Уравнение фика в однородной среде. Диффузия

Уравнение Фика

В большинстве практических случаев вместо химического потенциала применяется концентрация C. Прямая замена µ на C становится некорректной в случае больших концентраций, так как химический потенциал связан с концентрацией по логарифмическому закону. Если не рассматривать такие случаи, то выше приведённую формулу можно заменить на следующую:

которая показывает, что плотность потока вещества J пропорциональна коэффициенту диффузии D и градиенту концентрации. Это уравнение выражает первый закон Фика (Адольф Фик -- немецкий физиолог, установивший законы диффузии в 1855 г.). Второй закон Фика связывает пространственное и временное изменения концентрации (уравнение диффузии):

Коэффициент диффузии D зависит от температуры. В ряде случаев в широком интервале температур эта зависимость представляет собой уравнение Аррениуса.

Процессы диффузии имеют большое значение в природе:

Питание, дыхание животных и растений;

Проникновение кислорода из крови в ткани человека.

Пассивный транспорт

Пассивный транспорт - это перенос веществ из мест с большим значением электрохимического потенциала к местам с его меньшим значением.

При опытах с искусственными липидными бислоями было установлено, что чем меньше молекула и чем меньше она образует водородных связей, тем быстрее она дифундирует через мембрану. Итак, чем меньше молекула и чем более она жирорастворима (гидрофобна или неполярна), тем быстрее она будет проникать через мембрану. Диффузия веществ через липидный бислой вызывается градиентом концентрации в мембране. Через липидные и белковые поры сквозь мембрану проникают молекулы нерастворимых в липидах веществ и водорастворимые гидратированные ионы (окруженные молекулами воды). Малые неполярные молекулы легко растворимы и быстро диффундируют. Незаряженные полярные молекулы при небольших размерах также растворимы и диффундируют.

Важно, что вода очень быстро проникает через липидный бислой несмотря на то, что она относительно нерастворима в жирах. Это происходит из-за того, что ее молекула мала и электрически нейтральна.

Осмос - преимущественное движение молекул воды через полупроницаемые мембраны (непроницаемые для растворенного вещества и проницаемые для воды) из мест с меньшей концентрацией растворенного вещества в места с большей концентрацией. Осмос - по сути дела, простая диффузия воды из мест с ее большей концентрацией, в места с меньшей концентрацией воды. Осмос играет большую роль во многих биологических явлениях. Явление осмоса обусловливает гемолиз эритроцитов в гипотонических растворах.

Итак, мембраны могут пропускать воду и неполярные молекулы за счет простой диффузии.

Отличия облегченной диффузии от простой

  • 1) перенос вещества с участием переносчика происходит значительно быстрее;
  • 2) облегченная диффузия обладает свойством насыщения: при увеличении концентрации с одной стороны мембраны плотность потока вещества возрастает лишь до некоторого предела, когда все молекулы переносчика уже заняты;
  • 3) при облегченной диффузии наблюдается конкуренция переносимых веществ в тех случаях, когда переносчиком переносятся разные вещества; при этом одни вещества переносятся лучше, чем другие, и добавление одних веществ затрудняет транспорт других; так из сахаров глюкоза переносится лучше, чем фруктоза, фруктоза лучше, чем ксилоза, а ксилоза лучше, чем арабиноза и. т. д.;
  • 4) есть вещества, блокирующие облегченную диффузию - они образуют прочный комплекс с молекулами переносчика, например, флоридзин подавляет транспорт сахаров через биологическую мембрану.

3. Диффузия. Ее практическое значение. Уравнение Эйнштейна. Связь между средним сдвигом и коэффициентом диффузии. Уравнение Фика

Диффузией называют самопроизвольный процесс выравнивания концентрации частиц по всему объему раствора или газа под влиянием броуновского движения.

Процесс диффузии идет самопроизвольно, поскольку он сопровождается увеличением энтропии системы. Равномерное распределение вещества в системе отвечает наиболее вероятному ее состоянию.

Часто за причину диффузии принимают осмотическое давление. Это представление было развито Нернстом (1885 г.). Так как осмотическое давление может проявляться лишь при наличии полунепроницаемой перегородки, то это давление бессмысленно рассматривать как какую-то реальную силу, существующую вне связи с мембраной. Тем не менее, осмотическое давление, являющееся также результатом хаотического движения молекул, иногда удобно принимать за причину диффузии.

Перенос массы в результате диффузии сходен с закономерностями переноса тепла или электричества – это легло в основу первого закона диффузии (Фик, 1855г.).

где - количество про диффундировавшего вещества;

Коэффициент диффузии, зависящий от свойств диффундирующих частиц и среды;

Градиент концентрации;

Площадь, через которую идет диффузия;

Продолжительность диффузии.

Знак минус перед правой частью уравнения, так как с увеличением значений величина уменьшается. Уравнение можно представит в виде:

,


где - удельный поток диффузии, характеризующий количество вещества, переносимое за единицу времени через единицу площади.

Принимая отсюда , т.е. коэффициент диффузии численно равен количеству вещества, про диффундировавшего через единицу площади в единицу времени.

,

Это уравнение Эйнштейна. Для частиц, по форме близких к сферическим, .

,

где - масса 1 моля вещества.

Так как существует связь между броуновским движением и диффузией, то должна существовать связь между средним квадратичным значением проекции смещения частицы и коэффициентом диффузии . Эта связь была установлена Эйнштейном (1905г.) и независимо от него Смолуховским (1906 г.):

,


Пользуясь уравнением Эйнштейна-Смолуховского и, зная и всех величин, можно вычислить число Авогадро.

Теория броуновского движения, созданная Эйнштейном и Смолуховским, подтвердила реальное существование молекул. Исследование броуновского движения привело к созданию теории флуктуации и способствовало развитию статической физики.

Флуктуации представляют собой спонтанные отклонения какого-нибудь параметра от среднего равновесного значения в достаточно малых объемах системы. Флуктуация представляет собой явление как бы обратное явлению диффузии.

4. Гипсометрический закон Лапласа

Уравнение Лапласа носит название гипсометрического закона.

Этот закон был экспериментально подтвержден Перреном (1910г.). Изучая распределение монодисперсной суспензии гуммигута, он использовал уравнение Лапласа для определения числа Авогадро, которое оказалось равным 6,82*10 23 (точное значение 6,024*10 23). Гипсометрический закон соблюдается и в аэрозолях, частицы которых имеют небольшую плотность и размер не более 0,05мкм.

Этому закону подчиняется распределение газа по высоте:

,


С помощью этой формулы удобно вычислять для любой свободнодисперсной системы величину , представляющую собой высоту, на которую надо подняться, чтобы численная концентрация уменьшилась с до .

5 Кинетическая или седиментационная устойчивость коллоидно-дисперсных систем. Седиментационый анализ. Вывод уравнения радиуса частиц. Кривые распределения. Монодисперсность и полидисперсность. Методы седиментационного анализа (в поле земного тяготения, в поле центробежной силы – центрифугирование). Их практическое значение

Способность дисперсной системы сохранять равномерное распределение частиц по всему объему принято называть седиментационной, или кинетической устойчивостью системы.

Принцип седиментационного метода анализа дисперсности состоит в измерении скорости осаждения частиц, обычно в жидкой среде. По скорости осаждения частиц с помощью соответствующих уравнений рассчитывают размеры частиц.

Метод позволяет определить распределение частиц по размерам и соответственно подсчитать их удельную поверхность.

Размер частицы дисперсной фазы обычно характеризуют радиусом частицы, реже объемом или площадью ее поверхности. Радиус однозначно определяется только для частиц сферической формы.

В монодисперсной системе все частицы осаждаются с одинаковой скоростью. В соответствии с этим такую же скорость перемещения имеет граница осветления, концентрация частиц по уменьшающейся высоте столба суспензии сохраняется постоянной и также с постоянной скоростью увеличивается масса осевших частиц. Если - общая масса дисперсной фазы, - первоначальная высота столба суспензии, то - масса дисперсной фазы в объеме, приходящаяся на единицу высоты столба суспензии. При скорости осаждения частиц в течение времени вещество осядет из столба высотой , и масса осевшего вещества составит

Это уравнение описывает кинетику седиментации в монодисперсной системе. Если принять, что частицы имеют сферическую форму и при их осаждении соблюдается закон Стокса, то, используя формулу:

, (2)

, (3)

Отсюда радиус частицы равен

, (4)

Следовательно, определяя экспериментально зависимость массы осевшего осадка от времени, можно рассчитать размер частиц.

Определение дисперсного состава суспензий, порошков, аэрозолей и других микрогетерогенных систем основано на разнообразных седиментометрических методах дисперсионного анализа.

К ним относят: отмучивание – разделение суспензии на фракции путем многократного отстаивания и сливания; измерение плотности столба суспензии, изменяющейся вследствие седиментации частиц суспензии; пофракционное (дробное) оседание; метод отбора массовых проб – один из наиболее достоверных; накопление осадка на чашке весов; электрофотоседиментометрия, основанная на изменении интенсивности пучка света, проходящего через столб суспензии, о чем судят по измерениям оптической плотности; седиментометрия в поле центробежных сил, основанная на применении центрифуг.

Для успешного проведения седиментометрического анализа должно выполняться условие независимого движения каждой частицы. Этого достигают, применяя разбавленные системы, а в некоторых случаях добавляя стабилизаторы, препятствующие слипанию частиц.

Известны и применяются в практике различные приборы – седиментометры. Например, ряд приборов позволяет проводить анализ по методу накопления осадка на чашечке весов (метод предложен Оденом). Принцип метода состоит в том, что через определенные интервалы времени взвешивают чашку, опущенную в суспензию, и по нарастанию ее массы судят о соотношении различных фракций в суспензии.

Широкое применение для взвешивания чашки с осадком получили торсионные весы. Проведение седиментометрического анализа основано на том, что по мере оседания частиц их масса на чашке увеличивается вначале быстро, так как, прежде всего, оседают наиболее тяжелые частицы, затем все медленнее. При этом каждая фракция считается монодисперсной.

По данным взвешивания осадка получают кривую седиментации, которая выражает зависимость количества осадка q от времени осаждения . Для монодисперсной системы (рис. 1, а) угол наклона прямолинейного участка кривой определяется скоростью оседания частиц и связан с их размером.

Точка перегиба позволяет определить время полного оседания суспензии 1, которое в свою очередь, дает возможность найти скорость оседания частиц , где h – высота столба суспензии над чашкой весов.

Для бидисперсной системы седиментационная кривая имеет более сложный вид (рис. 1, б). Можно представить себе, что частицы каждой из двух фракций, выпадающие с постоянной скоростью, дают две прямых OA и OB, с различными угловыми коэффициентами, в соответствии с размерами частиц и концентрацией каждой фракции. Однако при совместном оседании обеих фракций мы наблюдаем не эти прямые в отдельности, а суммарную линию седиментации, тангенс угла наклона которой к оси абсцисс является суммой тангенсов углов наклона обеих прямых (OA и OB). В момент полного выпадения фракции, состоящей из частиц больших размеров, эта суммарная линия получает излом (в точке A/) и далее идет параллельно прямой OB, выражающей скорость оседания частиц фракции меньших размеров. В момент окончания оседания второй фракции на графике в точке B/ обнаруживается второй излом, после которого прямая идет параллельно оси абсцисс.

По кривой седиментации оказывается возможным построить прямые осаждения для каждой фракции в отдельности, которые, как было уже сказано, не могут быть получены непосредственно на опыте.

Из рис. 1, б видно, что, продолжая отрезок A/B/ линии седиментации до пересечения с осью ординат и проводя из точки пересечения y прямую, параллельную оси абсцисс, до пересечения ее с линией A/A// , мы получим конечную точку A прямой осаждения фракции, состоящей из крупных частиц. Проводя из начала координат линию OB, параллельную линии y B/ , до пересечения с линией B/B// , получим прямую осаждения фракции, состоящей из мелких частиц, с конечной точкой B .


Рис.1 Кривые седиментации монодисперсной (а) и полидисперсных (б, в) систем.

Если ординаты конечных точек A и B прямых осаждения обеих фракций выражают общее количество (по массе) этих фракций, то очевидно, что ордината точки B/ суммарной линии выражает общее количество обеих фракций (100 %) суспендированного вещества. Легко понять, что отрезки Oy и yx дают относительное содержание каждой фракции в процентах от общего количества суспендированного вещества.

Имеются графические и аналитические методы расчета кривой седиментации.

Монодисперсная система – это система, которая состоит из одинаковых по размеру частиц.

Полидисперсная система – это система, частицы которой имеют различные радиусы.

Так как коллоидные частицы под действием силы тяжести не седиментируют, то под действием центрифуги с большим ускорением можно заставить оседать достаточно быстро и коллоидные частицы.

Ультрацентрифугу используют для определения размера частиц.


... «мицелла» и «мицеллярный раствор». Эти термины были использованы им для обозначения систем, образованных нестехиометрическими соединениями в водной среде. Основная заслуга в становлении коллоидной химии как науки принадлежит Т. Грэму. Как уже отмечалось выше, именно этому ученому принадлежит идея введения термина «коллоид», производного от греческого слова «kolla», обозначающего «клей». Занимаясь...

И многое другое, без чего немыслима сама жизнь. Все человеческое тело – это мир частиц, находящихся в постоянном движении строго по определенным правилам, подчиняющимся физиологии человека. Коллоидные системы организмов обладают рядом биологических свойств, характеризующих то или иное коллоидное состояние: 2.2 Коллоидная система клеток. С точки зрения коллоидно-химической физиологии...

Металлов с белками, нуклеиновыми кислотами, липидами. Её практическое применение связано с синтезом фарамакологических препаратов, действие которых обусловленно комплексными ионами металлов. Биоорганическая Химия Изучает связь между строениями органических веществ и их биологическими функциями, использующих в основном методы органической и физической химии, а также физики и математики. ...

Все виды переноса веществ через мембрану можно разделить на пассивный и активный транспорт . Пассивный транспорт веществ это вид транспорта, который осуществляется без затрат энергии. Имеются следующие видыпассивного транспорта веществ в клетках и тканях: диффузия, осмос, электроосмос и аномальный осмос, фильтрация.

Пусть Ф – потоквещества, с – его концентрация, m - электрохимический потенциал, u – подвижность, D – диффузия, и u=D/RT. Тогда взаимосвязь между перечисленными величинами может быть найдена с помощью уравнения Теорелла:

Ф = - с u dm/dx (1)

Согласно уравнению Теорелла поток вещества Ф равен произведению концентрации носителя на подвижность и на градиент его электрохимического потенциала. Знак “минус” указывает на то, что поток направлен в сторону убывания m..

Основным механизмом пассивного транспорта веществ, обусловленным наличием концентрационного градиента, является диффузия. Диффузия -это самопроизвольный процесс проникновения вещества из области большей в область меньшей его концентрации в результате теплового хаотического движения молекул. Математическое описание процесса диффузии дал Фик. Согласно закону Фика, скорость диффузии dm/dt прямо пропорциональна градиенту концентрации dC/dx, и площади S, через которую осуществляется диффузия:

Ф = dm/dt = - DS dC/dx (2)

Где Ф – это поток вещества, численно равный количеству вещества диффундирующему через данную площадь в единицу времени . Плотность потока j = Ф/S – это количество вещества диффундирующего через единицу площади в единицу времени. Под скоростью диффузии понимают количество вещест­ва (в молях или других единицах), диффундирующего в единицу времени через данную площадь. Градиент концентрации-это изменение концентрации С вещества, приходящееся на единицу длины, в направлении диффузии . Знак минус в правой части уравнения (2) показывает, что диффузия происходит из области_большей концентрации, в область_меньшей концентрации вещества. Коэффициент пропорциональности D в уравнении (2) называется коэффициентом диффузии. Его физический смысл легко выяснять, если S и dC/dx приравнять к едини­це. Коэффициент диффузии численно равен количеству вещества, диффундирующего в единицу времени через единицу площади при градиенте концентрации, равном единице . Коэффициент диффузии зависит, от природы вещества и от температуры. Он характеризует способность вещества к диффузии.



Так как концентрационный градиент клеточной мембраны определить трудно, то для описания диффузии веществ через клеточные мембраны пользуются более простым уравнением:

dm/dt = - PS (C 1 – C 2) (3), где Р = D/ d

где C 1 и C 2 - концентрации вещества по разные стороны мембраны; Р - коэффициент проницаемости, ана­логичный коэффициенту диффузии, d – толщина мембраны. В отличие от коэффициента диффузии, который зависит только от природы вещества и температуры, Р зависит еще и от свойств мембраны и от ее функционального состояния.

Простая и облегченная диффузия.

Диффузия -это самопроизвольный процесс проникновения вещества из обла­сти большей в область меньшей его концентрации в результате теплового хаотического движения молекул.

Различают несколько типов пассивного переноса веществ (диффузии):

1. простая диффузия.

2. перенос через поры.

3. транспорт с помощью переносчиков (подвижных и эстафетной передачи).

Простая диффузия выражается соотношением (уравнение Фика):

J = (dm/dt) / S = -D (dС/dx) , где j -плотность потока вещества, (dС/dx) - градиент концентрации, D - коэффициент диффузии. Это уравнение даёт возможность рассчитать количество вещества (m) попавшее в клетку за определённое время (t) и через известную площадь (S): m = j t S.

Последние два вида диффузии относят к облегченной, т.к. количество вещества переносимое при таком виде транспорта существенно больше.

Если молекулы диффундирующего вещества движутся без образования комплекса с другими молекулами, то такая диффузия называется простой.

Облегченная диффузия состоит в том, что вещество слабо диффундирующее через мембрану, транспортируется через нее с помощью подвижных или фиксированных в мембране переносчиков. Разновидностью облегченной диффузии является обменная диффузия, которая состоит в том, что вспомогательное вещество образует соединение с диффундирующим веществом и перемещается к другой поверхности мембраны. На другой поверхности мембраны молекула проникающего вещества освобождается и на ее место присоединяется другая молекула такого же вещества. Например, установлено, что натрий эритроцитов благодаря обменной диффузии быстро обменивается на натрий плазмы.

Электродиффузия. Уравнение Нернста – Планка.

Поскольку в диффузии участвуют не только нейтральные вещества, но и ионы разной полярности, Нернст и Планк предложили формулу:

Ф = -uRT (dc/dx) - cuz F (dj/dx)

где: u = D/RT (называется подвижностью молекул)

R - универсальная газовая постоянная;

T - абсолютная температура;

с - концентрация вещества;

z - валентность;

F - число Фарадея;

(dc/dx), (dj/dx) - градиент концентрации и градиент потенциала (то же, что электрическая напряжённость).

Это уравнение выведено из уравнения Теорелла: Ф = -cu (dm/dx), где m - электрохимический потенциал.

В предыдущих параграфах были рассмотрены характерные черты молекулярно-теплового движения, тепловое равновесие и процессы, происходящие, когда тепловое равновесие нарушено (излучение, теплопроводность и конвекция). Все это еще не дает, однако, полного представления о молекулярно-тепловом движении. Мы должны обратиться к явлению диффузии - к явлению, которое обязывает нас перейти от понятия теплового равновесия к понятию термодинамического равновесия.

Диффузией называется обусловленный хаотическим движением молекул процесс постепенного взаимного проникновения двух веществ, граничащих друг с другом. Один из первых опытов по исследованию диффузии был сделан немецким физиком Лошмидтом. Он взял две стеклянные трубки, закрытые с одного конца, имевшие в длину около полметра, в диаметре 2,5 см; одну трубку он наполнил углекислым газом, а другую - водородом и поместил их в вертикальном положении так, что открытые концы трубок соприкасались; При этом трубка с углекислым газом была внизу (последнее было необходимо для того, чтобы смешение обоих газов происходило лишь вследствие молекулярных движений, а не вследствие различной тяжести этих газов). Содержимое трубок было исследовано через полчаса; оказалось, что в верхнюю трубку проникло из нижней 37% углекислого газа.

Если бы молекулы газа вообще не сталкивались, то благодаря своим большим скоростям они уже за малую часть секунды пробегали бы значительные расстояния по прямой линии. Поэтому процесс смешения двух газов, соприкасающихся друг с другом, шел бы чрезвычайно быстро. Опыт Лошмидта показывает, что в действительности диффузия газа происходит не особенно быстро. Это видно уже из обыденных явлений: например, если в одном углу комнаты

открытфлакон с духами и если воздух в комнате находится в макроскопическом покое, то пройдет немало времени, прежде чем мы почувствуем появление запаха духов в противоположном углу комнаты.

Сравнительная медленность процесса диффузии является результатом молекулярных столкновений, вследствие которых молекула может быть отброшена назад в ту сторону, откуда она пришла. Мы знаем, что в результате столкновений молекула описывает чрезвычайно запутанную зигзагообразную траекторию; за 1 сек. она пройдет по этой траектории несколько сот метров и все-таки может находиться очень недалеко от исходного положения. Поэтому процесс диффузии газов протекает тем медленее, чем больше число столкновений, испытываемых молекулой в секунду, или, другими словами, чем меньше средний свободный пробег молекулы.

Два соприкасающихся газа всегда диффундируют друг в друга (за исключением того случая, если они моментально соединяются химически). Этого нельзя сказать без некоторых оговорок про жидкости. Две жидкости неограниченно диффундируют друг в друга лишь в том случае, если они способны смешиваться друг с другом. Поэтому можно, например, наблюдать взаимную диффузию воды и спирта, воды и эфира, керосина и растительного масла. Но имеются жидкости, которые не вполне смешиваются друг с другом. При слиянии таких жидкостей вначале наблюдается диффузия, но когда некоторое количество первой жидкости растворится во второй и некоторое количество второй жидкости растворится в первой, то диффузия приостанавливается и сколь бы долго эти растворы ни находились в соприкосновении, их химический состав больше не изменяется (наступает термодинамическое равновесие, § 98). Некоторые жидкости так мало растворимы друг в друге, что диффузия одной жидкости в другую практически не наблюдается (например, вода и ртуть).

Диффузия жидкостей наблюдается особенно легко в том случае, если одна из жидкостей бесцветна, а другая окрашена. Можно применить, например, воду и раствор медного купороса в воде. Стеклянный цилиндр наполняют до половины водой, а затем при помощи воронки с длинной трубкой наливают на дно цилиндра более тяжелый раствор медного купороса. Граница между обеими жидкостями, вначале резкая, станет постепенно размываться, но для полного смешения обеих жидкостей потребуется несколько месяцев. Это показывает, что число столкновений, испытываемых молекулой в жидкой среде, во много раз больше, чем для случая среды газообразной. Причина этого, понятно, заключается в том, что в единице объема жидкостей содержится гораздо большее число молекул, чем в единице объема газа.

Закон диффузии в жидкой среде (пригодный также и для среды газообразной) был найден немецким физиком Фиком. Этот закон

выражается формулой

где есть количество диффундирующего вещества (например, медного купороса), проходящего за время через площадку расположенную перпендикулярно к направлению, в котором движется вещество; с, и концентрации диффундирующего вещества в двух слоях, отстоящих друг от друга на расстоянии наконец, коэффициент диффузии. Этот коэффициент зависит от природы среды, от природы диффундирующего вещества и от условий, при которых находятся среда и диффундирующее вещество (для жидкостей - от температуры, для газов - от температуры и от плотности).

При этом предполагается, что концентрация в жидком или газообразном столбе изменяется равномерно подлине столба, т. е. и что столб находится в установившемся состоянии, т. е. в каждом сечении его концентрация с течением времени не меняется.

В более общем виде закон Фика может быть выражен следующей формулой:

т.е. количество вещества диффундирующее за промежуток времени через площадку нормальную к той линии I, вдоль которой происходит диффузия, пропорционально времени площади и градиенту концентрации

Из приведенных формул легко видеть, что коэффициент диффузии численно равен количеству диффундирующего вещества, проникающего за единицу времени через единицу поверхности при условии, что разность концентраций на двух поверхностях, отстоящих друг от друга на единицу длины, равна единице.

Нетрудно сообразить, что размерность коэффициента диффузии . В абсолютной системе единиц коэффициент диффузии измеряется в Для разных газов при нормальных условиях имеет значения примерно от 0,1 до для жидкостей (т. е. в раз меньше, чем для газов).

Сравнивая формулу, выражающую закон Фика, с формулами, выражающими закон Фурье для теплопроводности и закон Ома для электрического тока, легко заметить, что все три закона формально аналогичны. В случае диффузии разность концентраций играет ту же роль, какую играют разность температур в явлении теплопроводности и разность потенциалов в явлении электрического тока.

Строгая экспериментальная проверка закона Фика была произведена Н. А. Умовым в 1888-1891 гг. Умов показал, что закон Фика точен только для случаев полной изотермичности среды и малых концентраций растворов.

В любом однородном веществе, газообразном или жидком, молекулы одной части вещества непрестанно диффундируют в другую часть вещества; это - так называемая самодиффузия. В последнее время самодиффузия была исследована экспериментально; для этой цели вносят в некоторый участок вещества небольшое количество радиоактивной разновидности молекул того же вещества и следят за распространением радиоактивных свойств по всей массе вещества.

Коэффициент самодиффузии газа, как было теоретически установлено Максвеллом, равен произведению одной трети средней скорости молекул на их среднюю длину свободного пробега:

Эту формулу можно было бы вывести посредством таких же простых рассуждений, которые приведены далее (в §§ 93 и 94) для вывода аналогичных формул, определяющих коэффициенты теплопроводности и вязкости газов. Но обычно в приложениях физики приходится иметь дело не с самодиффузией, а с взаимной диффузией веществ. В этом случае теоретический расчет более сложен. Однако в итоге оказывается, что коэффициент взаимодиффузии газов может быть вычислен «по Правилу смешения» из коэффициентов самодиффузии обоих газов, а именно: если коэффициент самодиффузии первого газа, коэффициент самодиффузии второго газа, а и -числа молекул каждого из этих, газов в единице объема смеси газов в том месте, где нас интересует ход взаимной диффузии, то

Это уравнение справедливо только в том случае, когда газы диффундируют друг в друга, находясь под одинаковым давлением в этом случае диффузионный поток стационарен и суммарная концентрация обоих газов в разных участках смеси одинакова и неизменна во времени, т. е. При указанном условии коэффициент диффузии первого газа во второй равен коэффициенту диффузии второго газа в первый:

Коэффициенты самодиффузии и взаимодиффузии зависят от плотности газа в такой же мере, как и свободный пробег; свободный пробег обратно пропорционален плотности газа (§ 89), поэтому и коэффициент диффузии обратно пропорционален плотности газа. Если

Коэффициент диффузии при давлении и абсолютной температуре то при давлении и температуре коэффициент диффузии газа будет:

Что касается зависимости коэффициента диффузии от процентного состава смеси газов (от отношения то опыт в согласии с уточненной теорией показывает, что коэффициент диффузии мало изменяется при изменении процентного состава смеси.

Коэффициенты самодиффузии и взаимодиффузии некоторых газов при нормальной температуре и плотности (при приведены в помещенных ниже таблицах.

Коэффициенты самодиффузии газов

(см. скан)

Коэффициенты взаимодиффузии газов

(см. скан)

Для жидкостей коэффициент диффузии имеет величину, как уже упоминалось выше, в сотни тысяч раз меньшую, чем для газов. Например, коэффициент диффузии поваренной соли в воде при 10° С равен:

Коэффициент диффузии сахара в воде почти в три раза меньше, чем указанный коэффициент диффузии поваренной соли. Наибольшую величину имеет коэффициент диффузии водорода в воде - около

Сопоставляя диффузию в жидкостях и в газах, следует отметить, что в жидких растворах часто реализуются весьма большие градиенты концентраций. Поэтому интенсивность диффузионного потока в жидкостях часто оказывается вовсе не такой малой, как это можно было бы ожидать, судя по малой величине коэффициента диффузии.

Явление диффузии играет большую роль в природе и технике. Корни растений захватывают необходимые для растения вещества из почвенных вод благодаря диффузионному потоку внутрь корней. Интенсивность этого диффузионного потока поддерживается тем, что внутри корней нужные для растения вещества быстро «усваиваются», т. е. химически преобразуются, так что концентрация этих веществ у поверхности корней оказывается все время пониженной, что и вызывает диффузию нужных веществ из окружающей почвы к корням. Что же касается бесполезных и вредных для растения веществ, то они не перерабатываются растением в другие вещества, и поэтому их концентрация внутри и у поверхности корней быстро сравнивается с концентрацией этих веществ в окружающей почве; это приостанавливает диффузионный приток. Таким образом, диффузия помогает растению осуществить «выбор» и извлечение из почвы тех веществ, которые необходимы растению для построения его клеток.

Аналогично диффузия используется тканями пищеварительной системы животных и человека для «выбора» и извлечения из пищи веществ, необходимых организму. Пища превращается в желудке и в кишечнике в растворимое состояние, и нужные организму вещества диффундируют через стенки пищеварительного тракта.

В технике диффузией пользуются постоянно для извлечения (экстракции) различных веществ, например сахара из сырой свеклы, дубильных веществ, красителей, разнообразных веществ в химических производствах (чилийской селитры, едкого натра и др.).

А. Эйнштейн (в 1905 г.) развил теорию диффузии жидкостей, использовав полученные им уравнения для броунова движения и применив закон Стокса (§ 53) к движению молекул растворенного вещества. Это привело Эйнштейна к формуле

где коэффициент диффузии растворенного вещества, - коэффициент вязкости раствора, больцманова постоянная, абсолютная температура и некоторый эффективный радиус молекулы диффундирующего вещества.

Формула Эйнштейна удовлетворительно определяет величину для растворов некоторых веществ, молекулы которых велики в сравнении с молекулами растворителя.

Другая формула для коэффициента диффузии жидкостей будет пояснена в § 117.

Явление диффузии наблюдается и в твердых телах. Например, при накаливании железа с углем уголь диффундирует в железо. Явлением диффузии углерода в железо пользуются при цементации

(при поверхностном науглероживании железных изделий), чтобы после закалки получить изделия с твердым наружным слоем, но вязкой сердцевиной (цементацию производят, нагревая железное или стальное изделие в саже, в древесном угле или в коксе или же помещая изделие при температуре 600-1000° в газообразную окись углерода).

Коэффициент диффузии в твердых металлах по порядку величины в 1 000 000 раз меньше, чем в жидкостях, поэтому диффузию в твердых телах называют «вековым» процессом (тем не менее диффузия в твердых металлах, состоящих из отдельных разнородных по химическому составу зерен, существенно влияет на свойства металла).


1. Функции мембран.

2. Структура и модели мембран.

3. Физические свойства мембран.

4. Перенос молекул (атомов) через мембраны, уравнение Фика.

5. Перенос заряженных частиц, электродиффузное уравнение Нернста-Планка.

6. Виды транспорта через мембраны: пассивный и активный.

7. Основные понятия и формулы.

8. Задачи.

Изучение структуры и функционирования биологических мембран играет важную роль в медицине, так как многие патологические процессы в клетке связаны с нарушением функций мембран. Общая площадь мембран в органах и тканях достигает огромных размеров. Благодаря этому клетки располагают достаточной площадью для протекания на мембранах многочисленных процессов, обеспечивающих жизнеспособность человека.

11.1. Функции мембран

Мембрана выполняет в жизнедеятельности живых клеток (рис. 11.1) самые различные функции.

Механическое разделение. Клетка - элементарная живая система. Каждая клетка окружена наружной клеточной плазматической мембраной, которая заключает внутри себя содержимое клетки. С другой стороны, тонкая регуляция внутриклеточных процессов осуществляется на основе пространственного разделения органоидов клетки (внутриклеточные мембраны). Мембрана является поверхностью раздела (диэлектрической границей).

Транспортная функция. Через мембрану происходит перенос (транспорт) различных веществ, т.е. она принимает активное участие в жизнедеятельности клетки.

Рис. 11.1. Схема строения клетки

Селективный барьер. Мембрана защищает клетку от проникновения нежелательных частиц и веществ.

Рецепция. Через мембрану происходит распознавание других клеток, веществ.

Распространение нервного импульса. В мембране локализованы основные биоэлектрические процессы. Реализуется генерация электрического потенциала. Посредством мембраны происходит распространение нервного импульса.

Матрица. Мембрана является матрицей (основой) для удержания белков, ферментов.

Таким образом, мембрана - важнейший орган клетки, регулирующий взаимодействие как внутри клетки, так и клетки с окружающей средой. Если функции мембраны нарушаются, то происходит изменение нормального функционирования клеток и, как следствие, заболевание организма.

11.2. Структура и модели мембран

В состав мембраны входят молекулы липидов (веществ на основе жирных кислот). Молекула липида состоит из двух частей: диполь-

ной головки и углеводородного хвоста. Этот хвост представляет собой две цепочки атомов углерода, в которых к каждому из атомов углерода присоединены один или два атома водорода. По своему составу и строению эти цепочки сродни молекулам парафина и тоже не смачиваются водой, гидрофобны. Дипольные головки, напротив, гидрофильны, так как их диполи могут притягиваться к диполям воды. На рисунке 11.2 показан разрез участка мономолекулярного слоя липидного матрикса.

Рис. 11.2. Разрез участка мономолекулярного слоя липидного матрикса; кру-

Слой не распадается по двум причинам: 1) дипольные головки притягиваются сильнее к диполям воды (взаимодействие разноименных зарядов), чем отталкиваются друг от друга (взаимодействие одноименных зарядов головок); 2) из-за наличия водородных связей между углеводородными хвостами.

Структурную основу любой мембраны составляет двойной фосфолипидный слой (рис. 11.3). Молекулы фосфолипидов ориентированы так, что их гидрофильные головки выходят наружу и образуют внешнюю и внутреннюю поверхности мембраны, а гидрофобные «хвосты» обращены к середине бимолекулярного слоя, т.е. внутрь мембраны. Гидрофильные головки взаимодействуют с внешними белковыми слоями и молекулами воды вне и внутри клетки и образуют с ними водородные связи.

Рис. 11.3. Схематичное строение мембраны:

L - толщина мембраны; пб - поверхностные белки; иб - интегральные белки; к - белки, формирующие ионный канал (пору)

Двойной фосфолипидный слой выполняет функции матрицы для различных белков (на одну молекулу белка приходится 75-90 молекул липидов). Белки как бы плавают в липидном слое.

Поверхностные белки (пб). Эти белки располагаются на внешней и внутренней поверхностях мембраны, удерживаясь преимущественно электростатическими силами. Такие белки занимают 75-80 % поверхности. Белковые молекулы покрывают мембрану с обеих сторон и придают ей эластичность и устойчивость к механическим повреждениям.

Интегральные белки (иб). Эти белки могут пронизывать двойной слой липидов насквозь. Такие белки являются главным компонентом, ответственным за избирательную проницаемость клеточной мембраны. Некоторые из них (к) образуют систему селективных каналов (пор) или функционируют как ионные насосы и регулируют, например, электрохимическую систему возбуждения клетки. Диаметр каналов составляет 0,35-0,8 нм. Количество их относительно невелико (например, в эритроцитах вся площадь каналов составляет 0,06 % от площади поверхности). Полярные группы молекул белков в каналах направлены в сторону отверстия каналов, а неполярные вступают во взаимодействие с молекулами липидов. Стенки каналов обладают электрическими зарядами.

Модели мембран

Уточнение строения биомембран и изучение их свойств осуществляются с использованием физико-химических моделей мембраны.

Первая модель - монослой. Молекулы фосфолипидов, будучи помещенными на границу раздела вода-воздух (вода-масло), выстраиваются в один слой так, что гидрофильные (полярные) головки погружаются в воду, а гидрофобные «хвосты» в контакт с водой не вступают, остаются в воздухе (масле). Молекулы фосфолипидов как бы «отслаиваются» от воды. Пока молекул немного, они располагаются на поверхности, «прильнув» к воде головками и выставив наружу хвосты (рис. 11.4, а).

Вторая модель - плоский бислой. Если в водном растворе липидных молекул становится больше, то эти молекулы собираются вместе так, что гидрофобные углеводородные цепи закрыты от воды, а полярные головки, наоборот, выставлены в воду (рис. 11.4, б). Такая модель позволяет изучать ионную проницаемость, генерацию электрического потенциала на мембране.

Третья модель - однослойная липосома. Липидные бислои, если они имеют большую протяженность, стремятся замкнуться сами на себя, чтобы спрятать гидрофобные «хвосты» от воды. При этом образуются фосфолипидные везикулы - однослойные липосомы (рис. 11.4, в). Они представляют собой мельчайшие пузырьки (везикулы), состоящие из билипидной мембраны. Липосомы фактически являются биологической мембраной, полностью лишенной белковых молекул. На липосомах часто проводят эксперименты по изучению влияния различных факторов на свойства мембраны или, наоборот, влияния мембранного окружения на свойства встраиваемых белков.

Рис. 11.4. Модели молекул фосфолипидов в воде:

а - монослой, б - плоский бислой, в - однослойная липосома

В медицине липосомы используются для доставки лекарственных веществ в определенные органы и ткани. Таким способом готовятся липосомальные кремы и мази в дерматологии и косметологии. Сами липосомы нетоксичны, полностью усваиваются в организме и являются надежной липидной микрокапсулой для направленной доставки лекарства.

11.3. Физические свойства мембран

Плотность липидного бислоя составляет 800 кг/м 3 , что меньше, чем у воды.

Размеры. По данным электронной микроскопии, толщина мембраны (L) варьирует от 4 до 13 нм, причем различным клеточным мембранам присуща разная толщина.

Прочность. Предел прочности на разрыв для мембраны низок. В условиях организма средние деформации составляют около 0,01 %. Чтобы довести мембрану до разрыва, достаточно внутреннего давления 100 Па. Живая клетка может осуществлять осморегуляцию только за счет изменения своей формы, но не за счет растяжения мембраны.

Деформируемость. Клеточная мембрана легко подвергается деформации сдвига. Например, в потоке эритроцитов с градиентом скорости происходит вращение мембраны вокруг содержимого клетки. Это явление получило название «феномена гусеницы танка». Мембрана обладает высокой гибкостью. При оценке механических свойств мембраны эффективный модуль упругости принимается равным 0,45 Па.

Вязкость. Липидный слой мембраны имеет вязкость η = 30-100 мПас (что соответствует вязкости растительного масла).

Поверхностное натяжение равно 0,03-3 мНм -1 , что на 2-3 порядка ниже, чем у воды (73 мНм -1).

Коэффициент проницаемости мембранного вещества для воды равен 25-33х10 -4 см/с.

Мембрана - конденсатор. Двойной фосфолипидный слой уподобляет мембрану плоскому конденсатору, обкладки которого образованы электролитами внеклеточного и внутриклеточного (цитоплазмы) растворами с погруженными в них поверхностными белками и голов-

ками липидных молекул. Обкладки разделены диэлектрическим слоем, образованным неполярной частью липидных молекул - двойным слоем их хвостов. Электроемкость 1 см 2 мембраны составляет 0,5-1,3 мкФ. Напряженность электрического поля в мембране составляет приблизительно 20х10 6 В/м (расчет проведен для мембран митохондрий в задаче 2).

Диэлектрическая проницаемость мембраны составляет: для фосфолипидной области ε = 2,0-2,2; для гидрофильной области ε = 10-20.

Электросопротивление 1 см 2 поверхности мембраны составляет 10 2 -10 5 Ом (что в десятки миллионов раз больше сопротивления внеклеточной жидкости или цитоплазмы). Электроизоляционные свойства мембраны значительно превосходят свойства технических изоляторов.

Жидкокристаллическое состояние. Молекулы в мембране размещены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты приблизительно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных головок. Физическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическим состоянием.

Жидкокристаллические структуры очень чувствительны к изменению температуры. В мембранных фосфолипидах при понижении температуры происходит переход из жидкокристаллического в гельсостояние. При этом изменяется взаимное положение гидрофобных хвостов (рис. 11.5) и увеличивается толщина двойного слоя.

При переходе в гель-состояние в бислое образуются сквозные каналы, радиусом 1-3 нм, по которым через мембрану могут переноситься ионы и низкомолекулярные вещества. Вследствие этого увеличивается ионная проводимость мембран. Увеличение ионной проводимости мембран может спасти клетку от криоповреждений за счет увеличения выхода воды и солей, что препятствует кристаллизации воды внутри клетки.

Рис. 11.5. Схематическое представление мембранных фосфолипидов при изменении температуры

11.4. Перенос молекул (атомов) через мембраны, уравнение Фика

Явления переноса - самопроизвольные необратимые процессы, в которых благодаря молекулярному движению из одной части системы в другую переносится какая-либо физическая величина.

К явлениям переноса, в частности, относятся диффузия (перенос массы) и электропроводность (перенос электрического заряда).

Как синоним переноса частиц в биофизике используется термин транспорт частиц.

Уравнение диффузии в однородной среде

Рассмотрим ситуацию, когда в однородную жидкую (газообразную) среду введено некоторое количество инородного вещества. Вначале распределение этого вещества по объему жидкости будет неравномерным. Однако с течением времени вследствие явлений переноса концентрации этого вещества в различных областях жидкости будут выравниваться.

Диффузия в однородной среде - явление самопроизвольного переноса массы вещества из области с большей концентрацией в область с меньшей концентрацией. Такой перенос называется пассивным транспортом.

Количественно диффузия описывается специальными параметрами.

1. Поток вещества через некоторую поверхность.

В пространстве, заполненном частицами диффундирующего вещества, выделим некоторое направление ОХ, вдоль которого изменяется концентрация частиц, и небольшой элемент поверхности, перпендикулярный этому направлению.

Потоком вещества (Ф) через элемент поверхности, который перпендикулярен направлению диффузии, называется количество этого вещества, переносимого через данный элемент за единицу времени.

Количество переносимого вещества можно измерять в килограммах или молях (ν). В зависимости от этого поток определяется формулами:

Очевидно, что поток пропорционален площади S выделенного элемента. Кроме того, можно показать, что поток пропорционален градиенту концентрации (dc/dx) диффундирующего вещества в направлении ОХ. Поэтому имеет место следующая формула для расчета потока:

Коэффициент пропорциональности D называется коэффициентом диффузии. Знак «-» означает, что поток направлен в сторону убывания концентрации вещества (т.е. перенос происходит из области с большей концентрацией в область с меньшей концентрацией).

В формуле (11.2) можно использовать как массовую плотность, так и молярную плотность. Этим и определяется единица измерения потока (кг/с или моль/с). Независимо от единиц плотности размерность коэффициента диффузии D - [м 2 /с].

Коэффициент D зависит от свойств жидкости, свойств диффундирующих частиц, температуры. Его численное значение выражается формулой: D = σ 2 /(3τ), где σ - среднее перемещение молекул (среднее расстояние между молекулами), τ - среднее время «оседлой жизни» молекулы.

2. Плотность потока вещества.

Плотностью потока вещества (J) называется отношение потока вещества (Ф) через элемент поверхности к площади этого элемента (S):

Знак «-» показывает, что суммарная плотность потока вещества при диффузии направлена в сторону, противоположную градиенту концентрации (dc/dx).

Уравнение Фика для мембраны

Уравнение Фика описывает диффузию в однородной среде. Модифицируем его для случая диффузии через мембрану. Обратим внимание на следующий известный факт: на границе раздела двух сред (например, воды и масла) обязательно имеет место скачкообразное изменение концентрации частиц диффундирующего вещества. Например, если в сосуд, в котором поверх воды налито масло, бросить соль, то ее концентрации в этих средах будут различны.

Коэффициент распределения вещества (К) - величина, равная отношению концентраций частиц в граничащих средах:

Коэффициент распределения вещества - величина безразмерная.

Рассмотрим диффузию незаряженных частиц (молекул или атомов) через поверхности мембраны. На рисунке 11.6 обозначены:

с i - концентрация частиц внутри клетки (i - от in);

с мi - концентрация частиц в мембране у ее внутренней поверхности;

с мо - концентрация частиц в мембране у ее внешней поверхности;

с о - концентрация частиц вне клетки (о - от out).

Коэффициент распределения вещества между мембраной и окружающей средой равен коэффициенту распределения вещества между мембраной и клеткой:

Рис. 11.6. Распределение концентрации частиц, проходящих через мембрану

Отсюда получаются выражения для концентрации частиц внутри мембраны:

Величины с о и с можно измерить.

Учитывая малую толщину мембраны (L), можно считать, что концентрация молекул диффундирующего вещества изменяется в ней линейно. Поэтому градиент концентрации диффундирующего вещества постоянен:

Коэффициент проницаемости Р характеризует способность мембраны пропускать те или иные вещества.

11.5. Перенос заряженных частиц, электродиффузное уравнение Нернста-Планка

Уравнение Фика описывает как пассивный транспорт незаряженных частиц, так и пассивный транспорт заряженных частиц в отсутствии электрического поля. Рассмотрим теперь транспорт ионов с учетом электрического поля внутри мембраны.

На отдельный ион в электрическом поле действует сила f 0 = qE, где Е - напряженность электрического поля, а q = Ze - заряд иона (Z - валентность иона). Напряженность поля выражается через градиент

Уравнению 11.11 можно придать более удобный вид, умножив обе его части на постоянную Авогадро (N A):

Это уравнение Нернста-Планка (электродиффузное уравнение). Оно устанавливает зависимость плотности диффузного потока ионов от концентрации ионов и от градиента потенциала (dφ/dx).

Для нейтральных частиц (Z = 0) уравнение Нернста-Планка переходит в уравнение Фика.

11.6. Виды транспорта через мембрану

1. Пассивный транспорт - перенос молекул и ионов через мембрану, который осуществляется в направлении меньшей их концентрации. Пассивный транспорт не связан с затратой химической энергии. Он стремится выровнять концентрации частиц по разные стороны от мембраны, т.е. свести к нулю величины их градиентов. Если бы в клетках существовал только пассивный транспорт, то значения физической величины внутри и вне клетки сравнялись бы, но этого не происходит.

Различают несколько типов пассивного транспорта (рис. 11.7).

Простая диффузия через липидный слой. Она подчиняется уравнению Нернста-Планка. В живой клетке такая диффузия обеспечивает прохождение кислорода и углекислого газа, ряда лекарственных веществ. Однако простая диффузия протекает достаточно медленно и не может снабдить клетку в нужном количестве питательными веществами.

Транспорт через каналы (поры). Канал - участок мембраны, включающий белковые молекулы и липиды, который образует в мембране проход. Этот проход допускает проникновение через мембрану молекул воды, крупных ионов. Наличие каналов увеличивает проницаемость Р. Проницаемость Р зависит от числа каналов и от их радиуса. Каналы могут проявлять селективность

Рис. 11.7. Виды пассивного транспорта: простая диффузия (а), транспорт через каналы (б), облегченная диффузия (в), эстафетная передача (г)

по отношению к разным ионам, это выражается в различной проницаемости для разных ионов.

Облегченная диффузия - перенос ионов специальными молекулами-переносчиками за счет диффузии переносчика вместе с веществом. Наиболее подробно это явление изучено для случая переноса ионов некоторыми антибиотиками, например валиномицином. Установлено, что валиномицин резко повышает проницаемость мембраны для ионов К+ благодаря специфике своей структуры. В нем формируется полость, в которую точно и прочно вписывается ион К + (ион Na + слишком велик для отверстия в молекуле валиномицина). Молекула валиномицина, «захватив» ион К + , образует растворимый в липидах комплекс и проходит через мембрану, затем ион К + остается, а переносчик уходит обратно.

Эстафетная передача. В этом случае молекулы-переносчики образуют временную цепочку поперек мембраны и передают друг другу диффундирующую молекулу.

2. Активный транспорт - перенос молекул и ионов, который происходит с затратой химической энергии в направлении от меньших значений величин к большим. При этом нейтральные молекулы переносятся в область большей концентрации, а ионы переносятся против сил, действующих на них со стороны электрического поля. Таким образом, активным транспортом осуществляется перенос веществ в направлении, противоположном транспорту, который должен был бы происходить под действием градиентов (прежде всего концентрационного и электрического). Энергия получается за счет гидролиза молекул особого химического соединения - аденозинтрифосфорной кислоты (АТФ). Экспериментально установлено, что энергии распада одной молекулы АТФ достаточно для выведения наружу трех ионов натрия и введения внутрь клетки двух ионов калия. Одна из схем активного транспорта представлена системой на рис. 11.8.

Захватив одним активным центром ион калия из наружной среды, а другим ион натрия - из внутренней, система, потребляя АТФ, поворачивается внутри мембраны на 180°. Ион натрия оказывается вне клетки и там отделяется, а ион калия попадает внутрь и тоже освобождается, после чего молекула белка принимает исходное положение, и все начинается сначала.

За счет активного транспорта клетка поддерживает внутри себя высокую концентрацию калия и низкую концентрацию натрия. При

Рис. 11.8. Схема активного транспорта

этом ионы могут перемещаться против градиента их концентрации (аналогия с газом: перекачивание газа из сосуда с низким давлением в сосуд с высоким давлением).

Активный транспорт обеспечивает механизм селективной проницаемости клеточных мембран. Активный транспорт - важнейшая особенность жизненных процессов.

11.7. Основные понятия и формулы

Окончание таблицы

11.8. Задачи

1. Молярная концентрация кислорода в атмосфере с а = 9 моль/м 3 . Кислород диффундирует с поверхности тела насекомых внутрь через трубки, называемые трахеями. Длина средней трахеи равна приблизительно h = 2 мм, а площадь ее поперечного сечения S = 2х10 -9 м 2 . Считая, что концентрация кислорода внутри насекомого (с) в два раза меньше, чем концентрация кислорода в атмосфере, вычислить поток диффузии через трахею. Коэффициент диффузии кислорода D = 10 -5 м 2 /с.

Решение

Запишем уравнение (11.2) для потока диффузии: Ф = -DSdc/dx. Градиент концентрации dc/dx = (с - с a)/h = (0,5с - с)/h = -0,5с/h = = 0,5x9/0,002 = 225 моль/м 4 . Подставив численные значения, получим:

2. Двойной фосфолипидный слой уподобляет биологическую мембрану конденсатору. Вещество мембраны представляет собой диэлектрик с диэлектрической проницаемостью ε = 4. Разность потенциалов между поверхностями мембраны U = 0,2 В при толщине d = 10 нм. Рассчитать электроемкость 1 мм 2 мембраны и напряженность электрического поля в ней.

3. Площадь поверхности клетки приблизительно равна S =5х10 -1 ° м 2 . Удельная электроемкость мембраны (емкость единицы поверхности) составляет С уд = 10 -2 Ф/м 2 . При этом межклеточный потенциал равен U = 70 мВ. Определить: а) величину заряда на поверхности мембраны; б) количество одновалентных ионов, образующих этот заряд.

4. Проницаемость клеточных мембран для молекул воды приблизительно в 10 раз выше, чем для ионов. Что произойдет, если в изотоническом водном растворе, в котором находятся эритроциты, увеличить концентрацию осмотически активного вещества (например, ионов

Решение

Повышение концентрации ионов Na + в растворе приведет к диффузии воды из клеток в окружающий раствор для восстановления нарушенного соотношения концентрации Na + внутри и вне клетки. В результате клетки «сморщиваются».

5. Что будет, если клетку поместить в чистую воду? Решение

В этом случае окажется, что концентрация молекул воды снаружи выше, чем внутри клетки. Молекулы воды будут диффундировать в клетку. Внутреннее давление будет расти, пока клетку не разорвет.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо