Трубопроводы и виды их прокладки. Подземная прокладка тепловых сетей и компенсаторов Монтаж тепловых сетей, прокладка труб

Содержание раздела

Тепловые сети по способу прокладки де­лятся на подземные и надземные (воз­душные). Подземная прокладка трубопрово­дов тепловых сетей выполняется: в каналах непроходного и полупроходного поперечно­го сечения, в туннелях (проходных каналах) высотой 2 м и более, в общих коллекторах для совместной прокладки трубопроводов и кабелей различного назначения, во внутриквартальных коллекторах и технических под­польях и коридорах, бесканально.

Надземная прокладка трубопроводов выполняется на отдельно стоящих мачтах или низких опорах, на эстакадах со сплошным пролетным строением, на мачтах с подвеской труб на тягах (вантовая кон­струкция) и на кронштейнах.

К особой группе конструкций относятся специальные сооружения: мостовые пере­ходы, подводные переходы, тоннельные пе­реходы и переходы в футлярах. Эти сооруже­ния, как правило, проектируются и строятся по отдельным проектам с привлечением спе­циализированных организаций.

Выбор способа и конструкций проклад­ки трубопроводов обуславливается многими факторами, основными из которых являют­ся: диаметр трубопроводов, требования экс­плуатационной надежности теплопроводов, экономичность конструкций и способ выпол­нения строительства.

При размещении трассы тепловых сетей в районах существующей или перспективной городской застройки по архитектурным со­ображениям обычно принимается подземная прокладка трубопроводов. В строительстве подземных тепловых сетей наибольшее при­менение получила прокладка трубопроводов в непроходных и полупроходных каналах.

Канальная конструкция имеет ряд по­ложительных свойств, отвечающих специфи­ческим условиям работы горячих трубо­проводов. Каналы являются строительной конструкцией, ограждающей трубопроводы и тепловую изоляцию от непосредственного контакта, с грунтом, оказывающим на них как механические, так и электрохимические воздействия. Конструкция канала полностью разгружает трубопроводы от действия массы грунта и временных транспортных нагрузок, поэтому при их расчете на прочность учиты­ваются только напряжения, возникающие от внутреннего давления теплоносителя, соб­ственного веса и температурных удлинений трубопровода, которые можно определить с достаточной степенью точности.

Прокладка в каналах обеспечивает сво­бодное температурное перемещение трубо­проводов как в продольном (осевом), так и в поперечном направлении, что позволяет использовать их самокомпенсирующую спо­собность на угловых участках трассы тепло­вой сети.

Использование при канальной проклад­ке естественной гибкости трубопроводов для самокомпенсации дает возможность сокра­тить количество или полностью отказаться от установки осевых (сальниковых) компен­саторов, требующих сооружения и обслужи­вания камер, а также гнутых компенсаторов, применение которых нежелательно в город­ских условиях и приводит к увеличению за­трат труб на 8-15%.

Конструкция канальной прокладки яв­ляется универсальной, так как может быть применена при различных гидрогеологиче­ских грунтовых условиях.

При достаточной герметичности строи­тельной конструкции канала и исправно ра­ботающих дренажных устройствах создают­ся условия, препятствующие проникновению в канал поверхностных и грунтовых вод, что обеспечивает неувлажняемость тепловой изоляции и предохраняет от коррозии на­ружную поверхность стальных труб. Трасса тепловых сетей, прокладываемых в каналах (в отличие от бесканальной), может быть выбрана без значительных трудностей по проезжей и непроезжей территории города совместно с другими коммуникациями, в об­ход или с небольшим приближением к суще­ствующим сооружениям, а также с учетом различных планировочных требований (пер­спективные изменения рельефа местности, назначения территории и пр.).

Одним из положительных свойств ка­нальной прокладки является возможность применения в качестве подвесной теплоизо­ляции трубопроводов легких материалов (из­делия из минеральной ваты, стекловолокна и др.) с малым коэффициентом теплопро­водности, что позволяет снизить тепловые потери в сетях.

По эксплуатационным качествам про­кладка тепловых сетей в непроходных и по­лупроходных каналах имеет существенные различия. Непроходные каналы, недоступ­ные для осмотра без вскрытия дорожной одежды, разработки грунта и разборки строительной конструкции, не позволяют об­наружить возникшие повреждения теплоизо­ляции и трубопроводов, а также профилактически их устранить, что приводит к необ­ходимости производства ремонтных работ в момент аварийных повреждений.

Несмотря на недостатки, прокладка в непроходных каналах является распростра­ненным типом подземной прокладки теп­ловых сетей.

В полупроходных каналах, доступных для прохода эксплуатационного персонала (при отключенных теплопроводах), осмотр и обнаружение повреждений теплоизоляции, труб и строительных конструкций, а также их текущий ремонт могут быть в большин­стве случаев выполнены без разрытия и раз­борки канала, что значительно увеличивает надежность и срок службы тепловых сетей. Однако внутренние габариты полупроход­ных каналов превышают габариты непро­ходных каналов, что, естественно, увеличи­вает их строительную стоимость и расход материалов. Поэтому полупроходные ка­налы применяются главным образом при прокладке трубопроводов больших диамет­ров или на отдельных участках тепловых се­тей при прохождении трассы по территории, не допускающей производства разрытий, а также при большой глубине заложения ка­налов, когда засыпка над перекрытием пре­вышает 2,5 м.

Как показывает опыт эксплуатации, тру­бопроводы больших диаметров, проложен­ные в непроходных каналах, недоступных для осмотра и текущего ремонта, наиболее подвержены аварийным повреждениям по причине наружной коррозии. Эти поврежде­ния приводят к длительному прекращению теплоснабжения целых жилых районов и промышленных предприятий, производству аварийно-восстановительных работ, дезорга­низации движения транспорта, нарушению благоустройства, что связано с большими материальными затратами и опасностью для эксплуатационного персонала и населения. Ущерб, наносимый в результате поврежде­ний трубопроводов больших диаметров, не идет ни в какое сравнение с повреждениями трубопроводов средних и малых диаметров.

Учитывая, что удорожание строитель­ства одноячейковых полупроходных каналов по сравнению с каналами непроходными при диаметре тепловых сетей 800 - 1200 мм не­значительно, следует рекомендовать их при­менение во всех случаях и на всем протяже­нии тепломагистралей указанных диаметров. Рекомендуя прокладку трубопроводов боль­ших диаметров в полупроходных каналах, нельзя не отметить их преимущества перед непроходными каналами по степени ремон­топригодности, а именно возможности заме­нять в них изношенные трубопроводы на значительном протяжении без разрытия и разборки строительной конструкции с при­менением закрытого способа производства монтажных работ.

Сущность закрытого способа замены из­ношенных трубопроводов состоит в извлече­нии их из канала путем горизонтального перемещения одновременно с монтажом новых изолированных трубопроводов с по­мощью домкратной установки.

Необходимость в сооружении туннелей (проходных каналов) возникает, как правило, на головных участках магистральных тепло­вых сетей, отходящих от крупных ТЭЦ, когда приходится про­кладывать большое количество трубопрово­дов горячей воды и пара. В таких тепло­фикационных туннелях прокладка кабелей сильных и слабых токов не рекомендуется из-за практической невозможности создания в нем требуемого постоянного температур­ного режима.

Теплофикационные туннели сооружают­ся главным образом на транзитных участках трубопроводов большого диаметра, прокла­дываемых от ТЭЦ, размещенных на пери­ферии города, когда надземная прокладка трубопроводов не может быть допущена по архитектурно-планировочным соображе­ниям.

Туннели должны размещаться в наибо­лее благоприятных гидрогеологических усло­виях, чтобы избежать устройства глубоко расположенного попутного дренажа и дре­нажных насосных станций.

Общие коллекторы, как правило, сле­дует предусматривать в следующих случаях: при необходимости одновременного разме­щения двухтрубных тепловых сетей диамет­ром от 500 до 900 мм, водопровода диа­метром до 500 мм, кабелей связи 10 шт. и более, электрических кабелей напряжением до 10 кВ в количестве 10 шт. и более; при реконструкции городских магистралей с раз­витым подземным хозяйством; при недо­статке свободных мест в поперечном про­филе улиц для размещения сетей в транше­ях; на пересечениях с магистральными ули­цами.

В исключительных случаях по согласо­ванию с заказчиком и эксплуатационными организациями допускается прокладка в кол­лекторе трубопроводов диаметром 1000 мм и водоводов до 900 мм, воздуховодов, холодопроводов, трубопроводов оборотного во­доснабжения и других инженерных сетей. Прокладка газопроводов всех видов в общих городских коллекторах запрещается [ 1 ].

Общие коллекторы следует проклады­вать вдоль городских улиц и дорог прямоли­нейно, параллельно оси проезжей части или красной линии. Целесообразно размещать коллекторы на технических полосах и под полосами зеленых насаждений. Продольный профиль коллектора должен обеспечивать самотечный отвод аварийных и грунтовых вод. Уклон лотка коллектора следует при­нимать не менее 0,005. Глубину коллектора необходимо назначать с учетом глубины за­ложения пересекаемых коммуникаций и дру­гих сооружений, несущей способности кон­струкций и температурного режима внутри коллектора.

Принимая решение о прокладке трубо­проводов в туннеле или коллекторе, следует учитывать возможность обеспечения отвода дренажных и аварийных вод из коллектора в существующие ливневые стоки и есте­ственные водоемы. Размещение коллектора в плане и профиле по отношению к зданиям, сооружениям и параллельно прокладывае­мым коммуникациям должно обеспечивать возможность производства строительных ра­бот без нарушения прочности, устойчивости и рабочего состояния этих сооружений и коммуникаций.

Туннели и коллекторы, размещаемые вдоль городских улиц и дорог, как правило, сооружаются открытым способом с приме­нением типовых сборных железобетонных конструкций, надежность которых должна быть проверена с учетом конкретных мест­ных условий трассы (характеристики гидро­геологических условий, транспортных нагру­зок и пр.).

В зависимости от количества и вида ин­женерных сетей, прокладываемых совместно с трубопроводами, общий коллектор может быть одно- и двухсекционным. Выбор кон­струкции и внутренних габаритов коллек­тора должен производиться также в зависи­мости от наличия прокладываемых комму­никаций.

Проектирование общих коллекторов должно проводиться в соответствии со схе­мой их сооружения на перспективу, состав­ленной с учетом основных положений гене­рального плана развития города на расчет­ный срок. При строительстве новых районов с озелененными улицами и свободной плани­ровкой жилой застройки тепловые сети вме­сте с другими подземными сетями разме­щают вне проезжей части - под технически­ми полосами, полосами зеленых насаждений, а в исключительных случаях - под тротуа­рами. Рекомендуется размещать инженерные подземные сети на незастроенных террито­риях вблизи полосы отвода улиц и дорог.

Прокладка тепловых сетей на террито­рии вновь строящихся районов может быть выполнена в коллекторах, сооружаемых в жилых кварталах и микрорайонах для раз­мещения инженерных коммуникаций, обслу­живающих данную застройку [ 2 ], а также в технических подпольях и технических кори­дорах зданий.

Прокладка распределительных тепловых сетей диаметром до D у 300 мм в техниче­ских коридорах или подвалах зданий высо­той в свету не менее 2 м допускается при условии создания возможности их нормаль­ной эксплуатации (удобство обслуживания и ремонта оборудования). Трубопроводы должны укладываться на бетонные опоры или кронштейны, а компенсация темпера­турных удлинений осуществляться за счет П-образных гнутых компенсаторов и угло­вых участков труб. Технические подполья должны иметь два входа, не сообщающиеся с входами в жилые помещения. Электропро­водка должна выполняться в стальных тру­бах, а конструкция светильников - исклю­чать доступ к лампам без специальных приспособлений. Запрещается в местах про­хождения трубопровода устраивать склад­ские или другие помещения. Прокладку теп­ловых сетей в микрорайонах по трассам, со­впадающим с другими инженерными комму­никациями, следует предусматривать совме­щенную в общих траншеях с размещением трубопроводов в каналах или бесканально.

Способ надземной (воздушной) про­кладки тепловых сетей имеет ограниченное применение в условиях сложившейся и пер­спективной застройки города из-за архитек­турно-планировочных требований, предъяв­ляемых к сооружениям такого вида.

Надземная прокладка трубопроводов широко применяется на территории про­мышленных зон и отдельных предприятий, где они размещаются на эстакадах и мачтах совместно с производственными паропрово­дами и технологическими трубопроводами, а также на кронштейнах, укрепляемых на стенах зданий.

Значительное преимущество имеет над­земный способ прокладки по сравнению с подземным при строительстве тепловых се­тей на территориях с высоким уровнем стоя­ния грунтовых вод, а также при просадочных грунтах и в районах вечной мерзлоты.

Следует принимать во внимание, что конструкция тепловой изоляции и собствен­но трубопроводы при воздушной прокладке не подвергаются разрушающему действию грунтовой влаги, а поэтому существенно по­вышается их долговечность и снижаются тепловые потери. Существенным является также экономичность надземной прокладки тепловых сетей. Даже при благоприятных грунтовых условиях по стоимости капиталь­ных затрат и расходу строительных материа­лов воздушная прокладка трубопроводов средних диаметров экономичнее подземной прокладки в каналах на 20 - 30%, а при больших диаметрах - на 30 - 40%.

В связи с возросшим проектированием и строительством загородных ТЭЦ и атомных станций теплоснабжения (АСТ) для централизованного теплоснабжения крупных городов большое значение приобретают во­просы повышения эксплуатационной надеж­ности и долговечности транзитных тепломагистралей большого диаметра (1000 - 1400 мм) и протяженности при одновремен­ном снижении их металлоемкости и расходо­вании материальных ресурсов. Имеющийся опыт проектирования, строительства и экс­плуатации надземных тепломагистралей большого диаметра (1200-1400 мм) протя­женностью 5-10 км дал положительные ре­зультаты, что указывает на необходимость их дальнейшего сооружения. Особенно целе­сообразна надземная прокладка тепломаги­стралей при неблагоприятных гидрогеологи­ческих условиях, а также на участках трассы, расположенных на незастраиваемой терри­тории, вдоль автомобильных дорог и на пересечении небольших водных преград и оврагов.

При выборе способов и конструкций прокладки тепловых сетей должны учиты­ваться особые условия строительства в райо­нах: с сейсмичностью 8 баллов и более, рас­пространения вечномерзлых и просадочных от замачивания грунтов, а также при нали­чии торфяных и илистых грунтов. Дополни­тельные требования к тепловым сетям в особых условиях строительства изложены в СНиП 2.04.07-86*.

Теплопроводы прокладывают подземным или надземным способом. Подземный способ является основным в жилых, районах, так как при этом не загромождается территория и не ухудшается архитектурный облик города. Надземный способ применяют обычно на территориях промышленных предприятий при совместной прокладке энергетических и технологических трубопроводов. В жилых районах надземный способ используют только в особо тяжелых условиях: вечномерзлотные и проседающие при оттаивании грунты, заболоченные участки, большая густота существующих подземных сооружений, сильно изрезанная оврагами местность, пересечение естественных и искусственных препятствий.

Подземные теплопроводы в настоящее время прокладывают в проходных и непроходных каналах (применявшиеся ранее полупроходные каналы сейчас не используют) или бесканальным способом. Кроме того, в жилых микрорайонах распределительные сети прокладывают иногда в технических подпольях (коридорах, тоннелях) зданий, что удешевляет и упрощает строительство и эксплуатацию.

При прокладке в каналах и технических подпольях зданий теплопроводы защищены со всех сторон от механических воздействий и нагрузок и в некоторой степени от грунтовых и поверхностных вод. Для восприятия собственного веса теплопровода устанавливают специальные подвижные опоры. При бесканальной прокладке теплопроводы непосредственно контактируют с грунтом и внешние механические нагрузки воспринимаются трубой и теплоизоляционной конструкцией. При этом подвижных опор не устанавливают, а теплопроводы укладывают прямо на грунт или слой песка и гравия. Стоимость бесканальной прокладки на 25-30% меньше, чем в каналах, однако условия работы теплопроводов тяжелее.

Глубина заложения теплопроводов от верхнего уровня каналов или изоляционной конструкции (при бесканальной прокладке) до поверхности земли составляет 0,5--0,7 м. При высоком уровне грунтовых вод его искусственно снижают устройством попутного дренажа из гравия, песка и дренажных труб под каналом или изоляционной конструкцией.

Каналы в настоящее время изготовляют, как правило, из унифицированных сборных железобетонных деталей. Для защиты от грунтовых и поверхностных вод наружную поверхность каналов покрывают битумом с оклейкой гидрозащитным рулонным материалом. Для сбора влаги, которая попадает внутрь каналов, их дну следует придавать поперечный уклон не менее 0,002 в одну сторону, где делаются иногда закрытые (плитами, решетками) лотки, по которым вода стекает в сборные приямки, откуда отводится в водостоки.

Следует отметить, что, несмотря на гидроизоляцию каналов, естественная влага, содержащаяся в грунте, проникает в них через их наружные стенки, испаряется и насыщает воздух. При охлаждении влажного воздуха на перекрытиях и стенках канала скапливается влага, которая стекает вниз и может вызывать увлажнение изоляции.


В проходных каналах обеспечиваются наилучшие условия для работы, эксплуатации и ремонта теплопроводов, однако по капитальным затратам они являются наиболее дорогими. В связи с этим сооружать их целесообразно только на наиболее ответственных участках, а также при совместной прокладке теплопроводов с другими инженерными коммуникациями. При совместной прокладке различных коммуникаций проходные каналы называют коллекторами. В городах в настоящее время они получили широкое распространение. На рис. 6.4 показано сечение типового односекционного коллектора.

Проходные каналы (коллекторы) оборудуют естественной или принудительной вентиляцией, обеспечивающей температуру воздуха в канале не выше 40°С в периоды ремонтов и не выше 50°С при работе, электрическим освещением с напряжением до 30 В, телефонной свяью. Для сбора влаги в пониженных точках трассы устраивают приямки, сообщающиеся с водостоками или оборудованные откачивающими насосами с автоматическим или дистанционным управлением.

Рис. 6.4. Сечение типового городского коллектора

1 и 2 - подающий и обратный трубопроводы; 3 - конденсатопровод; 4 - телефонные кабели; 5 - силовые кабели; 6 - паропровод; 7 - водопровод

Габаритные размеры проходных каналов (коллекторов) выбирают из условия свободного доступа ко всем элементам теплопроводов, позволяющего проводить полный капитальный ремонт их без вскрытий и разрушений дорожных покрытий. Ширину прохода в канале принимают не менее 700 мм, а высоту- не менее 2 м (допускается принимать высоту до балки 1,8 м). Через каждые 200-250 м по трассе делают люки, оборудованные для спуска в канал лестницами или скобами. В местах расположения большого количества оборудования могут устраиваться специальные уширения (камеры) или сооружаться павильоны.

Непроходные каналы применяют обычно для теплопроводов диаметром до 500-700 мм. Изготовляют их прямоугольной, сводчатой и цилиндрической формы из железобетонных плит и сводов, асбестоцементных и металлических труб и др. При этом между поверхностью теплопроводов и стенками канала оставляют, как правило, воздушный зазор, через который происходит высыхание тепловой изоляции и удаление влаги из каналов. В качестве примера на рис. 6.5 показано сечение прямоугольного непроходного канала, изготовляемого из унифицированных сборных железобетонных деталей.

Рис. 6.5. Сечения непроходного канала

1 и 2 - лотковые блоки соответственно нижний и верхний; 3 - соединительный элемент с цементной забелкой; 4 - опорная плита; 5 - песчаная подготовка

Габаритные размеры непроходных каналов выбирают в основном в зависимости от расстояния между теплопроводами и между поверхностями теплоизоляционной конструкции и каналов, а также из условия обеспечения удобного доступа к оборудованию в камерах. Для уменьшения расстояния между теплопроводами оборудование на них иногда устанавливают вразбежку.

Бесканальную прокладку применяют обычно для труб небольших диаметров (до 200-300 мм), так как при прокладке таких труб в непроходных каналах условия их работы получаются практически более трудными (из-за заноса воздушного зазора в каналах грязью и сложности удаления из них влаги при этом). В последние годы в связи с повышением надежности бесканальной прокладки теплопроводов (путем внедрения сварки, более совершенных теплоизоляционных конструкций и др.) ее начинают использовать и для труб больших диаметров, (500 мм и более).

Теплопроводы, прокладываемые бесканальным способом, подразделяют в зависимости от вида теплоизоляционной конструкции: в монолитных оболочках, литые (сборно-литые) и засыпные (рис. 6.6) и в за висимости от характера восприятия весовых нагрузок: разгруженные и неразгруженные.

Рис. 6.6. Типы бесканальных теплопроводов

а -в сборной и монолитной оболочке; б-литые и сборно-литые; в - засыпные

Конструкции в монолитных оболочках выполняют обычно в заводских условиях. На трассе производится только стыковая сварка отдельных элементов и изоляция стыковых соединений. Литые конструкции могут изготовляться как в заводских условиях, так и на трассе путем заливки трубрпроводов (и стыковых соединений после опрессовки) жидкими исходными теплоизоляционными материалами с последующим их схватыванием (затвердеванием). Засыпную изоляцию выполняют на смонтированных в траншеях и спрессованных трубопроводах из сыпучих теплоизоляционных материалов.

К разгруженным относятся конструкции, в которых теплоизоляционное покрытие обладает достаточной механической прочностью и разгружает трубопроводы от внешних нагрузок (веса грунта, веса проходящего на поверхности транспорта и т. п.). К ним относятся литые (сборно-литые) и монолитные оболочки.

В неразгруженных конструкциях внешние механические нагрузки передаются через тепловую изоляцию непосредственно на трубопровод. К ним относятся засыпные теплопроводы.

На подземных теплопроводах оборудование, требующее обслуживания (задвижки, сальниковые компенсаторы, дренажные устройства спускники, воздушники и др.), размещают в специальных камерах, а гибкие компенсаторы - в нишах. Камеры и ниши, как и каналы, сооружают из сборных железобетонных элементов. Конструктивно камеры выполняют подземными или с надземными павильонами. Подземные камеры устраивают при трубопроводах Небольших диаметров и применении задвижек с ручным приводом. Камеры с надземными павильонами обеспечивают лучшее обслуживание крупногабаритного оборудования, в частности, задвижек с электро- и гидроприводами, которые устанавливают обычно при диаметрах трубопроводов 500 мм и более. На рис. 6.8 показана конструкция подземной камеры.

Габаритные размеры камер выбирают из условия обеспечения удобства и безопасности обслуживания оборудования. Для входа в подземные камеры в углах по диагонали устраивают люки - не менее двух при внутренней площади до 6 м 2 и не менее четырех при большей площади. Диаметр люка принимают не менее 0,63 м. Под каждым люком устанавливают лестницы или скобы с шагом не более 0,4 м для спуска в камеры. Днище камер выполняют с уклоном > 0,02 к одному из углов (под люком), где устраивают прикрываемые сверху решеткой приямки для сбора воды глубиной не менее 0,3 м и размерами в плане 0,4x0,4 м. Вода из приямков отводится самотеком или при помощи насосов в водостоки либо приемные колодцы.

Рис. 6.8. Подземная камера

Надземные теплопроводы прокладывают на отдельно стоящих опорах (низких и высоких) и мачтах, на эстакадах со сплошным пролетным строением в виде ферм или балок и на тягах, прикрепленных к верхушкам мачт (вантовые конструкции). На промышленных предприятиях применяют иногда упрощенные прокладки: на консолях (кронштейнах) по конструкциям зданий и подставках (подушках) по крышам зданий.

Опоры и мачты выполняют, как правило, железобетонными или металлическими. Пролетные строения эстакад и анкерные стойки (не подвижные опоры) обычно изготовляют металлическими. При этом строительные конструкции могут сооружаться одно-, двух- и много ярусными..

Прокладка теплопроводов на отдельно стоящих опорах и мачтах является наиболее простой и применяется обычно при небольшом числе труб (две - четыре). В настоящее время в СССР разработаны типовые конструкции отдельно стоящих низких и высоких железобетонных опор, выполняемых с одной стойкой в виде Т-образной опоры и с двумя отдельными стойками или рамами в виде П-образных опор. Для уменьшения количества стоек трубопроводы большого диаметра могут использоваться в качестве несущих конструкций для укладки или подвески к ним трубопроводов малого диаметра, требующих более частой установки опор. При прокладке теплопроводов на низких опорах расстояние между их нижней образующей и поверхностью земли должно быть не меньше 0,35 м при ширине группы труб до 1,5 м и не менее 0,5 м при ширине более 1,5 м.

Прокладка теплопроводов на эстакадах является наиболее дорогой и требует наибольшего расхода металла. В связи с этим ее целесообразно применять при большом числе труб (не менее пяти-шести), а также при необходимости регулярного надзора за ними. При этом трубопроводы больших диаметров опираются обычно непосредственно на стойки эстакад, а малых - на опоры, уложенные в пролетном строении.

Прокладка теплопроводов на подвесных (вантовых) конструкциях является наиболее экономичной, так как позволяет значительно увеличить расстояние между мачтами и тем самым уменьшить расход строительных материалов. При совместной прокладке трубопроводов различных диаметров между мачтами выполняются прогоны из швеллеров, подвешенных на тягах. Такие прогоны позволяют устанавливать дополнительные опоры для трубопроводов малых диаметров.

Для обслуживания оборудования (задвижек, сальниковых компенсаторов) устраивают площадки с ограждениями и лестницами: стационарные при расстоянии от низа теплоизолирующей конструкции до поверхности земли 2,5 м и более или передвижные - при меньшем расстоянии, а в труднодоступных местах и на эстакадах - проходные мостики. При прокладке теплопроводов на низких опорах в местах установки оборудования должно предусматриваться покрытие поверхности земли бетоном, а на оборудовании - устройство металлических кожухов.

Трубы и араматура . Для строительства тепловых сетей используют стальные трубы, соединяемые при помощи электрической или газовой сварки. Стальные трубы подвергаются внутренней и наружной коррозии, что снижает срок службы и надежность тепловых сетей. В связи с этим для местных систем горячего водоснабжения, которые подвержены усиленной коррозии, применяют трубы стальные оцинкованные. В ближайшем будущем намечается применение эмалированных труб.

Из стальных труб для тепловых сетей в настоящее время используют в основном электросварные с продольным прямым и спиральным швом и бесшовные, горячедеформированные и холоднодеформированные, изготовляемые из сталей марок Ст. 3, 4, 5, 10, 20 и низколегированных. Выпускаются электросварные трубы до условного диаметра 1400 мм, бесшовные - 400 мм. Для сетей горячего водоснабжения могут применяться также водогазопроводные стальные трубы.

В последние годы ведутся работы по использованию для теплоснабжения неметаллических труб (асбестоцементных; полимерных, стеклянных и др.). К их достоинствам относится высокая антикоррозионная устойчивость, а у полимерных и стеклянных труб и более низкая шероховатость по сравнению со стальными трубами. Асбестоцементные и стеклянные трубы соединяют при помощи специальных конструкций, а полимерные трубы - на сварке, что значительно упрощает монтаж и повышает надежность и герметичность соединений. Основным недостатком указанных неметаллических труб являются невысокие допустимые значения температур и давлений теплоносителя-примерно 100°С и 0,6 МПа. В связи с этим их можно использовать только в сетях, работающих с низкими параметрами воды, например в системах горячего водоснабжения, конденсатопроводах и др.

Арматура, применяемая в тепловых сетях, по назначению подразделяется на запорную, регулировочную, предохранительную (защитную), дросселирующую, конденсатоотводящую и контрольно-измерительную.

К основной арматуре общего назначения относят обычно запорную арматуру, так как она используется наиболее широко непосредственно на трассе тепловых сетей. Остальные виды арматуры устанавливаются, как правило, в тепловых пунктах, насосных и дросселирующих подстанциях и др.

Основными типами запорной арматуры тепловых сетей являются задвижки и вентили. Задвижки применяются обычно в водяных сетях, вентили - в паровых. Изготовляют их из стали и чугуна с фланцевыми и муфтовыми присоединительными концами, а также с концами под приварку труб на различные условные диаметры.

Запорная арматура в тепловых сетях устанавливается на всех трубопроводах, отходящих от источника тепла, в узлах ответвлений с d y >100 мм, в узлах ответвлений к отдельным зданиям при d y 50 мм и длине ответвления l > 30 м или к группе зданий с суммарной нагрузкой до 600 кВт (0,5 Гкал/ч), а также на штуцерах для спуска воды, выпуска воздуха и пусковых дренажей. Кроме того, в водяных сетях устанавливаются секционирующие задвижки: при d y >100 мм через l ce кц <1000 м; при d y =350...500 мм через l секц <1500 м при условии спуска воды из секции и ее заполнения водой не более чем за 4 ч, и при d y > 600 мм через l c екц <3000 м при условии спуска воды из секции и ее заполнения водой не более чем за 5 ч.

В местах установки секционирующих задвижек делаются перемычки между подающими и обратными трубопроводами с диаметром, равным 0,3 диаметра основных трубопроводов, для создания циркуляции теплоносителя при авариях. На перемычке последовательно устанавливаются две задвижки и контрольный вентиль между ними на d y = 25 мм для проверки плотности закрытия задвижек.

Для облегчения открытия задвижек с d y > 350 мм на водяных сетях и с d y > 200 мм и р у >1,6 МПа на паровых сетях, требующих большого вращательного момента, делают обводные линии (разгрузочные байпасы) с запорным вентилем. В этом случае затвор разгружается от сил давления при открытии задвижек и уплотнительные поверхности предохраняются от износа. В паровых сетях обводные линии используются также для пуска паропроводов. Задвижки с d y > 500 мм, требующие для своего открытия или закрытия вращательного момента более 500 Н-м, должны применяться с электроприводом. С электроприводом предусматривают также все задвижки при дистанционном управлении.

Трубы и арматуру выбирают из выпускаемого сортамента в зависимости от условного давления, рабочих (расчетных) параметров теплоносителя и окружающей среды.

Условное давление определяет максимально допустимое давление, которое длительно могут выдержать трубы и арматура определенного типа при нормальной температуре среды + 20°С. При повышении температуры cреды допустимое давление снижается.

Рабочие давления и температуры теплоносителя для выбора труб, арматуры и оборудования тепловых сетей, а также для расчета трубопроводов на прочность и при определении нагрузок на строительные конструкции должны приниматься равными, как правило, номинальным (максимальным) значениям в подающих трубопроводах или на нагнетании насосов с учетом рельефа местности. Значения рабочих параметров для различных случаев, а также ограничения при выборе материалов труб и арматуры в зависимости от рабочих параметров теплоносителя и окружающей среды указаны в СНиП II-36-73.

Трубопроводы тепловых сетей могут быть проложены на земле, в земле и над землей. При любом способе монтажа трубопроводов необходимо обеспечивать наибольшую надежность работы системы теплоснабжения при наименьших капитальных и эксплуатационных затратах.

Капитальные затраты определяются стоимостью строительно-монтажных работ и затраты на оборудование и материалы для прокладки трубопровода. В эксплуатационные включают затраты по обслуживанию и содержанию трубопроводов, а так же затраты связанные с потерей тепла в трубопроводах и расходом электроэнергии на всей трассе. Капитальные затраты определяются в основном стоимостью оборудования и материалов, а эксплуатационные - стоимостью тепла, электроэнергии и ремонта.

Основными видами прокладками трубопроводов являются подземная и надземная . Подземная прокладка трубопроводов наиболее распространена. Она подразделяется на прокладку трубопроводов непосредственно в земле (бесканальная) и в каналах. При наземной прокладке трубопроводы могут находиться на земле или над землей на таком уровне, что бы они не препятствовали движению транспорта. Надземные прокладки применяются на загородных магистралях при пересечении оврагов, рек, железнодорожных путей и других сооружений.

Надземные прокладки трубопроводов в каналах или лотках расположенных на поверхности земли или частично заглубленных, применяются, как правило, в районах с вечномерзлыми грунтами.

Способ монтажа трубопроводов зависит от местных условий объекта - назначения, эстетических требований, наличия сложных пересечений с сооружениями и коммуникациями, категории грунта - и должен приниматься на основании технико-экономических расчетов возможных вариантов. Минимальные капитальные затраты требуются на монтаж теплотрассы с использованием подземной прокладки труб без излояции и каналов. Но значительные потери тепловой энергии, особенно во влажных грунтах, приводят к существенным дополнительным затратам и к преждевременному выходу трубопроводов из строя. В целях обеспечения надежности работы теплопроводов необходимо применять механическую и тепловую их защиту.

Механическая защита труб при монтаже труб под землей может быть обеспечена путем устройства каналов, а тепловая защита - путаем применения тепловой изоляции, нанесенной непосредственно на наружную поверхность трубопроводов. Изоляция труб и прокладка их в каналах увеличивают первоначальную стоимость теплотрассы, но быстро окупаются в процессе эксплуатации за счет повышения эксплуатационной надежности и уменьшения тепловых потерь.

Подземная прокладка трубопроводов.

При монтаже трубопроводов тепловых сетей под землей могут быть использованы два способа:

  1. Непосредственная прокладка труб в земле (бесканальная).
  2. Прокладка труб в каналах (канальная).

Прокладка трубопроводов в каналах.

Для того, что бы защитить теплопро-вод от внешних воздействий, и для обеспечения свободного теплового удлинения труб предназначе-ны каналы. В зависимости от ко-личества прокладывае-мых в одном направле-нии теплопроводов при-меняют непроходные, по-лу проходные или про-ходные каналы.

Для закрепления трубопровода, а так же обеспечения свободного перемещения при температурных удлинениях трубы укладывают па опоры. Что бы обеспечить отток воды лотки укладываются с уклоном не менее 0,002. Вода из нижних точек лотков удаляется самотеком в систему дренажа или из специальных приямков при помощи насоса откачивается в канализацию.

Кроме продольного уклона лотков, перекрытия так же должны иметь поперечный уклон порядка 1-2% для отвода паводковой и атмосферной влаги. При высоком уровне грунтовых вод наружную поверхность стенок, перекрытия и дна канала покрывают гидроизоляцией.

Глубина прокладки лотков принимается из условия минимального объема земляных работ и равномерного распре-деления сосредоточенных нагрузок на перекрытие при движении автотранспорта. Слой грунта над каналом должен состав-лять порядка 0,8—1,2 м и не менее. 0,6 м в мес-тах, где движение автотранспорта запрещено.

Непроходные каналы применяются при большом числе труб небольшого диа-метра, а так же двухтрубной прокладке для всех диаметров. Их конструкция зависит от влажности грунтов. В сухих грунтах наибольшее распространение получили блочные каналы с бетонными или кирпичными стенками либо железобе-тонные одно- или многоячейковые.

Стенки канала могут иметь толщину 1/2 кирпича (120 мм) при трубопроводах небольшого диаметра и 1 кирпич (250 мм) при трубопроводах крупных диа-метров.

Стенки возводят только из обыкновенного кирпича марки не ниже 75. Силикатный кирпич из-за малой его морозоустойчивости применять не рекомендуется. Каналы перекрывают железобетонной плитой. Кирпичные каналы в зависимости от категории грунта имеют несколько разновидностей. В плотных и сухих грунтах дно канала не требует бетонной подготов-ки, достаточно хорошо утрамбовать щебень непосредст-венно в грунт. В слабых грунтах на бетонное основание укладывают дополнительно железобетонную плиту. При высоком уровне стояния грунтовых вод для их отвода предусматривают дренаж. Стенки возводят после монтажа и изоляции трубопро-водов.

Для трубопроводов крупных диаметров применяют каналы, собираемые из стандартных железобетонных эле-ментов лоткового типа КЛ и КЛс, а также из сборных железо-бетонных плит КС.

Каналы типа КЛ состоят из стандартных лотковых элемен-тов, перекрываемых плоскими железобетонными плитами.

Каналы типа КЛс состоят из двух лотковых элементов, уложенных друг на друга и соединенных на цементном растворе при помощи двутавра.

В каналах типа КС стеновые панели устанав-ливают в пазы плиты днища и заливают бетоном. Эти каналы перекрывают плоскими железобетонными плитами.

Основания каналов всех типов выполняют из бетонных плит или пес-чаной подготовки в зависимости от вида грунта.

Наряду с рассмотрен-ными выше каналами применяются и другие их типы.

Сводча-тые каналы состоят из железобетонных сводов или скорлуп полукруглой формы, которыми накрывают трубопровод. На дне траншеи выпол-няют лишь основание ка-нала.

Для трубопроводов крупного диаметра применяют сводчатый двухячейковый ка-нал с разделительной стенкой, при этом свод канала образуется из двух полусводов.

При монтаже непроходного ка-нала, предназначенного для прокладки в мокрых и слабых грунтах стенки и дно канала выполняют в виде железобе-тонного корытообразного лотка, а перекрытие состоит из сборных железобетонных плит. Наружная поверхность лотка (стенки и дно) покрывается гидроизоляцией из двух слоев рубероида на битумной мастике, поверхность основания также покрывают гидроизоляцией затем устанавливают или бетонируют лоток. Перед засыпкой траншеи гидроизоляцию защищают спе-циальной стенкой, выполненной из кирпича.

Замена труб, вышедших из строя, или ремонт тепловой изоляции в таких каналах возможны только при разработке групп, а иногда и разборки мостовой. Поэтому тепловая сеть в непроход-ных каналах трассируется вдоль газонов или на территории зе-леных насаждений.

Полупроходные каналы. В сложных условиях пересечения теплопроводами существующих подземных устройств (под проезжей частью, при высоком уровне стояния грунтовых вод) вместо непроходных устраивают полупроходные каналы. Полу-проходные каналы применяют также при небольшом количестве труб в тех местах, где по условиям эксплуатации вскрытие про-езжей части исключено. Высоту полупроходного канала прини-мают равной 1400 мм. Каналы выполняют из сборных железобе-тонных элементов. Конструкции полупроходных и проходных каналов практически аналогичны.

Проходные каналы применяют при наличии большого количества труб. Их прокладывают под мостовыми крупных магистралей, на территориях боль-ших промышленных предприятий, на участках, прилегающих к зданиям теплоэлектроцентралей. Наряду с теплопроводами в проходных каналах располагают и другие подземные коммуни-кации - электрокабели, телефонные кабели, водопровод, газо-провод и т. п. В коллекторах обеспечивается свободный доступ обслуживающего персонала к трубопроводам для осмотра и ликвидации аварии.

Проходные каналы должны иметь естественную вентиляцию с трехкратным обменом воздуха, обеспечивающую температуру воздуха не более 40° С, и освещение. Входы в проходные каналы устраивают через каждые 200 - 300 м. В местах, где располага-ются сальниковые компенсаторы, предназначенные для восприя-тия тепловых удлинений, запорные устройства и другое оборудо-вание, устраивают специальные ниши и дополнительные люки. Высота проходных каналов должна быть не менее 1800 мм.

Их конструкции бывают трех типов — из ребри-стых плит, из звеньев рамной конструкции и из блоков.

Проходные каналы из ребристых плит , выполняют из четырех железобетонных панелей: днища, двух стенок и плиты перекрытия, изготовляемых заводским способом на про-катных станах. Панели соединены болтами, а наружная поверх-ность перекрытия канала покрывается изоляцией. Секции канала устанавливаются па бетонную плиту. Вес одной секции такого ка-нала сечением 1,46х1,87 м и длиной 3,2 м составляет 5 т, входы устраивают через каждые 50 м.

Проходной канал из железо-бетонных звеньев рамной конструкции , сверху покрывается изоляцией. Элементы канала имеют длину 1,8 и 2,4 м и бывают нормальной и повышенной прочности при заглублении соответст-венно до 2 и 4 м над перекрытием. Железобетонную плиту подкладывают только под стыками звеньев.

Следующий вид это коллектор, изготовляемый из же-лезобетонных блоков трех типов: Г-образного стенового, двух плит перекрытия и днища. Блоки в стыках соединяются моно-литным железобетоном. Эти коллекторы выполняются также нормальными и усиленными.

Бесканальная прокладка.

При бесканальной прокладке за-щиту трубопроводов от механических воздействий выполняет усиленная тепловая изоляция — оболочка.

Достоинствами бесканальной прокладки трубопроводов являются: сравнительно небольшая стоимость строительно-мон-тажных работ, уменьшение объема земляных работ и сокраще-ние сроков строительства. К ее недостаткам относятся: усложне-ние ремонтных работ и затруднение перемещения трубопрово-дов, зажатых грунтом. Бесканальную прокладку трубопроводов широко применяют в сухих песчаных грунтах. Она находит при-менение в мокрых грунтах, но с обязательным устройством в зо-не расположения труб дренажа.

Подвижные опоры при бесканальной прокладке трубопрово-дов не применяются. Трубы с теплоизоляцией укладывают не-посредственно на песчаную подушку, находящуюся на предвари-тельно выровненном дне траншеи. Песчаная подушка, являю-щаяся постелью для труб, имеет наилучшие упругие свойства и допускает наибольшую равномерность температурных переме-щений. В слабых и глинистых грунтах слой песка на дне траншеи должен быть толщиной не менее 100-150 мм. Неподвижные опо-ры при бесканальной прокладке труб представляют собой желе-зобетонные стенки, устанавливаемые перпендикулярно теплопро-водам.

Компенсация тепловых перемещений труб при любом спосо-бе их бесканальной прокладки обеспечивается при помощи гну-тых или сальниковых компенсаторов, устанавливаемых в специ-альных нишах или камерах.

На поворотах трассы во избежание зажатия труб в грунте и обеспечения возможных перемещений устраивают непроходные каналы. В местах пересечения стенки капала трубопроводом в результате неравномерной осадки грунта и основания канала происходит наибольший изгиб трубопроводов. Во избежание из-гиба трубы необходимо оставлять в отверстии стенки зазор, за-полняя его эластичным материалом (например, асбестовым шну-ром). Тепловая изоляция трубы включает в себя утеплительный слой из автоклавного бетона с объемным весом 400 кг/м3, имеющего стальную арматуру, гидроизоляционное покрытие, состоящей из трех слоев бризола на битумно-резиновой мастике, в состав которой входят 5—7% резиновой крошки и защитный слой, вы-полненный из асбестоцементной штукатурки по стальной сет-ке.

Обратные магистрали трубопроводов изолируются таким же образом, как и подающие. Однако наличие изоляции об-ратных магистралей зависит от диаметра труб. При диаметре труб до 300 мм устройство изоляции обяза-тельно; при диаметре труб 300-500 мм устройство изоляции должно быть определено технике экономическим расчетом исходя из местных условий; при диаметре труб 500 мм и более уст-ройство изоляции не предусматривается. Трубопроводы при такой изоляции укладывают непосредст-венно на выровненный уплотненный грунт основания траншеи.

Для понижения уровня грунтовых вод предусматривают специальные дренажные трубопроводы, которые укладывают на глубине 400 мм от дна канала. В зависимости от условий работы дренажные устройства могут быть выполнены из различных труб: для безнапорных дренажей применяют керамические бетонные и асбестоцементные, а для напорных - стальные и чу-гунные.

Дренажные трубы прокладывают с уклоном 0,002—0,003. На поворотах и при перепадах уровней труб устраивают специаль-ные смотровые колодцы по типу канализационных.

Надземная прокладка трубопроводов.

Если исходить из удобства монтажа и обслуживания то прокладка труб над землей является более выгодна чем прокладка под землей. Так же это требует меньших материальных затрат. Однако это поритит внешний вид окружающей среды и поэтому такой вид прокладки труб не везде может применяться.

Несущими конструкциями при надземной прокладке трубо-проводов служат: для небольших и средних диаметров — надзем-ные опоры и мачты, обеспечивающие расположение труб на нужном расстоянии от поверхности; для трубопроводов больших диаметров, как правило, опоры-эстакады. Опоры, обычно, выполняют из железобетонных блоков. Мачты и эстака-ды могут быть как стальными, так и железобетонными. Расстоя-ние между опорами и мачтами при надземной прокладке должно быть равно расстоянию между опорами в каналах и зависит от диаметров трубопроводов. В целях сокращения количества мачт устраивают при помощи растяжек промежуточные опоры.

При надземной прокладке тепловые удлинения трубопрово-дов компенсируются при помощи гнутых компенсаторов, требу-ющих минимальных затрат времени на обслуживание. Обслуживание арматуры производится со специально устраиваемых площадок. В качестве подвижных следует применить катковые опоры, создающие минимальные горизонтальные усилия.

Так же при надземной прокладке трубопроводов могут применяться низкие опоры, которые могут быть выполнены из металла или низких бетонных блоков. В местах пересечения такой трассы с пешеходными дорожками устанавливают специальные мостики. А при пересечении с автодорогами - или выполняют компенсатор нужной высоты или под дорогой прокладывают канал для прохода труб.

Способ прокладки тепловых сетей при реконструкции выбирают в соответствии с указаниями СНиП 2.04.07-86 «Тепловые сети». В настоящее время в нашей стране около 84 % тепловых сетей прокладывают в каналах, около 6 % - бесканально, остальные 10 % - надземно. Выбор того или иного способа определяется местными условиями, как, например, характером грунта, наличием и уровнем грунтовых вод, требуемой надежностью, экономичностью строительства, а также эксплуатационными затратами на содержание. Способы прокладки разделяются на надземные и подземные.

Надземная прокладка тепловых сетей

Надземную прокладку теплосетей применяют редко, так как она нарушает архитектурный ансамбль местности, имеет при прочих равных условиях более высокие в сравнении с подземной прокладкой тепловые потери, не гарантирует от замерзания теплоносителя при неполадках и авариях, стесняет проезды. При реконструкции сетей ее рекомендуется применять при высоком уровне грунтовых вод, в условиях вечной мерзлоты, при неблагоприятном рельефе местности, на территориях промышленных предприятий, на площадках, свободных от застроек, вне пределов города или в местах, где она не влияет на архитектурное оформление и не мешает движению транспорта.

Преимущества надземной прокладки: доступность осмотра и удобство эксплуатации; возможность в кратчайшие сроки обнаружить и ликвидировать аварию в теплопроводах; отсутствие электрокоррозии от блуждающих токов и коррозии от агрессивных грунтовых вод; меньшая стоимость сооружения по сравнению со стоимостью подземных прокладок тепловых сетей. Надземную прокладку тепловых сетей осуществляют: на отдельно стоящих опорах (мачтах); на эстакадах с пролетным строением в виде прогонов, ферм или подвесных (вантовых) конструкций; по стенам зданий. Отдельно стоящие мачты или опоры могут быть выполнены из стали или железобетона. При небольших объемах строительства надземных тепловых сетей применяют стальные мачты из профильной стали, однако они дороги и трудоемки и поэтому вытесняются железобетонными. Мачты из железобетона особенно целесообразно применять при массовом строительстве на промышленных площадках, когда рентабельно организовать их изготовление в заводских условиях.

Для совместной прокладки теплосетей с другими трубопроводами различного назначения применяют эстакады, изготовляемые из металла или железобетона. В зависимости от количества одновременно прокладываемых трубопроводов пролетные строения эстакад могут быть одноярусными и многоярусными. Теплопроводы обычно прокладывают на нижнем ярусе эстакады, при этом трубопроводы с более высокой температурой теплоносителя размещают ближе к краю, обеспечивая тем самым лучшее расположение П-образных компенсаторов, имеющих различные размеры. При прокладке теплотрасс на территории промышленных предприятий применяют также способ надземной прокладки на кронштейнах, укрепляемых в стенах зданий. Пролет теплопроводов, т.е. расстояния между кронштейнами, выбирают с учетом несущей способности конструкций здания.

Подземная прокладка тепловых сетей

В городах и населенных пунктах для теплотрасс применяют в основном подземную прокладку, которая не портит архитектурного облика, не мешает движению транспорта и позволяет снизить теплопотери за счет использования теплозащитных свойств грунта. Промерзание грунта не опасно для теплопроводов, поэтому их можно прокладывать в зоне сезонного промерзания грунта. Чем меньше глубина заложения тепловой сети, тем меньше объем земляных работ и ниже стоимость строительства. Подземные сети чаще всего прокладывают на глубине от 0,5 до 2 м и ниже поверхности земли.

Недостатками подземных прокладок теплопроводов являются: опасность увлажнения и разрушения изоляции вследствие воздействия грунтовых или поверхностных вод, что приводит к резкому увеличению тепловых потерь, а также опасность внешней коррозии труб вследствие воздействия блуждающих электрических токов, влаги и агрессивных веществ, содержащихся в грунте. Подземные прокладки теплопроводов связаны с необходимостью вскрытия улиц, проездов и дворов.

Конструктивно подземные тепловые сети делятся на два принципиально различных вида: канальные и бесканальные.

Конструкция канала полностью разгружает теплопроводы от механического воздействия массы грунта и временных транспортных нагрузок и ограждает трубопроводы и тепловую изоляцию от коррозийного влияния почвы. Прокладка в каналах обеспечивает свободное перемещение трубопроводов при температурных деформациях как в продольном (осевом), так и в поперечном направлении, что позволяет использовать их самокомпенсирующую способность на угловых участках трассы.

Прокладка в проходных каналах (тоннелях) - наиболее совершенный способ, так как при этом обеспечивается постоянный доступ обслуживающего персонала к трубопроводам для осуществления контроля за их работой и производства ремонта, что наилучшим способом обеспечивает их надежность и долговечность. Однако стоимость прокладки в проходных каналах весьма высокая, а сами каналы имеют большие габариты (высота в свету - не менее 1,8 м и проход - 0,7 м). Проходные каналы устраивают обычно при прокладке большого числа труб, укладываемых в одном направлении, например на выводах с ТЭЦ.

Наряду с прокладкой в непроходных каналах все большее развитие получают бесканальные прокладки теплопроводов. Отказ от применения каналов при прокладке тепловых сетей весьма перспективен и является одним из путей удешевления их стоимости. Однако в бесканальных прокладках теплоизолированный трубопровод из-за непосредственного контакта с грунтом находится в условиях более активных физико-механических воздействий (влажность грунта, давление грунта и внешних нагрузок и т. п.), чем в канальных прокладках. Бесканальная прокладка возможна при использовании механически прочной теплогидроизоляционной оболочки, способной защитить трубопроводы от потерь теплоты и выдерживать нагрузки, передаваемые грунтом. Тепловые сети с диаметром труб до 400 мм включительно рекомендуется прокладывать преимущественно бесканальным способом.

Среди бесканальных прокладок наибольшее распространение за последние годы получили прогрессивные прокладки с использованием в качестве монолитной теплоизоляции армопенобетона, битумоперлита, асфальтокерамзитобетона, фенольного поропласта, пенополимербетона, пенополиуретана и других теплоизоляционных материалов. Бесканальные прокладки тепловых сетей продолжают совершенствоваться и получают все более широкое распространение в практике строительства и реконструкции. При реконструкции внутриквартальных теплотрасс имеются более широкие возможности прокладки сетей по подвальным помещениям, чем при новом строительстве, так как строительство новых участков часто опережает строительство зданий.

Монтаж тепловых сетей, прокладка труб

Монтаж трубопроводов и монтаж тепловой изоляции на них ведется с использованием предизолированных труб ППУ, фасонных изделий в ППУ изоляции (неподвижных опор, тройников и тройниковых ответвлений, переходов, концевых элементов и промежуточных элементов и др.), а также скорлупы ППУ. Ведется монтаж теплоизоляции прямых участков, ответвлений, элементов трубопровода, скользящих опор, шаровых кранов, а также производится монтаж стыковых соединений с применением муфты термоусадочной, ленты термоусадочной, компонентов ППУ, кожухов оцинкованных и скорлуп теплоизоляционных из пенополиуретана.

Прокладка тепловых сетей и монтаж теплоизоляции ППУ производится в несколько этапов – подготовительный этап (земляные работы, доставка труб ППУ и элементов на трассу, осмотр продукции), прокладка трубопроводов (монтаж труб и элементов), установка приборов системы ОДК и монтаж стыковых соединений.

Глубина заложения труб ППУ при прокладке теплосетей должна вестись с учетом разности плотности стальной трубы ППУ и теплоизоляционного слоя пенополиуретана, а также норм теплоотдачи и нормативно допустимых тепловых потерь.

Разработку траншей для бесканальной прокладки следует выполнять механическим способом с соблюдением требований СНиП 3.02.01 - 87 "Земляные сооружения".

Минимальную глубину заложения труб ППУ в полиэтиленовой оболочке при прокладке теплотрасс в земле следует принимать не менее 0,5 м вне пределов проезжей части и 0,7 м - в пределах проезжей части, считая до верха теплоизоляции.

Максимальную глубину заложения теплоизолированных труб при монтаже трубопроводов в ППУ изоляции при прокладке тепловых сетей следует определять расчетом с учетом устойчивости слоя ППУ на действие статической нагрузки.

Монтаж труб ППУ производится, как правило, на дне траншеи. Допускается производить сварку прямых участков в секции на бровке траншеи. Монтаж труб ППУ в полиэтиленовой оболочке производится при температуре наружного воздуха до -15 ... -18°С.

Резку стальных труб (в случае необходимости) производят газорезкой, при этом теплоизоляция снимается механизированным ручным инструментом на участке длиной 300 мм, а торцы теплоизоляции в ходе резки стальных труб закрываются увлажненной тканью или жестким экраном для защиты теплоизоляционного слоя пенополиуретана.

Сварку стыков труб и контроль сварных соединений трубопроводов при монтаже труб ППУ следует проводить в соответствии с требованиями СНиП 3.05.03-85 "Тепловые сети", ВСН 29-95 и ВСН 11-94.

При производстве сварочных работ необходимо иметь защиту пенополиуретановой изоляции и полиэтиленовой оболочки, а также концов проводов, выходящих из изоляции, от попадания искр.

При использовании в качестве защиты сварного соединения муфты термоусадочной, ее надевание на трубопровод производят до начала ведения сварных работ. При заделке стыка с использованием стыка заливочного или стыка из скорлупы ППУ, где в качестве защитного слоя используется оцинкованный кожух и термоусадочная лента, сварка труб ведется не зависимо от наличия материалов для заделки стыков.

Перед началом строительства теплотрассы при бесканальной прокладке труб, трубы ППУ, фасонные изделия в ППУ изоляции, теплоизолированные пенополиуретаном шаровые краны и элементы трубопроводной системы подвергают тщательному осмотру с целью обнаружения трещин, сколов, глубоких надрезов, проколов и других механических повреждений полиэтиленовой оболочки теплоизоляции. При обнаружении трещин, глубоких надрезов и иных повреждений покрытия труб ППУ в полиэтиленовой или оцинкованной оболочке, их заделывают путем экструзионной сварки, путем наложения термоусаживающихся манжет (муфт) или оцинкованных бандажей.

Перед монтажом теплотрассы бесканальной прокладки трубопроводы в ППУ изоляции и фасонные изделия в ППУ раскладывают на бровке или дне траншеи с помощью крана или трубоукладчика, мягких "полотенец" или гибких строп.

Опускание в траншею изолированных труб ППУ следует производить плавно, без рывков и ударов о стенки и дно каналов и траншей. Перед монтажом труб ППУ в траншеи или каналы в обязательном порядке следует проверить целостность сигнальных проводов системы оперативно-дистанционного контроля (система СОДК) и их изолированность от стальной трубы.

Трубы ППУ, укладываемые на песчаное основание при бесканальной прокладке, с целью предотвращения повреждения оболочки не должны опираться на камни, кирпичи и другие твердые включения, которые следует удалить, а образовавшиеся углубления засыпать песком.

При необходимости контрольных расчетов глубин заложения теплопроводов с изоляцией ППУ в полиэтиленовой оболочке для конкретных условий прокладки расчетное сопротивление пенополиуретана следует принимать 0,1 МПа, полиэтиленовой оболочки - 1,6 МПа.

При необходимости подземной прокладки тепловых сетей с теплоизоляцией ППУ в полиэтиленовой оболочке на глубине более допустимой их следует прокладывать в каналах (тоннелях). При прокладке трасс под проезжей частью, железнодорожным полотном и другими объектами, находящимися над трубой ППУ, трубы в ППУ изоляции изготавливаются с усилением (накладные кольца из полиэтилена по всей длине оболочки) и прокладываются в стальном футляре, защищающем от внешних механических воздействий.

Одной из основных особенностей теплопроводов является относительно высокая температура транспортируемого по ним продукта - воды или пара, в большинстве случаев превышающая 100°С, что в значительной мере предопределяет характер конструкций тепловых сетей, так как требует устройства тепловой изоляции и обеспечения свободы перемещений труб при их нагревании или охлаждении.

Наличие тепловой изоляции и требование свободного перемещения труб значительно усложняет конструкцию теплопроводов - последние укладывают в каналах, туннелях или защитных оболочках.

Периодический нагрев стенок теплопроводов до температуры 130-150°С делают непригодными противокоррозийные покрытия, обычно применяемые для защиты ненагретых стальных трубопроводов, прокладываемых в грунте. Для защиты теплопроводов от наружной коррозии необходимо применение таких строительно-изоляционных конструкций, которые препятствую проникновению к трубопроводам грунтовой влаги.

Применяемые в настоящее время конструкции теплопроводов отличаются значительным разнообразием. По способу прокладки тепловые сети делятся на подземные и надземные (воздушные).

Подземная прокладка трубопроводов тепловых сетей выполняется:

а) в непроходных и полупроходных каналах;

б) в туннелях или коллекторах совместно с другими коммуникациями;

в) в оболочках различной формы и в виде засыпных прокладок.

При подземной прокладке вдоль трассы сооружаются камеры, ниши для компенсаторов, неподвижные опоры и пр.

Надземная прокладка трубопроводов тепловых сетей выполняется:

а) на эстакадах со сплошным пролетным строением;

б) на отдельно стоящих мачтах (опорах);

в) на подвесных пролетных строениях (вантовые).

К особой группе конструкций относятся специальные сооружения: подводные, надземные и подземные переходы и ряд других.

Основными недостатками применяемых в строительстве подземных конструкций теплопроводов являются: недолговечность, большие тепловые потери, трудоемкость изготовления, значительный расход строительных материалов и высокая строительная стоимость.

Наибольшее применение получили сборные конструкции непроходных каналов с бетонными стенками. Применение непроходных каналов оправдывается в случае прокладки тепловых сетей в мокрых грунтах при условии устройства попутного дренажа . Следует ориентироваться на применение непроходных каналов, выполняемых из унифицированных сборных железобетонных деталей. Указанные железобетонные каналы могут быть применены для тепловых сетей диаметром до 600 мм. Возможно применение непроходных каналов, собираемых из вибропрокатных плит.

Непроходные каналы с подвесной теплоизоляцией, образующей вокруг труб воздушную прослойку, незаменимы на участках трассы с самокомпенсацией тепловых удлинений теплопроводов. Характерной особенностью канальной прокладки тепловых сетей в отличие от бесканальной является обеспечение перемещений теплопроводов в продольном и поперечном направлениях.

При прокладке теплопроводов под проездами с интенсивным уличным движением и усовершенствованным дорожным покрытием применяются полупроходные каналы из сборных железобетонных деталей. При прокладке большого количества теплопроводов значительных диаметров применяются проходные туннели.

Для тепломагистралей больших диаметров также имеются типовые конструкции каналов, положительно зарекомендовавшие себя как в строительстве, так и эксплуатации. Например, в Москве сооружаются тепломагистрали диаметром 700-1200 мм. Однако конструкции каналов должны совершенствоваться до получения более рациональных решений. Для прокладки теплопроводов используются сборные железобетонные каналы одноячейкового и двухъячейкового сечений. В основном эти каналы проектируются полупроходного типа для возможности осмотра их обслуживающим персоналом, а также обеспечения максимальной надежности тепломагистралей в эксплуатации.

В Москве и некоторых других городах получила применение бесканальная прокладка теплопроводов с двухслойной цилиндрической оболочкой, состоящей из железобетонной трубы и теплоизоляционного слоя (минеральной ваты).

Железобетонные трубы обладают достаточной механической прочностью, высокой сопротивляемостью ударным и вибрационным нагрузкам, хорошей влагонепроницаемостью. Поэтому они надежно защищают теплопровод от воздействия влаги и нагрузок, передаваемых грунтом. Тем самым достигаются более благоприятные условия для работы теплопроводов: снижаются напряжения в стенках труб и обеспечивается долговечность тепловой изоляции.

Наружная железобетонная оболочка остается неподвижной при перемещении теплопровода в осевом направлении вследствие температурных деформаций, что отличает данную конструкцию от конструкции с армопенобетонной оболочкой, перемещающейся о грунте вместе с теплопроводом.

Аналогичная конструкция выполняется и с применением в качестве наружной оболочки асбестоцементных труб и железобетонных полуцилиндров.

Применение бесканальных конструкций может быть рекомендовано при прокладке в сухих грунтах с защитой наружной поверхности теплопроводов двумя слоями изола. Бесканальная прокладка теплопроводов с засыпной теплоизоляцией торфом, диатомовой крошкой и др. оказалась неудачной. В настоящее время ведутся экспериментальные работы по созданию материала засыпки.

Конструкции камер, применяемые при строительстве тепловых сетей, отличаются большим многообразием. Сборные камеры из железобетонных деталей разработаны для теплопроводов малых и средних диаметров. Камеры больших размеров выполняются из бетонных блоков и монолитного железобетона. Конструкции неподвижных опор в каналах выполняются из монолитного, а также сборного железобетона. В Москве, Новосибирске и других городах значительное распространение получили так называемые общие коллекторы, в которых теплопроводы прокладываются совместно с электрическими и телефонными кабелями, водопроводными и другими подземными сетями.

Проходные каналы и общие коллекторы оборудуются электрическим освещением, телефонной связью, вентиляцией, различными приборами автоматического управления и средствами водоотлива.

В вентилируемых проходных туннелях обеспечивается благоприятный температурно-влажностный режим воздушной среды, который способствует хорошей сохранности теплопроводов.

При строительстве общих коллекторов в Москве открытым способом работ хорошо зарекомендовала себя конструкция из крупных ребристых железобетонных блоков, предложенная инженерами Н. М. Давидянцом и А. А. Ляминым.

Способ совместной прокладки подземных сетей в общих коллекторах имеет целый ряд преимуществ, из которых наиболее существенными являются : повышение долговечности материальной части сетей и обеспечение наилучших условий эксплуатации. При эксплуатации тепловых сетей в коллекторах, а также при необходимости строительства новых подземных сетей не требуется вскрытия городских территорий для проведения ремонта. Размещение сетей различного назначения в коллекторах позволяет организовать их комплексное и плановое проектирование, строительство и эксплуатацию и дает возможность упорядочить всю систему размещения подземных сетей более компактно как в плане, так и в поперечном сечении городских проездов. Подземные городские коллекторы представляют собой современные инженерные сооружения.

а - раздельной;

б - совместной;

Т К -телефонная канализация;

Э - электрические кабели;

Т - теплопроводы 2d = 400 мм;

Г - газопровод d=300 мм

В - водопровод d =300 мм;

С - водосток d= 600 мм;

К - канализация d =200 мм;

Т КАБ - телефонные кабели

Внутренний вид общего коллектора


Количество трубопроводов и кабелей, размещаемых в коллекторах различных сечений


Проектирование подземных, надземных и подводных переходов теплопроводов через естественные и искусственные препятствия входит в общий комплекс проектирования тепловых сетей и только в редких случаях выполняется специализированными организациями.

Подводные переходы через реки выполняются в виде проходных туннелей и дюкеров; воздушные переходы через реки к железнодорожные пути - в виде мостовых переходов. Возможна прокладка теплопроводов и по существующим мостам и путепроводам.

При пересечении трассой тепловых сетей железных и автомобильных дорог, а также городских проездов чаще всего сооружаются подземные переходы, осуществляемые закрытым способом для обеспечения бесперебойной эксплуатации дорог.

Подземные переходы выполняются главным образом в виде туннелей, сооружаемых при помощи металлических щитов круглого сечения. Эти туннели требуют значительного заглубления, а поэтому часто попадают в зону грунтовых вод, что осложняет производство работ и требует организации водоотлива из туннеля во время эксплуатации.

Другим видом подземного перехода является прокладка стальных футляров, внутри которых размещаются теплопроводы. Футляры прокладываются путем продавливания или прокола стальных труб гидравлическими домкратами. Осуществление этого вида переходов целесообразно там, где возможно пройти выше уровня грунтовых вод, не нарушая существующих подземных коммуникаций.

Подземные переходы из стальных футляров широко применяются в строительстве тепловых сетей.

Правильный выбор того или иного вида перехода составляет основную задачу при проектировании, поскольку стоимость этих сооружений весьма высокая и значительно увеличивает общую стоимость тепловых сетей.

На промышленных предприятиях большое распространение получила надземная прокладка теплопроводов по эстакадам, выполняемым часто из прокатного металла.

Проектирование эстакад с применением сборного железобетона в настоящее время существенно облегчается в связи с выпуском типового проекта «Унифицированные сборные железобетонные отдельно стоящие опоры под технологические трубопроводы» (серия ИС-01-06).

В городских тепловых сетях надземная прокладка теплопроводов выполнялась главным образом по металлическим мачтам решетчатой конструкции. Железобетонные мачты начали изготовляться только в настоящее время. Так, например, железобетонные мачты из сборных деталей для тепловых магистралей диаметром 1200 мм нашли применение в Москве. Детали конструкций этих мачт изготовляются на заводе и собираются на трассе.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва