Солнечная батарея своими руками: дорогая игрушка или реальная возможность сэкономить? Изготовление солнечной батареи для дома своими руками Для создания солнечных батарей можно применить.

Собственное электроснабжение выручит как в условиях отсутствия централизованной сети (в удаленных и труднодоступных регионах, на даче, в походе), так и при построении более экологичного подхода к потреблению природных ресурсов.

Собрать собственную гелиостанцию несложно, она содержит всего четыре составных элемента:

  • солнечные панели;
  • аккумулятор заряда;
  • контроллер;
  • инвертор.

Все их легко найти и заказать через интернет-магазины. А вот как сделать солнечную электростанцию своими руками, чтобы создать полноценную автономную систему энергоснабжения дома? Для начала необходимо собрать информацию о ваших потребностях, возможностях местности, где будет работать гелиостанция, и произвести все необходимые расчеты для подбора составных элементов.

Как рассчитать количество гелиопанелей

Выбор гелиостанции начинается с поиска информации по инсоляции в вашей местности - количеству солнечной энергии, которое попадает на земную поверхность (измеряется в ваттах на кв. метр). Эти данные можно найти в специальных метеосправочниках или интернете. Обычно инсоляцию указывают отдельно для каждого месяца, потому что уровень сильно зависит от сезона. Если вы планируете пользоваться гелиостанцией круглый год, то ориентироваться нужно по месяцам с самыми низкими показателями.

Далее нужно подсчитать ваши потребности в электроэнергии на каждый месяц. Помните, что для автономной системы электроснабжения роль играет не только эффективность накопления энергии, но и экономное ее использование. Меньшие потребности позволят значительно сэкономить при покупке гелиопанелей и создании бюджетной версии солнечной электростанции своими руками.

Сравните ваши потребности в электричестве с уровнем инсоляции в вашей местности и вы узнаете площадь гелиопанелей, которая необходима для вашей гелиостанции. Учтите, что КПД панелей составляет всего 12-14%. Всегда ориентируйтесь на самый низкий показатель.

Таким образом, если уровень инсоляции в самый неблагоприятный месяц в вашей местности равен 20 кВт-час/м², то при КПД равном 12% одна панель площадью 0.7м² будет вырабатывать 1.68 кВт-час. Ваша энергопотребность, например, составляет 80 кВт-час/месяц. Значит, в самый несолнечный месяц удовлетворить эту потребность смогут 48 панелей (80/1,68). Подробнее о том, как выбирать солнечные батареи, вы можете почитать в нашей предыдущей .

Как установить гелиопанель

Для наилучшего КПД устанавливать гелиопанель нужно так, чтобы лучи солнца падали на нее под углом 90 градусов. Поскольку солнце постоянно перемещается по небу, то здесь есть два решения:

  • Динамичная установка. Используйте сервопривод, чтобы гелиопанель поворачивалась по мере того, как солнце перемещается по небосводу. Сервопривод позволит собрать на 50% больше энергии, чем статичная установка.
  • Стационарная установка. Чтобы извлечь максимальную пользу из неподвижного положения гелиопанели, необходимо найти тот угол установки, при котором панель соберет максимально возможное количество лучей солнца. Для круглогодичной работы этот угол рассчитывается по формуле +15 градусов к широте местности. Для летних месяцев это -15 градусов к широте местности.

Как подобрать контроллер заряда

Еще один способ, как самому собрать солнечную электростанцию, чтобы заставить ее работать эффективно, это использовать , который позволяет отслеживать точки максимальной мощности (англ. MPPT). Такой контроллер может накапливать энергию даже во время низкой освещенности и продолжает подавать ее на аккумулятор в оптимальном режиме.

Итак, от солнечных панелей энергия поступает на аккумулятор. Это позволяет накапливать энергию, чтобы использовать ее даже при отсутствии солнечного света. Кроме того, аккумуляторы сглаживают неравномерное поступление энергии, например, при сильном ветре или облачности.

Чтобы правильно выбрать и установить аккумулятор для домашней солнечной электростанции своими руками, необходимо учесть два параметра:

  • Очень важно, чтобы ток зарядки (от панелей) не превышал 10% от уровня номинальной емкости для кислотных аккумуляторов и 30% - для щелочных устройств.
  • Конструкция инвертора с напряжением на низкой стороне.

Учитывайте показатели саморазряда аккумуляторов (не всегда указываются производителями). Например, кислотные устройства во избежание поломки подзаряжают каждые полгода.

Как выбрать инвертор

Описание параметров и обязательных функций идеального инвертора:

  • сигнал синусоидальный с искажениями не выше трех процентов;
  • при подключении нагрузки амплитуда напряжения изменяется не более чем на десять процентов;
  • двойное преобразование тока - постоянного и переменного;
  • аналоговая часть преобразования переменного тока с хорошим трансформатором;
  • защита от короткого замыкания;
  • запас по перегрузке.

При моделировании электросистемы вашего дома сгруппируйте нагрузки так, чтобы разные их виды получали питание от разных инверторов.

Гелиостанции - это работающий альтернативный способ энергоснабжения дома. Но не во всех регионах инсоляция достаточна для окупаемости гелиооборудования и для полноценного обеспечения электроэнергией. Иногда стоит обратить внимание на гибридные солнечные электростанции, которые тоже можно построить своими руками, но где кроме солнечных батарей могут быть ветряки, а также дизельные или даже бензиновые генераторы.

Если же вы хотите лишь попробовать «приручить» гелиоэнергию, но не готовы полностью изменить электроснабжение своего дома, сделайте мини солнечную электростанцию своими руками. Она будет состоять из нескольких солнечных панелей, аккумулятора и контроллера. Это все поместится в чемодане, но обеспечит вас энергией при внезапном отключении электричества, поездке на дачу или на природу. Расчеты и подбор компонентов происходят по тому же принципу, что и для полноценной домашней станции.

Зачем платить кучу денег (или вообще какие-то деньги) за программу, которая показывает, как сделать солнечную батарею, если можно получить то же самое бесплатно?

Я расскажу, как сделать солнечную панель, стоимость которой будет вдвое меньше покупного аналога. Подобные системы сделаны из материалов, продающихся в местных строительных магазинах и магазинах электроники. Также можно купить материалы онлайн. Время собирать солнечный свет и делать электричество бесплатным!

Шаг 1: С чего все началось


Я наблюдал, как растут мои счета за электроэнергию год за годом, просто потому, что современная бытовая техника постоянно стоит включенной в режиме ожидания. И в этом заключается не только вред окружающей среде, но и вред моему счету в банке, потому что я фактически плачу за “ничего”. Я не мог постоянно выключать устройства из сети, так как это усложняло их использование и отнимало лишнее время на постоянные настройки. Постепенно я начал искать возобновляемые источники энергии, чтобы компенсировать мои ненужные траты. была не вариант, я живу в очень тихом районе без ветров. Гидроэлектроэнергия тоже не подходит, так как я живу на равнине практически без рек. Поэтому солнечная энергия показалась мне наиболее удачным выбором.

Стоимость готовых солнечных систем просто громадная, такая установка не окупит себя и за 20 лет непрерывной работы. Я попытался завоевать один из правительственных грантов на такую систему, но их очень мало, и я не получил свой. Но это не заставило меня отказаться от цели, хоть я и не хотел платить так много денег за систему. Логичным решением было сделать ее самостоятельно. Да, вы все верно поняли, я захотел сделать свою собственную солнечную систему. Теперь я могу точно сказать, что это вполне возможно, все материалы доступны в местных магазинах или по интернету. Я не технический гений и не имею много опыта в работе с электричеством, я просто изучил конструкцию солнечных панелей, из чего они делаются, как можно собрать солнечную систему своими руками . В результате получился этот мастер-класс.

Шаг 2: Начало

Для одной панели вам понадобится:

28 солнечных элемента с пиковой мощностью 3.1 Вт
- 2 листа стекла
- блокирующий диод на 6А
- 24 м ленточного провода шириной 2 мм
- 2 м ленточного провода 5 мм шириной
- флюс
- распределительная коробка
- клеммная колодка
- припой
- 1 м термоусадочной трубки
- 100% силиконовый герметик
- крестики для кафеля
- 2 алюминиевых уголка

Кроме того, понадобятся монтажные материалы. Общая стоимость одной панели составила 211.36 евро. Я привел список нужных материалов для ондй панели, а в конструкции предусмотрено две, один инвертор и прибор для измерения выработки. В сумме затраты на материалы составляют 441.72 евро или 20778 рублей.

Вскоре после планирования нужных материалов я нашел солнечные батареи онлайн. Собрав информацию с разных источников, я сделал монтажную схему проводки и закупил обычное стекло в местном магазине. Инструменты также были куплены на месте.

Монтажные материалы, такие как провода, монтажная коробка, шурупы, крепежные кронштейны, я не покупал, потому что все это уже пылилось в сарае.

Шаг 3: Производственный процесс


Я припаял солнечные элементы согласно монтажной электросхеме группами. Это суммировало напряжение всех ячеек для достижения желаемого выхода (максимально возможного). Я сделал панель из 28 ячеек (4 ряда по 7 элементов). В таком расположении и размере панель отлично помещалась в место в моем саду. В итоге я получал 28х0.5В=14В (в теории). Силу тока я до сих пор не знал, потому что купил недорогие элементы класса В для этого эксперимента (просто сэкономил).

Когда я закончил паять ячейки, все они были верх ногами (так как я спаивал из с задней стороны). Я капнул силикона на каждую панель и приклеил их к 4-миллиметровому листу стекла (этот лист будет задней стороной панели).

Я оставил это все сохнуть, чтобы силикон достаточно испарился (это действительно важно, чтобы ушли все лишние пары, поскольку они вступают в реакцию с припоем на батареях).

Затем я перевернул стеклянный лист и вставил небольшие крестики для кафеля между секциями (обычно их используют при кладке кафеля на стенах, чтобы соблюсти одинаковый зазор со всех сторон). Я сделал это для того, чтобы вместе со вторым листом стекла вся конструкция была более плотной и прочной. После расстановки крестиков я нанес слой силикона по краям стеклянного листа на расстоянии около 3 см от края (этот край нужен нам для заделки в следующих шагах).

Затем я разместил другой лист стекла поверх элементов, так что солнечные элементы теперь заключены между двумя листами стекла толщиной 4 мм (можно сказать, я застеклил элементы, это и был мой простой план).

Шаг 4: Выпаривание

Я оставил всю эту конструкцию сохнуть минимум сутки. Чем дольше, тем лучше. Между двумя листами стекла осталось пустое место по краям. Я залил это пространство герметиком. Я запечатал элементы двумя слоями силикона, и если один из них разгерметизируется, то второй надежно будет защищать батареи внутри. После нанесения второго слоя я оставил конструкцию сохнуть еще на 3 дня. Когда силикон полностью высох, я сделал рамку из алюминиевого профиля, чтобы защитить стеклянный корпус панели.

Шаг 5: Монтажная коробка


На задней стороне панели я сделал монтажную коробку с клеммной колодкой. На одной стороне блока идет +, а с другой стороны будет идти провод к инвертеру. Также в монтажной коробке есть диод между + с панели к +, идущему к инвертеру, это предотвращает поток электричества к панели, когда панель не производит никакого электричества (например, в темное время суток).

Шаг 6: Инвертер


Я связался с продавцом солнечных панелей, чтобы заказать подходящий инвертер. Мне нужен маленький инвертер (я же собираюсь производить небольшое количество электричества своей системой). Я взял инвертер OK-4, рассчитанный на 24 - 50 В, максимально 100 Вт. Это был самый маленький инвертер. Получается, что одной панели будет мало, потому что она выдает максимально 14В. Мне нужна была вторая панель, и в сумме у меня получится 28В, чего будет достаточно для инвертера. Учитывая, что это не сильный ток, то и двух панелей могло быть мало. И я сделал третью панель, чем достиг стабильно высокую производительность.

Я знаю, что этот инвертер максимально рассчитана на 100 Вт, а мои три панели будут давать больше (135 Вт), но этот максимум от панелей будет гаситься инвертером. Все, что идет сверх допустимой мощности, будет выделяться в виде тепла. Да, я знаю, что вы думаете: я трачу электричество впустую. Это правда, но такой перебор будет только в самые яркие часы, всего несколько часов в день. Большую часть дня панели не получают света столько, чтобы вырабатывать сверх 100 Вт. Зато при такой конструкции я постоянно добываю электроэнергию в достаточном количестве - с самого восхода солнца и до заката, просто потому, что инвертер способен работать на низком напряжении. Я получаю гораздо больше электроэнергии, питая панели весь день, чем теряю на скашивании максимальной мощности в часы зенита.

Шаг 7: Цифры и факты


В моем инвертере OK-4 не было встроенного дисплея для показа выработки, поэтому мне нужен был отдельный измеритель.

Ну и мне опять же не хотелось выкладывать кучу денег за этот прибор. В местном магазине я купил вот такую модель - ELRO M12 Power Calculator, который предназначен для расчета потребления электроэнергии бытовыми приборами, но работает неплохо и для подсчета выработки солнечной электроэнергии (этот калькулятор работает обоими способами, может как брать, так и отдавать электричество в сеть).

И этот калькулятор включается напрямую в розетку без суперсложных проводок (как раз то, что нужно).

Каждый солнечный элемент выдает 0.5В х 6А = 3Вт, но это максимальная мощность, при идеальных условиях. Для всей панели такая максимальная мощность составляет 28 ячеек х 3Вт = 84Вт.

Но по опыту знаю, что это очень оптимистические цифры, которые на деле обычно на 20% меньше. Так что в реальной жизни я ожидаю производительность примерно в 67Вт.

Моя панель точно не расположена идеально к солнцу, но сейчас это не так и важно. Панели расположены под углом 10 градусов (вместо 35) и не точно на юг.

Но это временная установка, я просто хочу посмотреть, как они себя ведут в реальных условиях при холодной температуре воздуха, куче дождей и затуманенного солнца.

В ближайшем будущем я поправлю установку.

Учитывая все факторы, панели вырабатывают по 15В х 3А = 45Вт каждая при условии, что напряжение ячеек используется по максимуму.
Сила тока может увеличиться путем изменения угла наклона панелей больше к солнцу, но сейчас это невозможно в том месте, где я их расставил.

Шаг 8: Рабочие показатели

Приветствую сообщество! Данный комплект был приобретён исключительно в образовательных целях саморазвития. Под катом процесс сборки и элементарные измерения по результатам балконных испытаний.
Посылка шла с треком и без проблем отслеживалась на каждом этапе. Срок доставки довольно стандартный - 1 месяц. Упаковано крепко и на совесть - ни одна деталь комплекта повреждена не была. Собственно, вот всё, что я получил.


1) Флюс-карандаш. Я таким раньше не пользовался, но особого восторга не испытал, хотя и плохого слова не скажу. В принципе удобно. Алгоритм простой: подмазал-припаял. Когда трясёшь, то слышно, как внутри плюхается жидкость неизвестного происхождения, состав ведь не указан! Из полезной информации с корпуса карандаша можно почерпнуть лишь ссылку на сайт вендора и e-mail поддержки: и [email protected], соответственно. Из любопытства прогулялся, вроде не продешевил.


2) Шина (малая 2 мм.) для спайки фотоэлементов между собой. Длину не мерил, но её очень и очень много. После полной сборки комплекта визуально осталось сколько и было. Поскольку в моём карманном спектральном приборе села батарейка:_), то металл из которого она изготовлена установить не удалось. Но лудится и паяется лента очень легко.


3) Шина (большая 5 мм.) для спайки сборок фотоэлементов и/или солнечных панелек. Хоть я и знаю доподлинно что такое омические потери, но её использовать не стал, выводы "+" и "-" изготовил из малой шины. И пусть из-за этого я не досчитаюсь 0,000018 Вт, но честно было просто лень)


4) Ну и собственно, сами фотоэлементы (в количестве аж 42! шт.) любовно перемотанные кЕтайцем в упаковочную плёнку.


Геометрические размеры соответствуют заявленным.


Но было несколько элементов с незначительными сколами. Обидно конечно, но потеря площади (читай мощности) составляет меньше 1%, я думаю. Поскольку при разрушении элемента генерируемое им напряжение остаётся таким же как и у целого, то его с (чуть меньшим) успехом можно монтировать в цепь.


Поскольку продавцом заявлено, что на экваторе в полдень безоблачного дня каждая такая панелька способна выдать 0,5 В, то было решено последовательно собрать 36 элементов для генерации ≈ 18 В.
«В интернетах пишут», что наиболее удобной платформой для сборки подобной солнечной панели является (фото)рамка формата А4. Которая и была приобретена в офф-лайн магазине по сходной цене. Но вернёмся к монтажу.
"+"-овые контакты фотоэлементов находятся на спине и имеют разную длину.


Поэтому я брал отрезок малой шины (кроил на глаз ≈ 1,5 ширины модуля). Лудил его с помощью обычной канифоли (флюс-карандашом как-то неудобно, непривычно было. Я его и отложил...)


После чего прикладывал по месту по длине контакта и проутюживал паяльником.


Работа довольно кропотливая, а материал совершенно не любит спешки; я даже не ожидал, что эти панельки настолько хрупкие - почти как яичная скорлупа. Поэтому запаситесь пивом квасом и терпением.


Для недопущения КЗ пайку «минусовых» контактов делал наоборот - облуживал дорожку фотоэлемента и приутюживал к нему шину.


Конечно к завершению работы я уже приобрёл определённый навык, но ни это, ни фора в шесть (42-36) элементов не спасли меня от краха - я сломал солнечных панелей больше, чем было доступно. Вот такой вот я рукожоп. Злую шутку так же сыграли заклёпки защёлок фоторамки, которые насквозь проходили рабочую поверхность текстолита и хоть и были заклеены мною изолентой, но всё же выступали довольно сильно, настолько, что повредили, наверное, пару элементов; не меньше.




Однако, результатом я был приятно удивлён. Потому что, даже при отсутствии прямого солнечного света

весь видимый небосклон был подёрнут пеленой, дымкой





моя солнечная батарея стабильно выдавала 19,7 В


Для использования которых, был приобретён преобразователь. Который на холостом ходу не задумываясь отдавал 5 с копейками вольт.


А вот при подключении в качестве нагрузки, напряжение хоть и просело до 3,9 В


Но всё же ток в 0,14 А шёл на зарядку телефона.

Вывод: данный комплект идеален (всё включено) для образовательных и просветительских целей, а собранное на его основе устройство вполне способно питать нетребовательных потребителей.

П.с. диод Шоттки потом припаяю, когда буду герметиком заливать.
п.п.с. расходников (шины и флюс) остаётся реально очень много
п.п.п.с тест проходил 6 июля 2015 г. в 17:15 часов в северном полушарии, на широте ок. 60 градусов с.ш. (Ленинградская область)

Всем добра и света)

Планирую купить +52 Добавить в избранное Обзор понравился +71 +135

Альтернативной энергетикой сейчас занимаются не только специалисты. Варианты автономных источников питания интересуют и любителей, которые дружат с электро- и радиотехникой. Применительно к солнечным батареям главная сложность в реализации проекта – их высокая цена. А если учесть, что для частного дома понадобится несколько панелей, то некоторый скепсис в плане их использования в быту становится понятен.

Хотя есть неплохое решение для тех, кто привык все делать своими руками – собрать солнечную батарею из отдельных панелей. Например, китайских, которые стоят относительно недорого.

По опыту их практического применения можно сделать вывод, что они вполне оправдывают ожидания мастера. А если ориентироваться на комплект класса B (более дешевая продукция), то экономия при самостоятельной сборке источника питания достигается значительная.

Для получения образца в 145 Вт общим напряжением 18 В придется выложить за китайские панели (36 штук) около 3 100 рублей (если приобретать через Интернет, к примеру, на площадках Alibaba, Ebay) против 6 180 (стоимость готового аналога промышленного изготовления). Получается, есть смысл потратить время и сделать такую батарею.

Не только китайские, а все солнечные панели делятся на моно- (более дорогие) и поликристаллические (аморфные). В чем разница? Не вдаваясь в технологию изготовления, достаточно указать, что первые характеризуются однородной структурой. Поэтому их КПД выше, чем у аморфных аналогов (примерно 25% против 18%) и стоят они дороже.

Визуально их можно отличить по форме (показано на рисунке) и оттенку синего. Монокристаллические панели несколько темнее. Ну а есть ли смысл в экономии на мощности, решать придется самостоятельно. К тому же следует учесть, что производством недорогих поликристаллических панелей в Китае занимаются в основном мелкие фирмы, экономящие буквально на всем, в том числе, и на исходных материалах. Это напрямую отражается не только на себестоимости, но и на качестве продукции.

Все фотоэлементы соединяются в единую энергетическую цепочку проводниками. В зависимости от типа панелей, они могут быть уже зафиксированы по месту или отсутствовать. Значит, припаивать их придется своими руками. Все кристаллические образцы довольно хрупкие, и обращаться с ними нужно крайне аккуратно.

Если нет должных навыков работы паяльником, то лучше приобрести панели класса A (более дорогие). Покупая дешевые аналоги (B), желательно взять хотя бы один в запас. Практика сборки солнечных батарей показывает, что повреждений точно не избежать, поэтому лишняя панель однозначно понадобится.

При определении потребного количества фотоэлементов можно ориентироваться на такие данные. 1 м² панелей дает примерно 0,12 кВт/час электроэнергии. Статистика эн/потребления показывает, что для небольшой семьи (4 человека) в месяц достаточно порядка 280 – 320 кВт.

Солнечные панели продаются в двух возможных вариантах – с восковым покрытием (для предохранения от повреждений при транспортировке) и без него. Если панели с защитным слоем, то их придется подготовить к сборке.

Что необходимо сделать?

  • Распаковать товар.
  • Погрузить комплект в горячую воду. Примерная температура – 90±5 0С. Главное, чтобы это не был кипяток, иначе панели частично деформируются.
  • Разъединить образцы. Признаки того, что воск растаял, заметны визуально.
  • Обработать каждую панель. Технология простая – поочередное погружение их в воду горячую мыльную, потом – чистую. Процедура «омовения» продолжается до тех пор, пока на поверхности не останется следов воска.
  • Просушить. Раскладывать панели следует на мягкой ткани. К примеру, на махровой скатерти.

Порядок сборки

Специфика изготовление каркаса

По сути, это традиционная простейшая рама, материал для которой выбирается в зависимости от места расположения батареи. Обычно на тематических сайтах указывается алюминиевый уголок или древесина. Целесообразность использования последней (при всем уважении к авторам статей) вызывает определенные сомнения. Основная причина – в особенностях любого дерева. Она заключается в содержании влаги, независимо от степени осушки.

Сколько бы процентов ее ни было, скручивания, а то и растрескивания дерева не избежать. С учетом хрупкости панелей – не вариант, однозначно. Долго такая , даже при закреплении на окне внутри строения, не прослужит.

Монтаж батареи

Размеры рамы выбираются исходя из линейных параметров панелей. Горизонтальная ориентация или вертикальная – это зависит от специфики установки батареи, и принципиального значения не имеет.

На каркас крепится лист стекла или поликарбоната (только не ячеистого, а монолитного). Он выполняет защитную функцию, предохраняя фотоэлементы от механического разрушения.

На него, с внутренней стороны каркаса, наносятся капли силиконового герметика (по центру панелей), или он намазывается тончайшим слоем. Рекомендации по использованию смолы (эпоксидной) вряд ли заслуживают внимания, так как о ремонтопригодности батареи в этом случае говорить не приходится.

В раму укладывается расчетное количество панелей (сборка делается заранее). Одна дает напряжение порядка 0,5 В (небольшое отклонение номинала не в счет). Здесь важно не перепутать, где лицевая сторона изделий, а где тыльная.

Задняя часть закрывается мягким съемным матом. Для его изготовления своими руками можно взять поролон (4 см, как минимум) и пленку п/э. Соединяются ее кромки скотчем или спаиваются (если есть специальная машинка).

На этом работа не заканчивается. Между стеклом (поликарбонатом) и панелями останутся воздушные пузырьки, которые снижают эффективность солнечной батареи. Их необходимо удалить. Для этого на мат укладывается плотный материал. Например, фрагмент, подобранный по размерам каркаса, толстой (многослойной) фанеры.

Сверху – груз, вес которого достаточный, чтобы панели слегка придавить. В таком положении батарея оставляется на полсуток, не менее. Здесь следует ориентироваться на ее габариты и равномерность распределения нагрузки.

По истечении этого времени гнет, фанера и мат демонтируются. Сразу же крепить батарею по месту установки нельзя. Понадобится еще некоторое время, чтобы герметик окончательно просох.

Вместо мата можно использовать и иную мягкую подложку. К примеру, опилки, стружку.

Завершающий этап – изготовление задней стенки и ее постановка на место. Для этого берется ДСП, ДВП, фанера, но обязательно с той же подложкой, чтобы защитить панели от деформации.

Особенности сборки схемы

Спайка пластин – процесс сложный, требующий кропотливости и внимательности. Лучше работать паяльником маломощным (24 – 36 Вт). Если используется распространенный в быту на 65, то его следует включать через ограничительное сопротивление. Простейший вариант – последовательное присоединение лампочки-«стоваттки».

Но это не все. Необходимо исключить саморазряд батареи (ночью, в ненастную погоду). Это обеспечивается включением в схему п/п диодов. В качестве проводника (для выводов) целесообразно использовать кабель акустический, который на панели также фиксируется герметиком.

Вариант пленочной солнечной батареи (есть и такой) не рассматривается. Несмотря на некоторые достоинства, у него есть ряд существенных минусов – низкий КПД и необходимость укладки на больших площадях. Для частного дома решение неприемлемое.

являются фотоэлектрические преобразователи (солнечные модули), которые обращают энергию солнечного света в электричество. Для того, чтобы в доме пользоваться бытовыми приборами за счет солнечной батареи, таких модулей должно быть достаточно много.

Энергии, вырабатываемой одним модулем, недостаточно для удовлетворения энергетических потребностей. Между собой фотоэлектрические преобразователи связаны одной последовательной цепью.

Части, из которых состоит солнечная батарея:

  1. Солнечные модули ,объединенные в рамки.В одной рамке объединяются от единиц до нескольких десятков фотоэлектрических элементов. Для обеспечения электроэнергией целого дома понадобится несколько панелей с элементами.
  2. . Служит для накопления получаемой энергии, которую затем можно использовать в темное время суток.
  3. Контроллер . Он следит за разрядкой и зарядкой аккумулятора.
  4. . Преобразует постоянный ток, полученный от солнечных модулей в переменный.

Солнечный модуль (или фотоэлектрический элемент) основан на принципе p-n перехода, и по своему устройству очень напоминает транзистор. Если у транзистора спилить шляпку и на поверхность направить солнечные лучи, то подключенным к нему прибором можно определить мизерный электрический ток. Солнечный модуль работает по такому же принципу, только поверхность перехода у солнечного элемента значительно больше.

Как и многие типы транзисторов, солнечные элементы изготавливаются из кристаллического кремния.

По технологии изготовления и материалам различают три вида модулей:

  1. Монокристаллические . Изготовлены в виде цилиндрических кремниевых слитков. Преимущества элементов заключается в высокой производительности, компактности и в наибольшем сроке службы.
  2. Тонкопленочные . Делается напыление слоев фотоэлектрического преобразователя на тонкую подложку. КПД тонкопленочных модулей относительно невысок (7-13%).
  3. Поликристаллические . Расплавленный кремний заливается в квадратную форму, затем остуженный материал режется на квадратные пластинки. Внешне отличаются от монокристаллических модулей тем, что края углов у поликристаллических пластин не обрезаны.

Аккумулятор. В солнечных батареях наибольшее применение нашли свинцово-кислотные аккумуляторы. Стандартный аккумулятор имеет напряжение 12 вольт, для получения большего напряжения собирают аккумуляторные блоки. Так можно собрать блок напряжением 24 и 48 вольт.

Контроллер заряда солнечных батарей. Контроллер заряда действует по принципу регулятора напряжения в автомобиле. В основном на 12 вольт выдают напряжение от 15 до 20 вольт, и без контроллера могут быть повреждены перегрузкой. При 100% заряженном аккумуляторе контроллер отключает модули и предохраняет аккумулятор от закипания.

Инвертор. Солнечные модули вырабатывают постоянный ток, а для использования бытовых приборов и техники требуется переменный ток и напряжение 220 вольт. Инверторы предназначены для преобразования постоянного тока, делая его переменным.

Выбор комплектующих для изготовления

Чтобы снизить себестоимость солнечной станции, нужно попробовать собрать ее самостоятельно. Для этого потребуется закупить необходимые комплектующие, какие-то элементы можно изготовить самому.

Самостоятельно получится собрать:

  • рамки с фотоэлектрическими преобразователями;
  • контроллер зарядки;
  • инвертор напряжения;

Самые большие затраты будут связаны с приобретением самих солнечных элементов. Детали можно заказать из Китая или на eBay, такой вариант обойдется дешевле.

Благоразумно приобретать работоспособные преобразователи с повреждениями и дефектами – они просто забракованы производителем, но вполне исправны. Нельзя покупать элементы разных размеров и мощности – максимальный ток солнечной батареи будет ограничен током самого малого элемента.

Для изготовления рамки с солнечными элементами потребуется:

  • алюминиевый профиль;
  • солнечные элементы (обычно 36 штук для одной рамки);
  • припой и флюс;
  • дрель;
  • крепежные делали;
  • силиконовый герметик;
  • медная шина;
  • лист прозрачного материала (оргстекло, поликарбонат, плексиглас);
  • лист фанеры или текстолита(оргстекла);
  • диоды Шоттки;

Собирать инвертор самостоятельно имеет смысл только при небольшом энергопотреблении. Контроллер заряда в простом исполнении не так дорого стоит, поэтому нет особого смысла тратить время на изготовление прибора.

Технология изготовления своими руками

Для сборки солнечной батарей потребуется:

  1. Сконструировать рамку (корпус).
  2. Спаять все солнечные элементы в параллельную цепь.
  3. Закрепить солнечные элементы на рамке.
  4. Сделать корпус герметичным – прямое попадание атмосферных осадков на фотоэлектрические элементы недопустимо.
  5. Разместить батарею в районе наибольшей солнечной освещенности.

Для удовлетворения энергетических потребностей частного дома одной солнечной панели (рамки) будет недостаточно. Исходя из практики, с одного квадратного метра солнечной панели можно получить 120 Вт мощности. Для нормального энергообеспечения жилого дома потребуется где-то 20 кв. м. площади солнечных элементов.

Чаще всего батареи размещают на крыше дома с солнечной стороны.

Сборка корпуса


Корпус можно собирать из фанерного листа и реек, или из алюминиевых уголков и листа и оргстекла (текстолита). Необходимо определиться, сколько элементов будет размещаться в рамке. Следует учитывать, что между элементами необходим зазор в 3-5 мм, и размер рамки рассчитывается с учетом этих расстояний. Расстояние необходимо для того, чтобы при тепловом расширении пластины не прикасались друг с другом.

Сборка конструкции из алюминиевого профиля и оргстекла:

  • из алюминиевого уголка делается прямоугольный каркас;
  • По углам в алюминиевом корпусе сверлятся отверстия для крепежа;
  • на внутреннюю часть профиля корпуса наносится силиконовый герметик по всему периметру;
  • в раму устанавливается лист оргстекла (текстолита) и плотно прижимается к раме;
  • по углам корпуса с помощью шурупов ставятся крепежные уголки, которые надежно фиксируют лист прозрачного материала в корпусе;
  • герметику дают основательно высохнуть;

Все, корпус готов. Перед размещением солнечных элементов в корпусе необходимо тщательно протереть поверхность от грязи и пыли.

Соединение фотоэлементов


Обращаясь с фотоэлектронными элементами, следует помнить, что они очень хрупкие и требуют бережного отношения. Перед соединением пластин в последовательную цепочку их сначала тщательно, но аккуратно протирают– пластины должны быть идеально чистыми.

Если фотоэлементы были куплены уже с припаянными проводниками, это упрощает процесс соединения модулей. Но перед сборкой в этом случае необходимо проверить качество готовой пайки, и если есть неровности – устранить их.

На фотоэлектрических пластинах предусмотрены контакты по обеим сторонам – это контакты разной полярности. Если проводники(шины) еще не припаяны, необходимо сначала припаять их к контактам пластин, а затем уже соединить фотоэлектрические элементы между собой.

Чтобы припаять шины к фотоэлектрическим модулям, нужно:

  1. Отмерить нужную длину шины и нарезать на куски нужное количество полосок.
  2. Протереть контакты пластин спиртом.
  3. Тонким слоем нанести на контакт флюс по всей длине контакта с одной стороны.
  4. Приложить шину точно по длине контакта и разогретым паяльником медленно провести по всей поверхности пайки.
  5. Перевернуть пластину и повторить все операции пайки на другой стороне.

Нельзя сильно прижимать паяльник к пластине, элемент может лопнуть. Также необходимо проверить качество пайки – неровностей на лицевой стороне фотоэлементов быть не должно. Если бугорки и шероховатости остались, нужно еще раз аккуратно пройтись паяльником по шву контакта. Пользоваться необходимо маломощным паяльником.

Что нужно сделать, чтобы правильно и точно произвести соединение фотоэлектрических элементов:

  1. Если нет опыта в сборке элементов, рекомендуется воспользоваться разметочной поверхностью, на которой следует разместить элементы (фанерный лист).
  2. Расположить солнечные панели строго по разметке. Размечая, не забывать оставлять расстояние между элементами 5 мм.
  3. Пропаивая контакты пластин, обязательно следить за полярностью. Фотоэлементы должны быть правильно собраны в последовательную цепочку, иначе батарея не будет нормально работать.

Механический монтаж панелей:

  1. В корпусе сделать разметку для пластин.
  2. Солнечные элементы поместить в корпус, положив их на оргстекло. В рамке закрепить силиконовым клеем по размеченным местам. Клея много не наносить, только крохотную каплю по центру пластины. Нажимать осторожно, чтобы не повредить пластины.В корпус лучше перемещать пластины вдвоем, одному будет неудобно.
  3. Соединить все провода по краям пластин с общими шинами.

Прежде чем герметизировать панель, нужно протестировать качество пайки. Конструкцию аккуратно выносят поближе к солнечному свету и замеряют напряжение на общих шинах. Оно должно быть в пределах ожидаемых значений.

Как вариант, герметизацию можно провести следующим образом:

  1. Нанести капельки силиконового герметика между пластинами и по краям корпуса, аккуратно пальцами руки края фотоэлементов прижать к оргстеклу. Нужно, чтобы элементы как можно плотнее легли к прозрачному основанию.
  2. Поставить на все края элементов небольшой груз , допустим, головки из автомобильного набора инструментов.
  3. Дать герметику хорошо высохнуть , пластины за это время надежно зафиксируются.
  4. Затем промазать аккуратно все стыки между пластинами и краями рамки. То есть, нужно промазать в корпусе все, кроме самих пластин. Попадание герметика на края тыльной стороны пластин допустимо.

Финальная сборка солнечной батареи


  1. Сбоку корпуса установить соединительный разъем, разъем соединить с Шоттки.
  2. Закрыть с наружной стороны пластины защитным экраном из прозрачного материала. В данном случае, оргстеклом. Конструкция должна быть герметичной и исключать проникновение в нее влаги.
  3. Лицевую сторону (оргстекло) желательно обработать , например, лаком (лак PLASTIK-71).

Для чего нужен диод Шоттки? Если свет падает только на часть солнечной батареи, а другая часть затемнена, возможен выход элементов из строя.

Диоды помогают избежать поломки конструкции в таких случаях. При этом теряется мощность на 25%, но без диодов не обойтись – они шунтируют ток, ток идет в обход фотоэлементов. Чтобы падение напряжения было минимальным, необходимо применять низкоомные полупроводники, такими являются диоды Шоттки.

Преимущества и недостатки солнечной батареи


У солнечных батарей есть как преимущества, так и недостатки. Если бы были только одни плюсы от применения фотоэлектрических преобразователей, весь мир давно бы уже перешел на этот вид получения электроэнергии.

Преимущества:

  1. Автономность источника питания , нет зависимости от перебоев напряжения в централизованной электросети.
  2. Отсутствие абонентской платы за использование электроэнергией.

Недостатки:

  1. Высокая себестоимость оборудования и элементов.
  2. Зависимость от солнечного освещения.
  3. Возможность повреждения элементов солнечной батареи вследствие неблагоприятных погодных условий (град, буря, ураган).

В каких случаях целесообразно использовать установку на фотоэлектрических элементах:

  1. Если объект (дом или дача) находится на большом удалении от линии электропередач. Это может быть загородный коттедж в сельской глубинке.
  2. Когда объект расположен в южном солнечном районе.
  3. При совмещении различных видов энергии. Например, отопление частного дома с помощью печного отопления и солнечной энергии. Себестоимость маломощной солнечной станции будет не столь высока, и может быть экономически оправдана в данном случае.

Установка


Монтировать батарею необходимо по месту максимальной освещенности солнечным светом. Панели могут крепиться на крыше дома, на жестком или поворотном кронштейне.

Лицевая часть солнечной батареи должна быть обращена на юг или юго-запад под углом от 40 до 60 градусов. При монтаже нужно учитывать внешние факторы. Панели не должны загораживаться деревьями и другими предметами, на них не должна попадать грязь.

  1. Лучше покупать фотоэлементы с небольшими дефектами. Они также работоспособны, только имеют не такой красивый внешний вид. Новые элементы очень дороги, сборка солнечной батареи будет экономически не оправдана. Если нет особой спешки, пластины лучше заказать на eBay, это обойдется еще дешевле. С пересылкой и Китая нужно быть осторожнее – большая вероятность получить бракованные детали.
  2. Фотоэлементы нужно купить с небольшим запасом , велика вероятность их поломки во время монтажа, особенно, если нет опыта сборки подобных конструкций.
  3. Если элементы пока не используются , следует припрятать их в надежное место во избежание поломок хрупких деталей. Нельзя складывать пластины большими стопками – они могут лопнуть.
  4. При первой сборке следует изготовить шаблон , на котором будут размечены места расположения пластин перед сборкой. Так легче вымерять расстояния между элементами перед пайкой.
  5. Паять необходимо маломощным паяльником , и ни в коем случае не применять усилие при пайке.
  6. Для сборки корпуса удобнее применять алюминиевые уголки , деревянная конструкция менее надежная. В качестве листа с тыльной стороны элементов лучше использовать оргстекло или другой подобный материал и надежнее, чем крашеная фанера, и эстетично выглядит.
  7. Располагать фотоэлектрические панели следует в местах, где солнечное освещение будет максимальным в течение всего светового дня.

Схема электроснабжения дома


Последовательная цепь энергоснабжения частного дома на солнечных батареях выглядит следующим образом:

  1. Солнечная батарея из нескольких панелей , которые расположены на скате крыши дома, либо на кронштейне. В зависимости от энергопотребления, панелей может быть до 20 штук и больше. Батарея вырабатывает постоянный ток 12 вольт.
  2. Контроллер зарядки . Устройство предохраняет аккумуляторы от преждевременного разряда, а также ограничивает напряжение в цепи постоянного тока. Тем самым, контроллер защищает аккумуляторы от перегрузки.
  3. Инвертор напряжения . Преобразует постоянный ток в переменный ток, обеспечивая тем самым возможность потребления электроэнергии бытовыми приборами.
  4. Аккумуляторы . Для частных домов и дач ставят несколько аккумуляторов, соединяя их последовательно. Служат для накопления энергии. Энергия аккумуляторов используется в темное время суток, когда элементы солнечной батареи не вырабатывают ток.
  5. Электросчетчик .

Довольно часто в частных домах система энергоснабжения дополняется резервным генератором.

В целом, собрать солнечную батарею своими руками не так уж и сложно. Необходимы только определенные средства, терпение и аккуратность.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо