарядное устройство с функцией защиты батарей от короткого замыкания и перезарядки.

Автовладельцев, умеющих работать с электрическими схемами и собирать на их основе полезные приборы, может заинтересовать один из множества вариантов собственноручно собранного прибора или целого зарядного устройства, в котором можно предусмотреть контроль за перезарядом автомобильного аккумулятора. Собирая такой прибор самостоятельно, можно встроить в него не только функцию контроля полноты заряда, но и самостоятельное определение того, нуждается ли вообще АКБ в пополнении запасов энергии. Схем такого многофункционального защитного устройства много, и каждый автолюбитель может выбрать подходящий ему вариант.

Какой бы вариант ни был выбран - все-таки не стоит пускать все на самотек и переставать следить за аккумуляторной батареей и уровнем ее заряда. Технике свойственно ломаться, последствия могут затронуть не только АКБ, но и ближайшие детали авто или мотоцикла.

Возникла у меня необходимость защиты аккумулятора от глубокого разряда. И основное требование к схеме защиты, что бы после разряда аккумулятора, она отключила нагрузку, и не смогла ее самостоятельно включить, после того как аккумулятор немного наберет напряжение на клеммах, без нагрузки.

За основу схемы здесь взят 555-й таймер, включенный в качестве генератора одиночного импульса, который после достижения минимального порогового напряжения, закроет затвор транзистора VT1 и отключит нагрузку. Схема сможет включить нагрузку только после отключения, и повторного подключения питания.

Плата (Зеркалить не нужно):

Плата SMD (Нужно зеркалить):

Все SMD резисторы — 0805. Корпус MOSFET — D2PAK, но можно и DPAK.

При сборке, стоит обратить внимание на то, что под микросхемой (в плате на DIP компонентах) есть перемычка и про нее главное не забыть!

Настраивается схема следующим образом: резистор R5 выставляется в верхнее по схеме положение, далее подключаем ее к источнику питания с выставленным на нем напряжением, при котором она должна отключить нагрузку. Если верить википедии , то напряжение полностью разряженного 12-и Вольтового аккумулятора соответствует 10,5 Вольт, это и будет нашим напряжением отключения нагрузки. Далее вращаем регулятор R5 до тех пор, пока нагрузка не отключится. Вместо транзистора IRFZ44 можно использовать практически любой мощный низковольтный MOSFET, необходимо только учитывать, что он должен быть рассчитан на ток, раза в 2 больше, чем будет максимальный ток нагрузки, а напряжение затвора должно быть в пределах напряжения питания.

При желании, подстроечный резистор можно заменить на постоянный, номиналом 240 кОм и при этом резистор R4 необходимо заменить на 680 кОм. При условии, что порог у TL431 2,5 Вольта.

Потребляемый ток платой — около 6-7 mA.

Не секрет, что Li-ion аккумуляторы не любят глубокого разряда. От этого они хиреют и чахнут, а также увеличивают внутреннее сопротивление и теряют емкость. Некоторые экземпляры (те, которые с защитой) могут даже погрузиться в глубокую спячку, откуда их довольно проблематично вытаскивать. Поэтому при использовании литиевых аккумуляторов необходимо как-то ограничить их максимальный разряд.

Для этого применяют специальные схемы, отключающие батарею от нагрузки в нужный момент. Иногда такие схемы называют контроллерами разряда.

Т.к. контроллер разряда не управляет величиной тока разряда, он, строго говоря, никаким контроллером не является. На самом деле это устоявшееся, но некорректное название схем защиты от глубокого разряда.

Вопреки распространенному мнению, встроенные в аккумуляторы (PCB-платы или PCM-модули) не предназначены ни для ограничения тока заряда/разряда, ни для своевременного отключения нагрузки при полном разряде, ни для корректного определения момента окончания заряда.

Во-первых, платы защиты в принципе не способны ограничивать ток заряда или разряда. Этим должно заниматься ЗУ. Максимум, на что они способны - это вырубить аккумулятор при коротком замыкании в нагрузке или при его перегреве.

Во-вторых, большинство модулей защиты отключают li-ion батарею при напряжении 2.5 Вольта или даже меньше. А для подавляющего большинства аккумуляторов - это ооооочень сильный разряд, такого вообще нельзя допускать.

В-третьих, китайцы клепают эти модули миллионами... Вы правда верите, что в них используются качественные прецизионные компоненты? Или что их кто-то там тестирует и настраивает перед установкой в аккумуляторы? Разумеется, это не так. При производстве китайских плат неукоснительно соблюдается лишь один принцип: чем дешевле - тем лучше. Поэтому если защита будет отключать АКБ от зарядного устройства точно при 4.2 ± 0.05 В, то это, скорее, счастливая случайность, чем закономерность.

Хорошо, если вам достался PCB-модуль, который будет срабатывать чуть раньше (например, при 4.1В). Тогда аккумулятор просто не доберет с десяток процентов емкости и все. Гораздо хуже, если аккумулятор будет постоянно перезаряжаться, например, до 4.3В. Тогда и срок службы сокращается и емкость падает и, вообще, может вспухнуть.

Использовать встроенные в литий-ионный аккумуляторы платы защиты в качестве ограничителей разряда НЕЛЬЗЯ! И в качестве ограничителей заряда - тоже. Эти платы предназначены только для аварийного отключения аккумулятора при возникновении нештатных ситуаций.

Поэтому нужны отдельные схемы ограничения заряда и/или защиты от слишком глубокого разряда.

Простые зарядные устройства на дискретных компонентах и специализированных интегральных схемах мы рассматривали в . А сегодня поговорим о существующих на сегодняшний день решениях, позволяющих оградить литиевый аккумулятор от слишком большого разряда.

Для начала предлагаю простую и надежную схему защиты Li-ion от переразряда, состоящую всего из 6 элементов.

Указанные на схеме номиналы дадут приведут к отключению аккумуляторов от нагрузки при снижении напряжения до ~10 Вольт (я делал защиту для 3х последовательно включенных аккумуляторов 18650, стоящих в моем металлоискателе). Вы можете задать свой собственный порог отключения путем подбора резистора R3.

К слову сказать, напряжение полного разряда Li-ion аккумулятора составляет 3.0 В и никак не меньше.

Полевик (такой как в схеме или ему подобный) можно выколупать из старой материнской платы от компа, обычно их там сразу несколько штук стоит. ТЛ-ку, кстати, тоже можно взять оттуда же.

Конденсатор С1 нужен для первоначального запуска схемы при включении выключателя (он кратковременно подтягивает затвор Т1 к минусу, что открывает транзистор и запитывает делитель напряжения R3,R2). Далее, после заряда С1, нужное для отпирания транзистора напряжение поддерживается микросхемой TL431.

Внимание! Указанный на схеме транзистор IRF4905 отлично будет защищать три последовательно включенных литий-ионных аккумулятора, но совершенно не подойдет для защиты одной банки напряжением 3.7 Вольта. О том, как самому определить подходит полевой транзистор или нет, говорится .

Минус данной схемы: в случае КЗ в нагрузке (или слишком большого потребляемого тока), полевой транзистор закроется далеко не сразу. Время реакции будет зависеть от емкости конденсатора С1. И вполне возможно, что за это время что-нибудь успеет как следует выгореть. Схема, мгновенно реагирующая на коротыш в нагрузке, представлена ниже:

Выключатель SA1 нужен для "перезапуска" схемы после срабатывания защиты. Если конструкция вашего прибора предусматривает извлечение аккумулятора для его зарядки (в отдельном ЗУ), то этот выключатель не нужен.

Сопротивление резистора R1 должно быть таким, чтобы стабилизатор TL431 выходил на рабочий режим при минимальном напряжении аккумулятора - его подбирают таким образом, чтобы ток анод-катод был не меньше 0.4 мА. Это порождает еще один недостаток данной схемы - после срабатывания защиты схема продолжает потреблять энергию от батареи. Ток хоть и небольшой, но его вполне достаточно, чтобы полностью высосать небольшой аккумулятор за какие-то пару-тройку месяцев.

Приведенная ниже схема самодельного контроля разряда литиевых аккумуляторов лишена указанного недостатка. При срабатывании защиты потребляемый устройством ток настолько мал, что мой тестер его даже не обнаруживает.

Ниже представлен более современный вариант ограничителя разряда литиевого аккумулятора с применением стабилизатора TL431. Это, во-первых, позволяет легко и просто выставить нужный порог срабатывания, а во-вторых, схема имеет высокую температурную стабильность и четкость отключения. Хлоп и все!

Достать ТЛ-ку сегодня вообще не проблема, они продаются по 5 копеек за пучок. Резистор R1 устанавливать не нужно (в некоторых случаях он даже вреден). Подстроечник R6, задающий напряжение срабатывания, можно заменить цепочкой из постоянных резисторов, с подобранными сопротивлениями.

Для выхода из режима блокировки, нужно зарядить аккумулятор выше порога срабатывания защиты, после чего нажать кнопку S1 "Сброс".

Неудобство всех вышеприведенных схем заключается в том, что для возобновления работы схем после ухода в защиту, требуется вмешательство оператора (включить-выключить SA1 или нажать кнопочку). Это плата за простоту и низкое потребление энергии в режиме блокировки.

Простейшая схема защиты li-ion от переразряда, лишенная всех недостатков (ну почти всех) показана ниже:

Принцип действия этой схемки очень похож на первые две (в самом начале статьи), но здесь нет микросхемы TL431, а поэтому собственный ток потребления можно уменьшить до очень небольших значений - порядка десяти микроампер. Выключатель или кнопка сброса также не нужны, схема автоматически подключит аккумулятор к нагрузке как только напряжение на нем превысит заданное пороговое значение.

Конденсатор С1 подавляет ложные срабатывание при работе на импульсную нагрузку. Диоды подойдут любые маломощные, именно их характеристики и количество определяют напряжение срабатывания схемы (придется подобрать по месту).

Полевой транзистор можно использовать любой подходящий n-канальный. Главное, чтобы он не напрягаясь выдерживал ток нагрузки и умел открываться при низком напряжении затвор-исток. Например, P60N03LDG, IRLML6401 или аналогичные (см. ).

Вышеприведенная схема всем хороша, но имеется один неприятный момент - плавное закрытие полевого транзистора. Это происходит из-за пологости начального участка вольт-амперной характеристики диодов.

Устранить этот недостаток можно с помощью современной элементной базы, а именно - с помощью микромощных детекторов напряжения (мониторов питания с экстремально низким энергопотреблением). Очередная схема защиты лития от глубокого разряда представлена ниже:

Микросхемы MCP100 выпускается как в DIP-корпусе, так и в планарном исполнении. Для наших нужд подойдет 3-вольтовый вариант - MCP100T-300i/TT . Типовой потребляемый ток в режиме блокировки - 45 мкА. Стоимость мелким оптом порядка 16 руб/шт .

Еще лучше вместо MCP100 применить монитор BD4730 , т.к. у него выход прямой и, следовательно, нужно будет исключить из схемы транзистор Q1 (выход микросхемы соединить напрямую с затвором Q2 и резистором R2, при этом R2 увеличить до 47 кОм).

В схеме применяется микроомный p-канальный MOSFET IRF7210 , без проблем коммутирующий токи в 10-12 А. Полевик полностью открывается уже при напряжении на затворе около 1.5 В, в открытом состоянии имеет ничтожное сопротивление (менее 0.01 Ом)! Короче, очень крутой транзистор. А, главное, не слишком дорогой.

По-моему, последняя схема наиболее близка к идеалу. Если бы у меня был неограниченный доступ к радиодеталям, я бы выбрал именно ее.

Небольшое изменение схемы позволяет применить и N-канальный транзистор (тогда он включается в минусовую цепь нагрузки):

Мониторы (супервизоры, детекторы) питания BD47xx - это целая линейка микросхем с напряжением срабатывания от 1.9 до 4.6 В с шагом 100 мВ, так что можно всегда подобрать под ваши цели.

Небольшое отступление

Любую из вышеприведенных схем можно подключить к батарее из нескольких аккумуляторов (после некоторой подстройки, конечно). Однако, если банки будут иметь отличающуюся емкость, то самый слабый из аккумуляторов будет постоянно уходить в глубокий разряд задолго до того, как схема будет срабатывать. Поэтому в таких случаях всегда рекомендуется использовать батареи не только одинаковой емкости, но и желательно из одной партии.

И хотя в моем металлодетекторе такая защита работает без нареканий уже года два, все же гораздо правильнее было бы следить за напряжением на каждом аккумуляторе персонально.

Всегда используйте свой персональный контроллер разряда Li-ion аккумулятора на каждую банку. Тогда любая ваша батарея будет служить долго и счастливо.

О том, как подобрать подходящий полевой транзистор

Во всех вышеприведенных схемах защиты литий-ионных аккумуляторов от глубокого разряда применяются MOSFETы, работающие в ключевом режиме. Такие же транзисторы обычно используются и в схемах защиты от перезаряда, защиты от КЗ и в других случаях, когда требуется управление нагрузкой.

Разумеется, для того, чтобы схема работала как надо, полевой транзистор должен удовлетворять определенным требованиям. Сначала мы определимся с этими требованиями, а затем возьмем парочку транзисторов и по их даташитам (по техническим характеристикам) определим, подходят они нам или нет.

Внимание! Мы не будем рассматривать динамические характеристики полевых транзисторов, такие как скорость переключения, емкость затвора и максимальный импульсный ток стока. Указанные параметры становятся критично важными при работе транзистора на высоких частотах (инверторы, генераторы, шим-модуляторы и т.п.), однако обсуждение этой темы выходит за рамки данной статьи.

Итак, мы должны сразу же определиться со схемой, которую хотим собрать. Отсюда первое требование к полевому транзистору - он должен быть подходящего типа (либо N- либо P-канальный). Это первое.

Предположим, что максимальный ток (ток нагрузки или ток заряда - не важно) не будет превышать 3А. Отсюда вытекает второе требование - полевик должен длительное время выдерживать такой ток .

Третье. Допустим наша схема будет обеспечивать защиту аккумулятора 18650 от глубокого разряда (одной банки). Следовательно мы можем сразу же определиться с рабочими напряжениями: от 3.0 до 4.3 Вольта. Значит, максимальное допустимое напряжение сток-исток U ds должно быть больше, чем 4.3 Вольта.

Однако последнее утверждение верно только в случае использования только одной банки литиевого аккумулятора (или нескольких включенных параллельно). Если же для питания вашей нагрузки будет задействована батарея из нескольких последовательно включенных аккумуляторов, то максимальное напряжение сток-исток транзистора должно превышать суммарное напряжение всей батареи .

Вот рисунок, поясняющий этот момент:

Как видно из схемы, для батареи из 3х последовательно включенных аккумуляторов 18650 в схемах защиты каждой банки необходимо применять полевики с напряжением сток-исток U ds > 12.6В (на практике нужно брать с некоторым запасом, например, в 10%).

В то же время, это означает, что полевой транзистор должен уметь полностью (или хотя бы достаточно сильно) открываться уже при напряжении затвор-исток U gs менее 3 Вольт. На самом деле, лучше ориентироваться на более низкое напряжение, например, на 2.5 Вольта, чтобы с запасом.

Для грубой (первоначальной) прикидки можно глянуть в даташите на показатель "Напряжение отсечки" (Gate Threshold Voltage ) - это напряжение, при котором транзистор находится на пороге открытия. Это напряжение, как правило, измеряется в момент, когда ток стока достигает 250 мкА.

Понятно, что эксплуатировать транзистор в этом режиме нельзя, т.к. его выходное сопротивление еще слишком велико, и он просто сгорит из-за превышения мощности. Поэтому напряжение отсечки транзистора должно быть меньше рабочего напряжения схемы защиты . И чем оно будет меньше, тем лучше.

На практике для защиты одной банки литий-ионного аккумулятора следует подбирать полевой транзистор с напряжением отсечки не более 1.5 - 2 Вольт.

Таким образом, главные требования к полевым транзисторам следующие:

  • тип транзистора (p- или n-channel);
  • максимально допустимый ток стока;
  • максимально допустимое напряжение сток-исток U ds (вспоминаем, как будут включены наши аккумуляторы - последовательно или параллельно);
  • низкое выходное сопротивление при определенном напряжение затвор-исток U gs (для защиты одной банки Li-ion следует ориентироваться на 2.5 Вольта);
  • максимально допустимая мощность рассеивания.

Теперь давайте на конкретных примерах. Вот, например, в нашем распоряжении имеются транзисторы IRF4905, IRL2505 и IRLMS2002. Взглянем на них поближе.

Пример 1 - IRF4905

Открываем даташит и видим, что это транзистор с каналом p-типа (p-channel). Если нас это устраивает, смотрим дальше.

Максимальный ток стока - 74А. С избытком, конечно, но подходит.

Напряжение сток-исток - 55V. У нас по условию задачи всего одна банка лития, так что напряжение даже больше, чем требуется.

Далее нас интересует вопрос, каким будет сопротивление сток-исток, при открывающем напряжении на затворе 2.5V. Смотрим в даташит и так сходу не видим этой информации. Зато мы видим, что напряжение отсечки U gs(th) лежит в диапазоне 2...4 Вольта. Нас это категорически не устраивает.

Последнее требование не выполняется, поэтому транзистор забраковываем .

Пример 2 - IRL2505

Вот его даташит . Смотрим и сразу же видим, что это очень мощный N-канальный полевик. Ток стока - 104А, напряжение сток-исток - 55В. Пока все устраивает.

Проверяем напряжение V gs(th) - максимум 2.0 В. Отлично!

Но давайте посмотрим, каким сопротивлением будет обладать транзистор при напряжении затвор-исток = 2.5 вольта. Смотрим график:

Получается, что при напряжении на затворе 2.5В и токе через транзистор в 3А, на нем будет падать напряжение в 3В. В соответствии с законом Ома, его сопротивление в этот момент будет составлять 3В/3А=1Ом.

Таким образом, при напряжении на банке аккумулятора около 3 Вольт, он просто не сможет отдать в нагрузку 3А, так как для этого общее сопротивление нагрузки вместе с сопротивлением сток-исток транзистора должно составлять 1 Ом. А у нас только один транзистор уже имеет сопротивление 1 Ом.

К тому же при таком внутреннем сопротивлении и заданном токе, на транзисторе будет выделяться мощность (3 А) 2 * 3 Ом = 9 Вт. Поэтому потребуется установка радиатора (корпус ТО-220 без радиатора сможет рассеивать где-то 0.5...1 Вт).

Дополнительным тревожным звоночком должен стать тот факт, что минимальное напряжение затвора для которого производитель указал выходное сопротивление транзистора равно 4В.

Это как бы намекает на то, что эксплуатация полевика при напряжении U gs менее 4В не предусматривалась.

Учитывая все вышесказанное, транзистор забраковываем .

Пример 3 - IRLMS2002

Итак, достаем из коробочки нашего третьего кандидата. И сразу смотрим его ТТХ .

Канал N-типа, допустим с этим все в порядке.

Ток стока максимальный - 6.5 А. Подходит.

Максимально допустимое напряжение сток-исток V dss = 20V. Отлично.

Напряжение отсечки - макс. 1.2 Вольта. Пока нормально.

Чтобы узнать выходное сопротивление этого транзистора нам даже не придется смотреть графики (как мы это делали в предыдущем случае) - искомое сопротивление сразу приведено в таблице как раз для нашего напряжения на затворе.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо