Теория электролитической диссоциации. Растворы

ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

Растворы всех веществ можно разделить на две группы: проводят электрический ток или проводниками не являются.

С особенностями растворения веществ можно познакомиться экспериментально, исследуя электропроводность растворов этих веществ с помощью прибора, изображённого на рисунке

Пронаблюдайтеза следующим экспериментом «Изучение электрической проводимости веществ».

Для объяснения особенностей водных растворов электролитов шведским ученым С. Аррениусом в 1887 г. была предложена теория электролитической диссоциации . В дальнейшем она была развита многими учеными на основе учения о строении атомов и химической связи. Современное содержание этой теории можно свести к следующим трем положениям:

1. Электролиты при растворении в воде или расплавлении распадаются (диссоциируют) на ионы – положительно (катионы) и отрицательно (анионы) заряженныечастицы.

Ионы находятся в более устойчивых электронных состояниях, чем атомы. Они могут состоять из одного атома - это простые ионы ( Na + , Mg 2+ , А l 3+ и т.д.) - или из нескольких атомов - это сложные ионы ( N О 3 - , SO 2- 4 , РО З- 4 и т.д.).

2. В растворах и расплавах электролиты проводят электрический ток .

Под действием электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицатель­но заряженные - к аноду. Поэтому первые называются катионами, вторые - анионами. Направленное движение ионов происходит в результате притяжения их противоположно заряженными электродами.

ИСПЫТАНИЕ ВЕЩЕСТВ НА ЭЛЕКТРОПРОВОДНОСТЬ

ВЕЩЕСТВА

ЭЛЕКТРОЛИТЫ

НЕЭЛЕКТРОЛИТЫ

Электролиты – это вещества, водные растворы или расплавы которых проводят электрический ток

Неэлектролиты – это вещества, водные растворы или расплавы которыхне проводят электрический ток

Вещества с ионной химической связью или ковалентной сильнополярной химической связью – кислоты, соли, основания

Вещества с ковалентной неполярной химической связью или ковалентной слабополярнойхимической связью

В растворах и расплавах образуются ионы

В растворах и расплавах не образуются ионы

ПАМЯТКА

ЭЛЕКТРОЛИТЫ И НЕЭЛЕКТРОЛИТЫ

ТЕПЛОВЫЕ ЭФФЕКТЫ ПРИ РАСТВОРЕНИИ ВЕЩЕСТВ В ВОДЕ

3. Диссоциация - обратимый процесс: параллельно с распадом молекул на ионы (диссоциация) протекает процесс соединения ионов (ассоциация).

Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости.Например, уравнение диссоциации молекулы электролита К A на катион К + и анион А - в общем виде записывается так:

КА ↔ K + + A -

Рассмотрим процесс растворения электролитов в воде

В целом молекула воды не заряжена. Но внутри молекулы Н 2 О атомы водорода и кислорода располагаются так, что положительные и отрицательные заряды находятся в противоположных концах молекулы (рис. 1). Поэтому молекула воды представляет собой диполь.

Растворение в воде веществ с ионной химической связью

(на примере хлорида натрия – поваренной соли)

Механизм электролитической диссоциации NaCl при растворении поваренной соли в воде (рис. 2) состоит в последовательном отщеплении ионов натрия и хлора полярными молекулами воды. Вслед за переходом ионов Na + и Сl – из кристалла в раствор происходит образование гидратов этих ионов.

Растворение в воде веществ с ковалентной сильнополярной химической связью

(на примере соляной кислоты)

При растворении в воде соляной кислоты (в молекулах HCl cвязь между атомами ковалентная сильнополярная) происходит изменение характера химической связи. Под влиянием полярных молекул воды ковалентная полярная связь превращается в ионную. Образовавшиеся ионы остаются связанными с молекулами воды – гидратированными. Если растворитель неводный, то ионы называют сольватированными (рис.3).

Основные положения:

Электролитическая диссоциация – это процесс распада электролита на ионы при растворении его в воде или расплавлении.

Электролиты – это вещества, которые при растворении в воде или в расплавленном состоянии распадаются на ионы.

Ионы – это атомы или группы атомов, обладающие положительным (катионы ) или отрицательным (анионы ) зарядом.

Ионы отличаются от атомов как по строению, так и по свойствам

Пример 1. Сравним свойства молекулярного водорода (состоит из двух нейтральных атомов водорода) со свойствами иона.

Атом водорода

Ион водорода

1 Н 0 1 s 1

1 Н + 1 s 0

Пример 2. Сравним свойства атомарного и молекулярного хлора со свойствами иона.

Атом хлора

Ион хлора

17 Cl 0 1s 2 2s 2 2p 6 3s 2 3p 5

17 Cl - 1s 2 2s 2 2p 6 3s 2 3p 6

Атомы хлора имеют незавершённый внешний уровень, поэтому они химически очень активны, принимают электроны и восстанавливаются.

Именно поэтому газообразный хлор ядовит, при вдыхании его наступает отравление организма.

Ионы хлора имеют завершённый внешний уровень, поэтому они химически неактивны, находятся в устойчивом электронном состоянии.

Ионы хлора входят в состав поваренной соли, употребление в пищу которой не вызывает отравления организма.

Запомните!

1. Ионы отличаются от атомов и молекул по строению и свойствам;

2. Общий и характерный признак ионов – наличие электрических зарядов;

3. Растворы и расплавы электролитов проводят электрический ток из-за наличия в них ионов.

РАСТВОРЫ
ТЕОРИЯ ЭЛЕКТРОЛИТИЧЕСКОЙ ДИССОЦИАЦИИ

ЭЛЕКТРОЛИТИЧЕСКАЯ ДИССОЦИАЦИЯ
ЭЛЕКТРОЛИТЫ И НЕЭЛЕКТРОЛИТЫ

Теория электролитической диссоциации

(С. Аррениус, 1887г.)

1. При растворении в воде (или расплавлении) электролиты распадаются на положительно и отрицательно заряженные ионы (подвергаются электролитической диссоциации).

2. Под действием электрического тока катионы (+) двигаются к катоду (-), а анионы (-) – к аноду (+).

3. Электролитическая диссоциация - процесс обратимый (обратная реакция называется моляризацией).

4. Степень электролитической диссоциации (a ) зависит от природы электролита и растворителя, температуры и концентрации. Она показывает отношение числа молекул, распавшихся на ионы (n ) к общему числу молекул, введенных в раствор (N ).

a = n / N 0< a <1

Механизм электролитической диссоциации ионных веществ

При растворении соединений с ионными связями (например , NaCl ) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.

Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.

Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

Механизм электролитической диссоциации полярных веществ

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например , HCl ), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

Электролиты и неэлектролиты

Электролитическая диссоциация веществ, идущая с образованием свободных ионов объясняет электрическую проводимость растворов.

Процесс электролитической диссоциации принято записывать в виде схемы, не раскрывая его механизма и опуская растворитель (H 2 O ), хотя он является основным участником.

CaCl 2 « Ca 2+ + 2Cl -

KAl(SO 4) 2 « K + + Al 3+ + 2SO 4 2-

HNO 3 « H + + NO 3 -

Ba(OH) 2 « Ba 2+ + 2OH -

Из электронейтральности молекул вытекает, что суммарный заряд катионов и анионов должен быть равен нулю.

Например , для

Al 2 (SO 4) 3 ––2 (+3) + 3 (-2) = +6 - 6 = 0

KCr(SO 4) 2 ––1 (+1) + 3 (+3) + 2 (-2) = +1 + 3 - 4 = 0

Сильные электролиты

Это вещества, которые при растворении в воде практически полностью распадаются на ионы. Как правило, к сильным электролитам относятся вещества с ионными или сильно полярными связями: все хорошо растворимые соли, сильные кислоты (HCl , HBr , HI , HClO 4 , H 2 SO 4 , HNO 3 ) и сильные основания (LiOH , NaOH , KOH , RbOH , CsOH , Ba (OH ) 2 , Sr (OH ) 2 , Ca (OH ) 2 ).

В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют.

Слабые электролиты

Вещества, частично диссоциирующие на ионы. Растворы слабых электролитов наряду с ионами содержат недиссоциированные молекулы. Слабые электролиты не могут дать большой концентрации ионов в растворе.

К слабым электролитам относятся:

1) почти все органические кислоты (CH 3 COOH , C 2 H 5 COOH и др.);

2) некоторые неорганические кислоты (H 2 CO 3 , H 2 S и др.);

3) почти все малорастворимые в воде соли, основания и гидроксид аммония (Ca 3 (PO 4 ) 2 ; Cu (OH ) 2 ; Al (OH ) 3 ; NH 4 OH ) ;

4) вода.

Они плохо (или почти не проводят) электрический ток.

СH 3 COOH « CH 3 COO - + H +

Cu (OH ) 2 « [ CuOH ] + + OH - (первая ступень)

[ CuOH ] + « Cu 2+ + OH - (вторая ступень)

H 2 CO 3 « H + + HCO - (первая ступень)

HCO 3 - « H + + CO 3 2- (вторая ступень)

Неэлектролиты

Вещества, водные растворы и расплавы которых не проводят электрический ток. Они содержат ковалентные неполярные или малополярные связи, которые не распадаются на ионы.

Электрический ток не проводят газы, твердые вещества (неметаллы), органические соединения (сахароза, бензин, спирт).

Степень диссоциации. Константа диссоциации

Концентрация ионов в растворах зависит от того, насколько полно данный электролит диссоциирует на ионы. В растворах сильных электролитов, диссоциацию которых можно считать полной, концентрацию ионов легко определить по концентрации (c ) и составу молекулы электролита (стехиометрическим индексам), например :

Концентрации ионов в растворах слабых электролитов качественно характеризуют степенью и константой диссоциации.

Степень диссоциации (a ) - отношение числа распавшихся на ионы молекул (n ) к общему числу растворенных молекул (N ):

a = n / N

и выражается в долях единицы или в % (a = 0,3 – условная граница деления на сильные и слабые электролиты).

Пример

Определите мольную концентрацию катионов и анионов в 0,01 М растворах KBr , NH 4 OH , Ba (OH ) 2 , H 2 SO 4 и CH 3 COOH .

Степень диссоциации слабых электролитов a = 0,3.

Решение

KBr , Ba (OH ) 2 и H 2 SO 4 - сильные электролиты, диссоциирующие полностью (a = 1).

KBr « K + + Br -

0,01 M

Ba(OH) 2 « Ba 2+ + 2OH -

0,01 M

0,02 M

H 2 SO 4 « 2H + + SO 4

0,02 M

[ SO 4 2- ] = 0,01 M

NH 4 OH и CH 3 COOH – слабые электролиты (a = 0,3)

NH 4 OH + 4 + OH -

0,3 0,01 = 0,003 M

CH 3 COOH « CH 3 COO - + H +

[ H + ] = [ CH 3 COO - ] = 0,3 0,01 = 0,003 M

Степень диссоциации зависит от концентрации раствора слабого электролита. При разбавлении водой степень диссоциации всегда увеличивается, т.к. увеличивается число молекул растворителя (H 2 O ) на одну молекулу растворенного вещества. По принципу Ле Шателье равновесие электролитической диссоциации в этом случае должно сместиться в направлении образования продуктов, т.е. гидратированных ионов.

Степень электролитической диссоциации зависит от температуры раствора. Обычно при увеличении температуры степень диссоциации растет, т.к. активируются связи в молекулах, они становятся более подвижными и легче ионизируются. Концентрацию ионов в растворе слабого электролита можно рассчитать, зная степень диссоциации a и исходную концентрацию вещества c в растворе.

Пример

Определите концентрацию недиссоциированных молекул и ионов в 0,1 М раствора NH 4 OH , если степень диссоциации равна 0,01.

Решение

Концентрации молекул NH 4 OH , которые к моменту равновесия распадутся на ионы, будет равна a c . Концентрация ионов NH 4 - и OH - - будет равна концентрации продиссоциированных молекул и равна a c (в соответствии с уравнением электролитической диссоциации)

NH 4 OH

NH 4 +

OH -

c - a c

A c = 0,01 0,1 = 0,001 моль/л

[ NH 4 OH ] = c - a c = 0,1 – 0,001 = 0,099 моль/л

Константа диссоциации (K D ) - отношение произведения равновесных концентраций ионов в степени соответствующих стехиометрических коэффициентов к концентрации недиссоциированных молекул.

Она является константой равновесия процесса электролитической диссоциации; характеризует способность вещества распадаться на ионы: чем выше K D , тем больше концентрация ионов в растворе.

Диссоциации слабых многоосновных кислот или многокислотных оснований протекают по ступеням, соответственно для каждой ступени существует своя константа диссоциации:

Первая ступень:

H 3 PO 4 « H + + H 2 PO 4 -

K D 1 = () / = 7,1 10 -3

Вторая ступень:

H 2 PO 4 - « H + + HPO 4 2-

K D 2 = () / = 6,2 10 -8

Третья ступень:

HPO 4 2- « H + + PO 4 3-

K D 3 = () / = 5,0 10 -13

K D 1 > K D 2 > K D 3

Пример

Получите уравнение, связывающее степень электролитической диссоциации слабого электролита (a ) с константой диссоциации (закон разбавления Оствальда) для слабой одноосновной кислоты НА .

HA « H + + A +

K D = () /

Если общую концентрацию слабого электролита обозначить c , то равновесные концентрации Н + и A - равны a c , а концентрация недиссоциированных молекул НА - (c - a c ) = c (1 - a )

K D = (a c a c) / c(1 - a ) = a 2 c / (1 - a )

В случае очень слабых электролитов (a £ 0,01 )

K D = c a 2 или a = \ é (K D / c )

Пример

Вычислите степень диссоциации уксусной кислоты и концентрацию ионов H + в 0,1 M растворе, если K D (CH 3 COOH ) = 1,85 10 -5

Решение

Воспользуемся законом разбавления Оствальда

\ é (K D / c ) = \ é((1,85 10 -5) / 0,1 )) = 0,0136 или a = 1,36%

[ H + ] = a c = 0,0136 0,1 моль/л

Произведение растворимости

Определение

Поместим в химический стакан какую-либо труднорастворимую соль, например , AgCl и добавим к осадку дистиллированной воды. При этом ионы Ag + и Cl - , испытывая притяжение со стороны окружающих диполей воды, постепенно отрываются от кристаллов и переходят в раствор. Сталкиваясь в растворе, ионы Ag + и Cl - образуют молекулы AgCl и осаждаются на поверхности кристаллов. Таким образом, в системе происходят два взаимно противоположных процесса, что приводит к динамическому равновесию, когда в единицу времени в раствор переходит столько же ионов Ag + и Cl - , сколько их осаждается. Накопление ионов Ag + и Cl - в растворе прекращается, получается насыщенный раствор . Следовательно, мы будем рассматривать систему, в которой имеется осадок труднорастворимой соли в соприкосновении с насыщенным раствором этой соли. При этом происходят два взаимно противоположных процесса:

1) Переход ионов из осадка в раствор. Скорость этого процесса можно считать постоянной при неизменной температуре: V 1 = K 1 ;

2) Осаждение ионов из раствора. Скорость этого процесса V 2 зависит от концентрации ионов Ag + и Cl - . По закону действия масс:

V 2 = k 2

Так как данная система находится в состоянии равновесия, то

V 1 = V 2

k 2 = k 1

K 2 / k 1 = const (при T = const)

Таким образом, произведение концентраций ионов в насыщенном растворе труднорастворимого электролита при постоянной температуре является постоянной величиной . Эта величина называется произведением растворимости (ПР ).

В приведенном примереПР AgCl = [ Ag + ] [ Cl - ] . В тех случаях, когда электролит содержит два или несколько одинаковых ионов, концентрация этих ионов, при вычислении произведения растворимости должна быть возведена в соответствующую степень.

Например , ПР Ag 2 S = 2 ; ПР PbI 2 = 2

В общем случае выражение произведения растворимости для электролита A m B n

ПР A m B n = [A] m [B] n .

Значения произведения растворимости для разных веществ различны.

Например , ПР CaCO 3 = 4,8 10 -9 ; ПР AgCl = 1,56 10 -10 .

ПР легко вычислить, зная ра c творимость соединения при данной t ° .

Пример 1

Растворимость CaCO 3 равна 0,0069 или 6,9 10 -3 г/л. Найти ПР CaCO 3 .

Решение

Выразим растворимость в молях:

S CaCO 3 = ( 6,9 10 -3 ) / 100,09 = 6,9 10 -5 моль/л

M CaCO 3

Так как каждая молекула CaCO 3 дает при растворении по одному иону Ca 2+ и CO 3 2- , то
[ Ca 2+ ] = [ CO 3 2- ] = 6,9 10 -5 моль/л ,
следовательно,
ПР CaCO 3 = [ Ca 2+ ] [ CO 3 2- ] = 6,9 10 –5 6,9 10 -5 = 4,8 10 -9

Зная величину ПР , можно в свою очередь вычислить растворимость вещества в моль/л или г/л.

Пример 2

Произведение растворимости ПР PbSO 4 = 2,2 10 -8 г/л.

Чему равна растворимость PbSO 4 ?

Решение

Обозначим растворимость PbSO 4 через X моль/л. Перейдя в раствор, X молей PbSO 4 дадут X ионов Pb 2+ и X ионов SO 4 2- , т.е.:

= = X

ПР PbSO 4 = = = X X = X 2

X = \ é(ПР PbSO 4 ) = \ é(2,2 10 -8 ) = 1,5 10 -4 моль/л.

Чтобы перейти к растворимости, выраженной в г/л, найденную величину умножим на молекулярную массу, после чего получим:

1,5 10 -4 303,2 = 4,5 10 -2 г/л .

Образование осадков

Если

[ Ag + ] [ Cl - ] < ПР AgCl - ненасыщенный раствор

[ Ag + ] [ Cl - ] = ПР AgCl - насыщенный раствор

[ Ag + ] [ Cl - ] > ПР AgCl - перенасыщенный раствор

Осадок образуется в том случае, когда произведение концентраций ионов малорастворимого электролита превысит величину его произведения растворимости при данной температуре. Когда ионное произведение станет равным величине ПР , выпадение осадка прекращается. Зная объем и концентрацию смешиваемых растворов, можно рассчитать, будет ли выпадать осадок образующейся соли.

Пример 3

Выпадает ли осадок при смешении равных объемов 0,2 M растворов Pb (NO 3 ) 2 и NaCl .
ПР
PbCl 2 = 2,4 10 -4 .

Решение

При смешении объем раствора возрастает вдвое и концетрация каждого из веществ уменьшится вдвое, т.е. станет 0,1 M или 1,0 10 -1 моль/л. Таковы же будут концентрации Pb 2+ и Cl - . Следовательно, [ Pb 2+ ] [ Cl - ] 2 = 1 10 -1 (1 10 -1 ) 2 = 1 10 -3 . Полученная величина превышает ПР PbCl 2 (2,4 10 -4 ) . Поэтому часть соли PbCl 2 выпадает в осадок. Из всего сказанного выше можно сделать вывод о влиянии различных факторов на образование осадков.

Влияние концентрации растворов

Труднорастворимый электролит с достаточно большой величиной ПР нельзя осадить из разбавленных растворов. Например , осадок PbCl 2 не будет выпадать при смешении равных объемов 0,1 M растворов Pb (NO 3 ) 2 и NaCl . При смешивании равных объемов концентрации каждого из веществ станут 0,1 / 2 = 0,05 M или 5 10 -2 моль/л . Ионное произведение [ Pb 2+ ] [ Cl 1- ] 2 = 5 10 -2 (5 10 -2 ) 2 = 12,5 10 -5 . Полученная величина меньше ПР PbCl 2 , следовательно выпадения осадка не произойдет.

Влияние количества осадителя

Для возможно более полного осаждения употребляют избыток осадителя.

Например , осаждаем соль BaCO 3 : BaCl 2 + Na 2 CO 3 ® BaCO 3 ¯ + 2 NaCl . После прибавления эквивалентного количества Na 2 CO 3 в растворе остаются ионы Ba 2+ , концентрация которых обусловлена величиной ПР .

Повышение концентрации ионов CO 3 2- , вызванное прибавлением избытка осадителя (Na 2 CO 3 ) , повлечет за собой соответственное уменьшение концентрации ионов Ba 2+ в растворе, т.е. увеличит полноту осаждения этого иона.

Влияние одноименного иона

Растворимость труднорастворимых электролитов понижается в присутствии других сильных электролитов, имеющих одноименные ионы. Если к ненасыщенному раствору BaSO 4 понемногу прибавлять раствор Na 2 SO 4 , то ионное произведение, которое было сначала меньше ПР BaSO 4 (1,1 10 -10 ) , постепенно достигнет ПР и превысит его. Начнется выпадение осадка.

Влияние температуры

ПР является постоянной величиной при постоянной температуре. С увеличением температуры ПР возрастает, поэтому осаждение лучше проводить из охлажденных растворов.

Растворение осадков

Правило произведения растворимости важно для переведения труднорастворимых осадков в раствор. Предположим, что надо растворить осадок Ba С O 3 . Раствор, соприкасающийся с этим осадком, насыщен относительно Ba С O 3 .
Это означает, что
[ Ba 2+ ] [ CO 3 2- ] = ПР BaCO 3 .

Если добавить в раствор кислоту, то ионы H + свяжут имеющиеся в растворе ионы CO 3 2- в молекулы непрочной угольной кислоты:

2H + + CO 3 2- ® H 2 CO 3 ® H 2 O + CO 2 ­

Вследствие этого резко снизится концентрация иона CO 3 2- , ионное произведение станет меньше величины ПР BaCO 3 . Раствор окажется ненасыщенным относительно Ba С O 3 и часть осадка Ba С O 3 перейдет в раствор. При добавлении достаточного количества кислоты можно весь осадок перевести в раствор. Следовательно, растворение осадка начинается тогда, когда по какой-либо причине ионное произведение малорастворимого электролита становится меньше величины ПР . Для того, чтобы растворить осадок, в раствор вводят такой электролит, ионы которого могут образовывать малодиссоциированное соединение с одним из ионов труднорастворимого электролита. Этим объясняется растворение труднорастворимых гидроксидов в кислотах

Fe(OH) 3 + 3HCl ® FeCl 3 + 3H 2 O

Ионы OH - связываются в малодиссоциированные молекулы H 2 O .

Таблица. Произведение растворимости (ПР) и растворимость при 25 AgCl

1,25 10 -5

1,56 10 -10

AgI

1,23 10 -8

1,5 10 -16

Ag 2 CrO 4

1,0 10 -4

4,05 10 -12

BaSO 4

7,94 10 -7

6,3 10 -13

CaCO 3

6,9 10 -5

4,8 10 -9

PbCl 2

1,02 10 -2

1,7 10 -5

PbSO 4

1,5 10 -4

2,2 10 -8

Электролиты и неэлектролиты

Взятые в отдельности, вода, соли, щелочи и кислоты тока не проводят. Но водные растворы кислот, щелочей и солей проводят электрический ток. На какие группы можно разделить все вещества по отношению к электрическому току?

Вещества проводящие электрический ток – электролиты ; вещества не проводящие электрический ток – неэлектролиты.


Свойства электролитов

Электролиты – проводники второго рода. В растворе или расплаве они распадаются на ионы, благодаря чему и проводят электрический ток.

Для объяснения этого свойства в 1887 г. Шведский ученый С.Арениус предложил теорию электролитической диссоциации.

Распад электролитов на ионы при растворении его в воде или расплавлении называют электролитической диссоциацией.

Основные положения теории электролитической диссоциации.

1) Электролиты при растворении в воде распадаются (диссоциируют) на ионы – положительные и отрицательные: NaCl ↔ Na + + Cl -

2) При действии электрического тока ионы приобретают направленное движение: положительно заряженные ионы движутся к катоду, отрицательно заряженные – к аноду. Поэтому первые называются катионами, а вторые – анионами. Направленное движение ионов происходит в результате притяжения их к противоположено заряженным электродам.

3) Диссоциация – обратимый процесс: параллельно с распадом молекул на ионы (диссоциацией) протекает процесс соединения ионов (ассоциация). Поэтому в уравнениях электролитической диссоциации вместо знака равенства ставят знак обратимости.

С.Аррениус не мог указать, почему электролиты при растворении в воде распадаются на ионы, так как считал диссоциацию электролитов физическим процессом. Причину диссоциации выяснил русский ученый И.А.Каблуков, который, основываясь на теории Д.И.Менделеева о химической природе растворения, стал рассматривать электролитическую диссоциацию как химическое взаимодействие электролитов с водой. Основная причина диссоциации – гидратация ионов, идущая с выделением большого количества энергии, чем затрачивается на ионизацию растворяемого вещества.

Механизм электролитической диссоциации

Диссоциация электролитов происходит в воде и не происходит, например, в керосине. Как это объяснить?

В молекуле воды связи между атомами водорода и атомами кислорода ковалентные полярные. Электронные пары, связывающие атомы. Смещены от атома водорода к атому кислорода. На атомах водорода поэтому сосредоточен положительный заряд, а на атоме кислорода – отрицательный.

Для рассмотрения механизма диссоциации электролитов нужно учитывать не только полярность в молекуле воды связей между атомами водорода и кислорода. Но и полярность самой молекулы воды. Полярную молекулу воды – диполь – можно изображать в виде эллипса с указанием зарядов на полюсах с указанием зарядов на полюсах знаками «+» и «–».

Рассмотрим механизм диссоциации веществ с ионным видом связи на примере хлорида натрия. Он состоит из трёх этапов:

a) ориентация полярных молекул воды (диполей) вокруг кристалла и расшатывание кристаллической решётки под действием хаотичного движения молекул воды; (при погружении кристалла соли в воду молекулы воды притягиваются к ионам, находящимся на поверхности кристалла: к положительным ионам своими отрицательными полюсами (атомы кислорода), а к отрицательным ионам – положительными полюсами (атомы водорода).

b) гидратация – окружение молекулами воды ионов натрия и хлора (образование гидратированных ионов);

c) разрушение кристаллической решётки – диссоциация хлорида натрия.

(притянувшись к ионам растворяемой соли молекулы воды во много раз ослабляют притяжение ионов друг к другу. Связи между положительными и отрицательными ионами в кристаллической решетке разрываются. Происходит разъединение гидратированных ионов)

Молекулы воды, притянувшиеся к ионам при растворении кристалла, остаются связанными с ними и в растворе.

Механизм диссоциации веществ с ковалентной полярной связью включает в себя дополнительный этап:

ориентация полярных молекул воды вокруг полярной молекулы электролита;

изменение вида связи с ковалентной полярной на ионную;

диссоциация электролита;

гидратация ионов.

4) Не все электролиты в равной мере диссоциируют на ионы. В растворах электролитов наряду с ионами могут присутствовать и молекулы. Степень диссоциации a – это отношение молекул, распавшихся на ионы, к общему числу молекул в растворе a = n/N,

где n – число диссоциированных молекул, N – общее число молекул в растворе.

Сильные электролиты при растворении в воде практически полностью диссоциируют на ионы. У них a стремится к единице. К сильным электролитам относятся: все растворимые соли, кислоты H2SO4, HNO3, HCl, все щелочи.

Слабые электролиты при растворении в воде почти не диссоциируют на ионы. У них a стремится к нулю. К слабым электролитам относятся: слабые кислоты – H 2 S, H 2 CO 3 , H 2 SO 3 , HNO 2 , NH 3 ·H 2 O, вода.

Диссоциация кислот, солей и оснований.

Диссоциация протекает в растворах и расплавах.

Растворимые кислоты - это электролиты, которые в водных растворах и расплавах диссоциируют на катион водорода и анион кислотного остатка.

H 2 SO 4 ↔ 2 H + + SO 4 2-

Основания – это электролиты, которые в водных растворах и расплавах диссоциируют на катион металла и гидроксид-анион.

NaOH ↔ Na + + OH –

Растворимые основания – это гидроксиды, образованные ионами активных металлов: одновалентных: Li + , Nа + , К + , Rb + , Сs + , Fr + ; двухвалентных: Са 2+ , Sr 2+ , Ва 2+ .

Соли – это электролиты, которые в водных растворах и расплавах диссоциируют на катион металла и анион кислотного остатка.

Na 2 SO 4 ↔ 2Na + + SO 4 2-

Задание для самопроверки:

Составьте уравнения диссоциации следующих электролитов: нитрата цинка, карбоната натрия, гидроксида кальция, хлорида стронция, сульфата лития, сернистой кислоты, хлорида меди(II), сульфата железа(III), фосфата калия, сероводородной кислоты, бромида кальция, гидроксихлорида кальция, нитрата натрия, гидроксида лития.

Электролиты и неэлектролиты

Из уроков физики известно, что растворы од­них веществ способны проводить электрический ток, а других - нет.

Вещества, растворы которых проводят электрический ток, называются электролитами .

Вещества, растворы кото­рых не проводят электрический ток, называются неэлектролитами . Например растворы сахара, спирта, глюкозы и некоторых других веществ не проводят элек­трический ток.

Электролитические диссоциация и ассоциация

Почему же растворы элек­тролитов проводят электри­ческий ток?

Шведский ученый С. Ар­рениус, изучая электропро­водность различных веществ, пришел в 1877 г. к выводу, что причиной электропровод­ности является наличие в растворе ионов , которые образуются при растворении электролита в воде.

Процесс распада электролита на ионы называ­ется электролитической диссоциацией .

С. Аррениус, который придерживался физиче­ской теории растворов, не учитывал взаимодей­ствия электролита с водой и считал, что в раство­рах находятся свободные ионы. В отличие от него русские химики И. А. Каблуков и В. А. Кистяков- ский применили к объяснению электролитической диссоциации химическую теорию Д. И. Менделеева и доказали, что при растворении электролита про­исходит химическое взаимодействие растворенного вещества с водой, которое приводит к образованию гидратов, а затем они диссоциируют на ионы . Они считали, что в растворах находятся не свободные, не «голые» ионы, а гидратированные, т. е. «одетые в шубку» из молекул воды.

Молекулы воды представляют собой диполи (два полюса), так как атомы водорода расположены под углом 104,5°, благодаря чему молекула имеет угло­вую форму. Молекула воды схематически представ­лена ниже.

Как правило, легче всего диссоциируют веще­ства с ионной связью и, соответственно, с ионной кристаллической решеткой, так как они уже состо­ят из готовых ионов. При их растворении диполи во­ды ориентируются противоположно заряженными концами вокруг положительных и отрицательных ионов электролита.

Между ионами электролита и диполями воды возникают силы взаимного притяжения . В ре­зультате связь между ионами ослабевает, и про­исходит переход ионов из кристалла в раствор. Очевидно, что последовательность про­цессов, происходящих при диссоциации веществ с ионной связью (солей и щелочей), будет такой:

1) ориентация молекул (диполей) воды около ио­нов кристалла;

2) гидратация (взаимодействие) молекул воды с ионами поверхностного слоя кристалла;

3) диссоциация (распад) кристалла электролита на гидратированные ионы.

Упрощенно происходящие процессы можно от­разить с помощью следующего уравнения:

Аналогично диссоциируют и электролиты, в мо­лекулах которых ковалентная связь (например, мо­лекулы хлороводорода HCl, смотри ниже); только в этом случае под влиянием диполей воды происходит превращение ковалентной полярной связи в ион­ную; последовательность процессов, происходящих при этом, будет такой:

1) ориентация молекул воды вокруг полюсов моле­кул электролита;

2) гидратация (взаимодействие) молекул воды с молекулами электролита;

3) ионизация молекул электролита (превращение ковалентной полярной связи в ионную);

4) диссоциация (распад) молекул электролита на гидратированные ионы.


Упрощенно процесс диссоциации соляной кис­лоты можно отразить с помощью следующего урав­нения:

Следует учитывать, что в растворах электро­литов хаотически движущиеся гидратированные ионы могут столкнуться и вновь объединиться между собой. Этот обратный процесс называется ассоциацией. Ассоциация в растворах происходит параллельно с диссоциацией, поэтому в уравнени­ях реакций ставят знак обратимости.


Свойства гидратированных ионов отличаются от свойств негидратированных. Например, негидрати­рованный ион меди Cu 2+ - белый в безводных кри­сталлах сульфата меди (II) и имеет голубой цвет, когда гидратирован, т. е. связан с молекулами во­ды Cu 2+ nH 2 O. Гидратированные ионы имеют как постоянное, так и переменное число молекул воды.

Степень электролитической диссоциации

В растворах электролитов наряду с ионами при­сутствуют и молекулы. Поэтому растворы электро­литов характеризуются степенью диссоциации , ко­торая обозначается греческой буквой а («альфа»).

Это отношение числа частиц, распавшихся на ионы (N g), к общему числу растворенных частиц (N p).

Степень диссоциации электролита определяется опытным путем и выражается в долях или про­центах. Если а = 0, то диссоциация отсутствует, а если а = 1, или 100 %, то электролит полностью распадается на ионы. Различные электролиты име­ют различную степень диссоциации, т. е. степень диссоциации зависит от природы электролита. Она также зависит и от концентрации: с разбавлением раствора степень диссоциации увеличивается.

По степени электролитической диссоциации электролиты делятся на сильные и слабые.

Сильные электролиты - это электролиты, кото­рые при растворении в воде практически полностью диссоциируют на ионы. У таких электролитов зна­чение степени диссоциации стремится к единице.

К сильным электролитам относятся:

1) все растворимые соли;

2) сильные кислоты, например: H 2 SO 4 , HCl, HNO 3 ;

3) все щелочи, например: NaOH, KOH.

Слабые электролиты - это такие электроли­ты, которые при растворении в воде почти не дис­социируют на ионы. У таких электролитов значе­ние степени диссоциации стремится к нулю.

К слабым электролитам относятся:

1) слабые кислоты - H 2 S, H 2 CO 3 , HNO 2 ;

2) водный раствор аммиака NH 3 H 2 O;

4) некоторые соли.

Константа диссоциации

В растворах слабых электролитов вследствие их неполной диссоциации устанавливается динамичес­кое равновесие между недиссоциированными моле­кулами и ионами . Например, для уксусной кислоты:

Можно применить к этому равновесию закон действующих масс и записать выражение констан­ты равновесия:

Константу равновесия, характеризующую про­цесс диссоциации слабого электролита, называют константой диссоциации .

Константа диссоциации характеризует способ­ность электролита (кислоты, основания, воды) диссо­циировать на ионы . Чем больше константа, тем лег­че электролит распадается на ионы, следовательно, тем он сильнее. Значения констант диссоциации для слабых электролитов приводятся в справочниках.

Основные положения теории электролитической диссоциации

1. При растворении в воде электролиты диссо­циируют (распадаются) на положительные и отри­цательные ионы.

Ионы - это одна из форм существования хими­ческого элемента. Например, атомы металла натрия Na 0 энергично взаимодейству­ют с водой, образуя при этом щелочь (NaOH) и водород Н 2 , в то время как ионы натрия Na + таких продуктов не обра­зуют. Хлор Cl 2 имеет желто­зеленый цвет и резкий запах, ядовит, а ионы хлора Cl — бесцветны, не ядовиты, лишены запаха.

Ионы - это положительно или отрицательно заряженные частицы, в которые превращаются атомы или группы атомов одного или нескольких химических элементов в результате отдачи или присоединения электронов.

В растворах ионы беспорядочно передвигаются в различных направлениях.

По составу ионы делятся на простые - Cl — , Na + и сложные - NH 4 + , SO 2 — .

2. Причиной диссоциации электролита в вод­ных растворах является его гидратация, т. е. взаи­модействие электролита с молекулами воды и раз­рыв химической связи в нем.

В результате такого взаимодействия образуются гидратированные, т. е. связанные с молекулами во­ды, ионы. Следовательно, по наличию водной обо­лочки ионы делятся на гидратированные (в раствоpax и кристаллогидратах) и негидратированные (в безводных солях).

3. Под действием электрического тока положитель­но заряженные ионы движутся к отрицательному по­люсу источника тока - катоду и поэтому называют­ся катионами, а отрицательно заряженные ионы движутся к положительному полюсу ис­точника тока - аноду и по­этому называются анионами.

Следовательно, существу­ет еще одна классификация ионов - по знаку их заряда .

Сумма зарядов катионов (Н + , Na + , NH 4 + , Cu 2+) равна сумме зарядов анионов (Cl — , OH — , SO 4 2-), вследствие че­го растворы электролитов (HCl, (NH 4) 2 SO 4 , NaOH, CuSO 4) остаются электронейтральными.

4. Электролитическая диссоциация - процесс обратимый для слабых электролитов.

Наряду с процессом диссоциации (распад элек­тролита на ионы) протекает и обратный процесс - ассоциация (соединение ионов). Поэтому в уравне­ниях электролитической диссоциации вместо знака равенства ставят знак обратимости, например:

5. Не все электролиты в одинаковой мере диссо­циируют на ионы.

Зависит от природы элек­тролита и его концентрации. Химические свойства растворов электролитов определяются свойствами тех ионов, которые они образуют при диссоциации.

Свойства растворов слабых электролитов об­условлены молекулами и ионами, образовавшими­ся в процессе диссоциации, которые находятся в динамическом равновесии друг с другом.

Запах уксусной кислоты обусловлен наличием молекул CH 3 COOH, кислый вкус и изменение окра­ски индикаторов связаны с наличием в растворе ионов H + .

Свойства растворов сильных электролитов опре­деляются свойствами ионов, которые образуются при их диссоциации.

Например, общие свойства кислот, такие как кислый вкус, изменение окраски индикаторов и др., обусловлены наличи­ем в их растворах катионов водорода (точнее, ионов оксония H 3 O +). Общие свойства щелочей, такие как мылкость на ощупь, изменение окраски индикаторов и др. связаны с присутствием в их рас­творах гидроксид-ионов OH — , а свойства солей - с распадом их в растворе на катионы металла (или аммония) и анионы кислотных остатков.

Согласно теории электролитической диссоциа­ции все реакции в водных растворах электролитов являются реакциями между ионами . Этим обуслов­лена высокая скорость многих химических реак­ций в растворах электролитов.

Реакции, протекающие между ионами, называ­ют ионными реакциями , а уравнения этих реак­ций - ионными уравнениями .

Реакции ионного обмена в водных растворах мо­гут протекать:

1. Необратимо , до конца.

2. Обратимо , то есть протекать одновременно в двух противоположных направлениях. Реакции обмена между сильными электролита­ми в растворах протекают до конца или практи­чески необратимы, когда ионы, соединяясь друг с другом, образуют вещества:

а) нерастворимые;

б) малодиссоциирующие (слабые электролиты);

в) газообразные.

Приведем несколько примеров молекулярных и сокращенных ионных уравнений:

Реакция необратима , т. к. один из ее про­дуктов - нерастворимое вещество.

Реакция нейтрализации необратима , т. к. об­разуется малодиссоциирующее вещество - вода.

Реакция необратима , т. к. образуется газ CO 2 и малодиссоциирующее вещество - вода.

Если среди исходных веществ и среди продуктов реакции имеются слабые электролиты или мало­растворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают.

В обратимых реакциях равновесие смещается в сторону образования наименее растворимых или наименее диссоциированных веществ.

Например:

Равновесие смещается в сторону образования более слабого электролита - H 2 O. Однако до конца такая реакция протекать не будет: в растворе оста­ются недиссоциированные молекулы уксусной кис­лоты и гидроксид-ионы.

Если исходные вещества - сильные электро­литы, которые при взаимодействии не образуют нерастворимых или малодиссоциирующих веществ или газов, то такие реакции не протекают: при сме­шивании растворов образуется смесь ионов.

Справочный материал для прохождения тестирования:

Таблица Менделеева

Таблица растворимости

Министерство образования и науки Российской Федерации

Национальный исследовательский ядерный университет «МИФИ»

Балаковский инженерно-технологический институт

Электролитическая диссоциация

Методические указания к выполнению лабораторной работы

по курсу «Химия» для студентов технических

специальностей и направлений,

по курсу «Общая и неорганическая химия»

для студентов направления ХМТН

всех форм обучения

Балаково 2014

Цель работы – изучение механизма диссоциации водных растворов электролитов.

ОСНОВНЫЕПОНЯТИЯ

Электролитической диссоциацией называется процесс распада молекул веществ на ионы под действием полярных молекул растворителя. Электролиты – вещества, проводящие в растворе или расплаве электрический ток (к ним относятся многие кислоты, основания, соли).

Согласно теории электролитической теории С. Аррениуса (1887 г), при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами, к ним относятся ионы водорода и металлов. Отрицательно заряженные ионы называются анионами, к ним относятся ионы кислотных остатков и гидроксид-ионы. Суммарный заряд всех ионов равен нулю, поэтому раствор в целом нейтрален. Свойства ионов отличаются от свойств атомов, из которых они образованы. Электролитическая диссоциация - процесс обратимый (обратная реакция называется ассоциацией). Эту теорию позднее дополнили Д.И. Менделеев и И.А. Каблуков.

Механизм электролитической диссоциации

Электролитами являются вещества, в молекулах которых атомы связаны ионной или полярной связью. По современным представлениям электролитическая диссоциация происходит в результате взаимодействия молекул электролита с полярными молекулами растворителя. Сольватация - взаимодействие ионов с молекулами растворителя. Гидратация –процесс взаимодействия ионов с молекулами воды.

В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по–разному.

Легче всего диссоциируют вещества с ионной связью, которые состоят из ионов. При растворении таких соединений (например, NaCl) диполи воды ориентируются вокруг положительного и отрицательного ионов кристаллической решетки. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды

Рис.1. Схема диссоциации молекулы вещества с ионной связью

Процесс электролитической диссоциации можно выразить уравнением

NaCl + (m+n)H 2 O
Na + (H 2 O) m + Cl - (H 2 O) n

Обычно, процесс диссоциации записывают в виде уравнения, опуская растворитель (H 2 O)

NaCl
Na + + Cl -

Аналогично диссоциируют и молекулы с ковалентной полярной связью (например, HCl). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы. Диссоциация полярных молекул может быть полной или частичной.

Рис.2. Схема диссоциации молекулы вещества с ковалентной

полярной связью

Электролитическая диссоциация HCl выражается уравнением

HCl + (m+n)H 2 O
H + (H 2 O) m + Cl - (H 2 O) n

или, опуская растворитель (H 2 O),

КАn
K + + A -

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации (α). Степень диссоциации электролита показывает, какая часть растворенных молекул вещества распалась на ионы. Степенью диссоциации электролита называется отношение числа продиссоциировавших молекул (N дисс ) к общему числу растворенных молекул (N)

(1)

Степень диссоциации принято выражать или в долях единицы, или в процентах, например, для 0,1н раствора уксусной кислоты СН 3 СООН

α= 0,013 (или 1,3). Степень диссоциации зависит от природы электролита и растворителя, температуры и концентрации.

По степени диссоциации (α) все электролиты делят на три группы. Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,02 (2%) до 0,3 (30%)-средними, менее 0,02 (2%)-слабыми электролитами.

Сильные электролиты - химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют. Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl, HNO 3 , HBr, HI, HClO 4 , HМnO 4);

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH, NaOH, KOH, RbOH, CsOH, а также гидроксиды щелочноземельных металлов – Ba(OH) 2 , Ca(OH) 2 , Sr(OH) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

К электролитам средней силы относятся H 3 PO 4 , HF и др.

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном, в недиссоциированном состоянии (в молекулярной форме). К слабым электролитам относятся:

1) неорганические кислоты (H 2 CO 3 , H 2 S, HNO 2 , H 2 SO 3 , HCN, H 2 SiO 3 , HCNS, HСlO, HClO 2 , HBrO, Н 3 ВО 3 и др.);

2) гидроксид аммония (NH 4 OH);

3) вода Н 2 О;

4) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости);

5) большинство органических кислот (например, уксусная CH 3 COOH, муравьиная HCOOH).

Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

CH 3 COOH
Н + + CH 3 COO -

При установившемся равновесии на основании закона действующих масс

Константа диссоциации K указывает на прочность молекул в данном растворе: чем меньше K, тем слабее диссоциирует электролит и тем устойчивее его молекулы.

Константа диссоциации связана со степенью диссоциации зависимостью

, (2)

где – α –степень диссоциации;

c –молярная концентрация электролита в растворе, моль/л.

Если степень диссоциации α очень мала, то ею можно пренебречь, тогда

К=
или α= (4)

Зависимость (4) является математическим выражением закона разбавления В. Оствальда.

Поведение растворов слабых электролитов описывается законом Оствальда, а разбавленных растворов сильных электролитов – Дебая-Хюккеля (5):

К=
, (5)

где концентрация (с) заменена на активность (а) наиболее точно характеризующую поведение сильных электролитов. Коэффициенты активности зависят от природы растворителя и растворенного вещества, от концентрации раствора, а также от температуры.

Активность связана с концентрацией следующим соотношением:

(6)

где γ – коэффициент активности, который формально учитывает все виды взаимодействия частиц в данном растворе, приводящие к отклонению от свойств идеальных растворов.

Диссоциация различных электролитов

Согласно теории электролитической диссоциации, кислотой является электролит, диссоциирующий с образованием ионов Н + и кислотного остатка

HNO 3
H + + NO 3 -

H 2 SO 4
2H + + SO 4 2-

Электролит, диссоциирующий с образованием гидроксид-ионов ОН - , называется основанием. Например, гидроксид натрия диссоциирует по схеме:

NaOH
Na + + OH -

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато, например,

1 ступень H 2 CO 3
H + + HCO 3 –

2 ступень HCO 3 –
H + + CO 3 2–

Диссоциация по первой ступени характеризуется константой диссоциации K 1 = 4,3·10 –7

Диссоциация по второй ступени характеризуется константой диссоциации K 2 = 5,6·10 –11

Суммарное равновесие

H 2 CO 3
2H + + CO 3 2-

Суммарная константа равновесия

Ступенчатая диссоциация многовалентных оснований

1 ступень Cu(OH) 2
+ + OH -

2 ступень +
Cu 2+ + OH -

Для ступенчатой диссоциации всегда K 1 >K 2 >K 3 >..., т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Электролиты называют амфотерными, если они диссоциируют как кислота и как основание, например, гидроксид цинка:

2H + + 2-
Zn(OH) 2 + 2H 2 O
+ 2OH -

К амфотерным электролитам относится гидроксид алюминия Al(OH) 3 , свинца Pb(OH) 2 , олова Sn(OH) 2 и другие.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2
Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2–

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Диссоциация кислых солей происходит по ступеням, например:

1 ступень KHCO 3
K + + HCO 3 –

2 ступень HCO 3 –
H + + CO 3 2–

Степень электролитической диссоциации по второй ступени очень мала, поэтому раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли (гидроксосоли) – электролиты, содержащие в катионе одну или несколько гидроксо-групп OH – .Основные соли диссоциируют с образованием основных и кислотных остатков. Например:

1 ступень FeOHCl 2
2+ + 2Cl –

2 ступень 2+
Fe 3+ + OH –

Двойные соли диссоциируют на катионы металлов и анионы

KAl(SO 4) 2
K + + Al 3+ + 2SO 4 2-

Комплексные соли диссоциируют с образованием комплексного иона

К 3
3K + + 3-

Реакции обмена в растворах электролитов

Обменные реакции между электролитами в растворе идут в направлении связывания ионов и образования малорастворимых, газообразных веществ или слабых электролитов. Ионно-молекулярные или просто ионные уравнения реакций обмена отражают состояние электролита в растворе. В этих уравнениях сильные растворимые электро­литы записывают в виде составляющих их ионов, а слабые электролиты, малорастворимые и газообразные вещества условно записывают в молекуляр­ной форме, независимо от того, являются они исходными реагентами или продуктами реакции. В ионно-молекулярном уравнении одинаковые ионы из обеих его частей исклю­чаются. При составлении ионно-молекулярных уравнений следует помнить, что сумма зарядов в левой части уравнения должна быть равна сумме зарядов в правой части уравнения. При составлении уравнений см. табл. 1,2 приложения.

Например, написать ионно-молекулярные уравнения реакции между веществма Сu(NO 3) 2 и Na 2 S.

Уравнение реакции в молекуляр­ном виде:

Сu(NO 3) 2 + Na 2 S = СuS+2NaNO 3

В результате взаимодействия электролитов образуется осадок СuS.

Ионно-молекулярное уравнение

Сu 2+ + 2NO 3 - + 2Na + + S 2- = СuS+2Na + + 2NO 3 -

Исключив одинаковые ионы из обеих частей равенства Na + и NO 3 - получим сокращенное ионно-молекулярное уравнение реакции:

Сu 2+ + S 2- = СuS

Диссоциация воды

Вода является слабым электролитом и в малой степени диссоциирует на ионы

Н 2 О
Н + + ОН -

К=

или = K · = K в

K в = 10 -14 называется ионным произведением воды и является постоянной величиной. Для чистой воды при 25 0 С концентрации ионов H + и OH - равны между собой и равны 10 -7 моль/л, поэтому · = 10 -14 .

Для нейтральных растворов =10 -7 , для кислых растворов >10 -7 , а для щелочных <10 -7 . Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным. Если концентрация ионов водорода равна 10 -4 , то концентриция гидроксид-ионов равна:

= /10 -4 = 10 -10 моль/л.

На практике кислотность или щелочность раствора выражают более удобным способом, используя водородный показатель рН или рОН.

рН =– lg ;

рОН =– lg[ОH - ]

Например, если = 10 -3 моль/л, то рН =– lg = 3; если = 10 -8 моль/л, то рН =– lg = 8. В нейтральной среде рН = 7, в кислой среде рН< 7, в щелочной среде рН >7.

Приближено реакцию раствора можно определить с помощью специальных веществ, называемых индикаторами, окраска которых изменятся в зависимости от концентрации ионов водорода.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

1. Опыты с неприятнопахнущими и ядовитыми веществами прово­дить обязательно в вытяжном шкафу.

2. При распознавании выделяющегося газа по запаху следует направ­лять струю движениями руки от сосуда к себе.

3. Выполняя опыт, необходимо следить за тем, чтобы реактивы не попали на лицо, одежду и рядом стоящего товарища.

    При нагревании жидкостей, особенно кислот и щелочей, держать пробирку отверстием в сторону от себя.

    При разбавлении серной кислоты нельзя приливать воду к кислоте, необходимо вливать кислоту осторожно, небольшими порциями в холод­ную воду, перемешивая раствор.

    Все склянки с реактивами необходимо закрывать соответствующими пробками.

    Оставшиеся после работы реактивы нельзя выливать или высыпать в реактивные склянки (во избежания загрязнения).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1. Изменение окраски индикаторов в нейтральной, кислой и щелочной среде.

Реактивы и оборудование: лакмус; метилоранж; фенолфталеин; раствор соляной кислоты HCl, 0,1н; раствор гидроксида NaOH, 0,1н; пробирки.

1. Налейте в три пробирки по 1-2 мл дистиллированной воды и прибавьте индикаторы: лакмус, метилоранж, фенолфталеин. Отметьте их цвет.

2. Налейте в три пробирки по 1-2 мл 0,1 раствора соляной кислоты и прибавьте тех же индикаторов. Наблюдайте изменение окраски индикаторов по сравнению с их цветом в воде.

3. Налейте в три пробирки по 1-2 мл 0,1н раствор гидроксида натрия и прибавьте тех же индикаторов. Наблюдайте изменение окраски индикаторов по сравнению с их цветом в воде.

Результаты наблюдения оформите в виде таблицы:

Задание 2. Относительная сила оснований

Реактивы и оборудование: раствор хлорида кальция СаCl 2 , 2н; раствор гидроксида NaOH, 2н; раствор гидроксида аммония NН 4 ОН, 2н; пробирки.

Налейте в две пробирки по 1-2 мл хлорида кальция, в первую пробирку прибавьте раствор гидроксида аммония, во вторую – столько же раствора гидроксида натрия.

Запишите наблюдения. Сделайте вывод о степени диссоциации указанных оснований.

Задание 3. Обменные реакции между растворами электролитов

Реактивы и оборудование: раствор хлорида железа FeCl 3 , 0,1н; раствор сернокислой меди CuSO 4 , 0,1н; раствор карбоната натрия Na 2 CO 3 , 0,1н; раствор гидроксида NaOH, 0,1н; раствор соляной кислоты HCl, 0,1н; раствор хлорида бария BaCl 2 , 0,1н; раствор сернокислого натрия Na 2 SO 4 , 0,1н; раствор гексацианоферрата(II) калия K 4 , 0,1н; пробирки.

а) Реакции с образование нерастворимых веществ (осадка).

Налейте в первую пробирку 1-2 мл хлорида железа FeCl 3 и прибавьте такой же объем гидроксида натрия NaOH , во вторую пробирку – 1-2 мл BaCl 2 и такой же объем сернокислого натрия Na 2 SO 4 .

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

б) Реакции с образованием газов.

Налейте в пробирку 1-2 мл раствора карбоната натрия Na 2 CO 3 и добавьте такой же объем раствор соляной кислоты HCl.

Запишите наблюдения (укажите цвет и запах газа). Назовите полученнoе газообразнoе веществo.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

в) Реакции, идущие с образованием малодиссоциирующих веществ.

Налейте в первую пробирку– 1-2 мл раствора гидроксида NaOH и добавьте такой же объем раствора соляной кислоты HCl, во вторую пробирку - 1-2 мл раствора сульфата меди CuSO 4 добавить такой же объем раствора гексацианоферрата(II) калия K 4 .

Запишите наблюдения (укажите цвет образовавшегося осадка комплексной соли гексацианоферрата меди).

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

Задание 4. Различие между двойной и комплексной солью

Реактивы и оборудование: раствор хлорида железа FeCl 3 , 0,1н; раствор роданида калия KSCN, 0,1н; раствор железо-аммиачных квасцов NH 4 Fe(SO 4) 2 , 0,1н; раствор железо-синеродистого калия K 3 ; 0,1н; пробирки.

1. В пробирку налейте раствор хлорного железа FeCl 3 , затем добавьте немного роданида калия KSCN. Запишите наблюдения.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде. Ион SCN ­– является характерным реактивом на ион Fe 3+ , при их взаимодействии получается родановое железо Fe(SСN) 3 – слабодиссоциирующая соль кроваво-красного цвета.

2. В одну пробирку налейте раствор железоаммиачных квасцов NH 4 Fe(SO 4) 2 , в другую – раствор железо-синеродистого калия K 3 и в каждую из них прилейте понемногу раствор роданида калия KSCN.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

Запишите наблюдения. В каком соединении обнаруживается ион трехвалентного железа? В каком соединении этот ион связан в виде комплексного иона?

Задание 5 . Смещение ионного равновесия при введении в раствор одноименного иона

NH 4 ОН – слабое основание, диссоциирующее по уравнению:

NH 4 ОН
NH 4 + +ОН –

NH 4 Cl – в растворе диссоциирует по уравнению

NH 4 Cl
NH 4 + + Cl

Реактивы и оборудование: 0,1м раствор гидроксида аммония NH 4 OH, 0,1н; фенолфталеин, кристаллический хлорид аммония NH 4 Сl; пробирки.

В пробирку с раствором NH 4 ОН прибавьте 2-3 капли фенолфталеина, который является индикатором на группу ОН - , перемешайте и разлейте раствор в две пробирки: одну пробирку оставьте для сравнения, во вторую прибавьте щепотку кристаллического NH 4 Сl – наблюдается ослабление цвета раствора.

Ослабление малиновой окраски раствора объясняется тем, что при введении в раствор хлористого аммония увеличивается концентрация иона NH 4 + , что смещает равновесие в левую сторону, а это приводит к уменьшению концентрации ионов ОН – в растворе.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва