Природный газ. Процесс горения

Единицы измерения газообразных компонентов продуктов сгорания →

Содержание раздела

При сжигании органических топлив в топках котлов образуются различные продукты сгорания, такие как ок­сиды углерода СО х = СО + СО 2 , водяные пары Н 2 О, оксиды серы SO x = SO 2 + SО 3 , оксиды азота NO x = NO + NО 2 , полициклические арома­тические углеводороды (ПАУ), фтористые соединения, соединения ванадия V 2 O 5 , твердые частицы и др. (см. табл. 7.1.1). При неполном сгорании топлива в топках уходящие газы могут также содержать углеводороды СН 4 , С 2 Н 4 и др. Все продукты неполного сгорания являются вредными, однако при современной технике сжигания топлива их образование можно свести к минимуму [ 1 ].

Таблица 7.1.1. Удельные выбросы при факельном сжигании органических топлив в энергетических котлах [ 3 ]

Условные обозначения: А р, S p – соответственно содержание золы и серы на рабочую массу топлива, %.

Критерием санитарной оценки среды является предельно допустимая концентрация (ПДК) вредного вещества в атмосферном воздухе на уровне земли. Под ПДК следует понимать такую концентрацию различных веществ и химических соединений, которая при ежедневном воздействии в течение длительного времени на организм человека не вызывает каких-либо патологических изменений или заболеваний.

Предельно допустимые концентрации (ПДК) вредных веществ в атмосферном воздухе населенных мест приведены в табл. 7.1.2 [ 4 ]. Максимально-разовая концентрация вредных веществ определяется по пробам, отобранным в течение 20 мин, среднесуточная - за сутки.

Таблица 7.1.2. Предельно допустимые концентрации вредных веществ в атмосферном воздухе населенных мест

Загрязняющее вещество Предельно допустимая концентрация, мг/ м 3
Максимально-разовая Среднесуточная
Пыль нетоксичная 0,5 0,15
Диоксид серы 0,5 0,05
Оксид углерода 3,0 1,0
Монооксид углерода 3,0 1,0
Диоксид азота 0,085 0,04
Оксид азота 0,6 0,06
Сажа (копоть) 0,15 0,05
Сероводород 0,008 0,008
Бенз(а)пирен - 0,1 мкг/100 м 3
Пентаксид ванадия - 0,002
Фтористые соединения (по фтору) 0,02 0,005
Хлор 0,1 0,03

Расчеты ведутся по каждому вредному веществу в отдельности, с тем чтобы концентрация каждого из них не превышала значений, приведенных в табл. 7.1.2. Для котельных эти условия ужесточены введением дополнительных требований о необходимости суммирования воздействия оксидов серы и азота, которое определяется выражением

В то же время, вследствие локальных недостатков воздуха или неблаго­приятных тепловых и аэродинамических условий, в топках и камерах сго­рания образуются продукты неполного сгорания, состоящие в основном из монооксида углерода СО (угарного газа), водорода Н 2 и различных углево­дородов, которые характеризуют потери тепла в котлоагрегате от химиче­ской неполноты сгорания (химический недожог).

Кроме этого, в процессе сжигания получается целый ряд химических соединений, образующихся вследствие окисления различных составляю­щих топлива и азота воздуха N 2 . Наиболее существенную их часть состав­ляют оксиды азота NO x и серы SO x .

Оксиды азота образуются за счет окисления как молекулярного азота воздуха, так и азота, содержащегося в топливе. Экспериментальные иссле­дования показали, что основная доля образовавшихся в топках котлов NO х, а именно 96÷100%, приходится на монооксид (оксид) азота NO. Ди­оксид NO 2 и гемиоксид N 2 O азота образуются в значительно меньших ко­личествах, и их доля приблизительно составляет: для NO 2 – до 4%, а для N 2 O – сотые доли процента от общего выброса NO x . При типичных усло­виях факельного сжигания топлив в котлах концентрации диоксида азота NO 2 , как правило, пренебрежительно малы по сравнению с содержанием NO и обычно составляют от 0÷7 ррm до 20÷30 ррm . В то же время быстрое перемешивание горячих и холодных областей в турбулентном пламени может привести к появлению относительно больших концентраций диок­сида азота в холодных зонах потока. Кроме этого, частичная эмиссия NO 2 происходит в верхней части топки и в горизонтальном газоходе (при T > 900÷1000 К) и при определенных условиях также может достигать за­метных размеров.

Гемиоксид азота N 2 O, образующийся при сжигании топлив, является, по всей видимости, кратковременным промежуточным веществом. N 2 O практически отсутствует в продуктах сгорания за котлами.

Содержащаяся в топливе сера является источником образования окси­дов серы SO x: сернистого SO 2 (диоксид серы) и серного SO 3 (триоксид серы) ангидридов. Суммарный массовый выброс SO x зависит только от содержания серы в топливе S p , а их концентрация в дымовых газах – еще и от коэффициента расхода воздуха α. Как правило, доля SO 2 составляет 97÷99%, а доля SO 3 – 1÷3% от суммарного выхода SO x . Фактическое со­держание SO 2 в уходящих из котлов газах колеблется от 0,08 до 0,6 %, а концентрация SO 3 – от 0,0001 до 0,008 %.

Среди вредных компонентов дымовых газов особое место занимает большая группа полициклических ароматических углеводородов (ПАУ). Многие ПАУ обладают высокой канцерогенной и (или) мутагенной актив­ностью, активизируют фотохимические смоги в городах, что требует строгого контроля и ограничения их эмиссии. В то же время некоторые ПАУ, например, фенантрен, флуорантен, пирен и ряд других, физиологи­чески почти инертны и не являются канцерогенно-опасными.

ПАУ образуются в результате неполного сгорания любых углеводо­родных топлив. Последнее имеет место из-за торможения реакций окисления углеводородов топлива холодными стенками топочных устройств, а также может быть вызвано неудовлетворительным смешением топлива и воздуха. Это приводит к образованию в топках (камерах сгорания) ло­кальных окислительных зон с пониженной температурой или зон с избыт­ком топлива.

Вследствие большого количества разных ПАУ в дымовых газах и трудности измерения их концентраций принято уровень канцерогенной загрязненности продуктов сгорания и атмосферного воздуха оценивать по концентрации наиболее сильного и стабильного канцерогена – бенз(а)пирена (Б(а)П) C 20 H 12 .

Ввиду высокой токсичности, следует особо отметить такие продукты сжигания мазута, как оксиды ванадия. Ванадий содержится в минеральной части мазута и при его сжигании образует оксиды ванадия VO, VO 2 . Одна­ко при образовании отложений на конвективных поверхностях оксиды ва­надия представлены в основном в виде V 2 O 5 . Пентаоксид ванадия V 2 O 5 яв­ляется наиболее токсичной формой оксидов ванадия, поэтому учет их вы­бросов производится в пересчете на V 2 O 5 .

Таблица 7.1.3. Примерная концентрация вредных веществ в продуктах сгорания при факельном сжигании органических топлив в энергетических котлах

Выбросы = Концентрация, мг/м 3
Природный газ Мазут Уголь
Оксиды азота NO x (в пересчете на NO 2) 200÷ 1200 300÷ 1000 350 ÷1500
Сернистый ангидрид SO 2 - 2000÷6000 1000÷5000
Серный ангидрид SO 3 - 4÷250 2 ÷100
Угарный газ СО 10÷125 10÷150 15÷150
Бенз(а)пирен С 20 Н 12 (0,1÷1, 0)·10 -3 (0,2÷4,0)· 10 -3 (0,3÷14)· 10 -3
Твердые частицы - <100 150÷300

При сжигании мазута и твердого топлива в выбросах также содержатся твердые частицы, состоящие из летучей золы, сажистых частиц, ПАУ и несгоревшего в результате механического недожога топлива.

Диапазоны концентраций вредных веществ в дымовых газах при сжи­гании различных типов топлив приведены в табл. 7.1.3.

Основным условием для горения газа является наличие кислорода (а следовательно, воздуха). Без присутствия воздуха горение газа невозможно. В процессе горения газа происходит химическая реакция соединения кислорода воздуха с углеродом и водородом топлива. Реакция происходит с выделением тепла, света, а также углекислого газа и водяных паров.

В зависимости от количества воздуха, участвующего в процессе горения газа, происходит полное или неполное его сгорание.

При достаточном поступлении воздуха происходит полное сгорание газа, в результате которого продукты его горения содержат негорючие газы: углекислый газ С02, азот N2, водяные пары Н20. Больше всего (по объему) в продуктах горения азота - 69,3-74%.

Для полного сгорания газа также необходимо, чтобы он смешивался с воздухом в определенных (для каждого газа) количествах. Чем выше калорийность газа, тем требуется большее количество воздуха. Так, для сжигания 1 м3 природного газа требуется около 10 м3 воздуха, искусственного - около 5 м3, смешанного - около 8,5 м3.

При недостаточном поступлении воздуха происходит неполное сгорание газа или химический недожог горючих составных частей; в продуктах сгорания появляются горючие газы-окись углерода СО, метан СН4 и водород Н2

При неполном сгорании газа наблюдается длинный, коптящий, светящийся, непрозрачный, желтого цвета факел.

Таким образом, недостаток воздуха приводит к неполному сгоранию газа, а избыток - к чрезмерному охлаждению температуры пламени. Температура воспламенения природного газа 530 °С, коксового - 640 °С, смешанного - 600 °С. Кроме того, при значительном избытке воздуха также происходит неполное сгорание газа. При этом наблюдается конец факела желтоватого цвета, не вполне прозрачный, с расплывчатым голубовато-зеленым ядром; пламя неустойчиво и отрывается от горелки.

Рис. 1. Пламя газа я - без предварительного смешения газа с воздухом; б -с частичным пред. верительным смешением газа с воздухом; в - с предварительным полным смешением газа с воздухом; 1 - внутренняя темная зона; 2 - коптящий светящийся конус; 3 - горящий слой; 4 - продукты сгорания

В первом случае (рис. 1,а) факел имеет большую длину и состоит из трех зон. В атмосферном воздухе горит чистый газ. В первой внутренней темной зоне газ не горит: он не смешан с кислородом воздуха и не нагрет до температуры воспламенения. Во вторую зону воздух поступает в недостаточном количестве: его задерживает горящий слой, и поэтому он не может хорошо смешаться с газом. Об этом свидетельствует ярко светящийся, светло-желтый коптящий цвет пламени. В третью зону воздух поступает в достаточном количестве, кислород которого хорошо смешивается с газом, газ горит голубоватым цветом.

При этом способе газ и воздух подаются в топку раздельно. В топке происходит не только сжигание газовоздушной смеси, но и процесс приготовления смеси. Такой метод сжигания газа широко применяют в промышленных установках.

Во втором случае (рис. 1,6) сжигание газа происходит значительно лучше. В результате частичного предварительного смешивания газа с воздухом в зону горения поступает приготовленная газовоздушная смесь. Пламя становится короче, несветящимся, имеет две зоны - внутреннюю и наружную.

Газовоздушная смесь во внутренней зоне не горит, так как она не нагревалась до температуры воспламенения. В наружной зоне сгорает газовоздушная смесь, при этом в верхней части зоны резко повышается температура.

При частичном смешении газа с воздухом в этом случае полное сгорание газа происходит только при дополнительном подводе воздуха к факелу. В процессе горения газа воздух подводят дважды: первый раз - до поступления в топку (первичный воздух), второй раз - непосредственно в топку (вторичный воздух). Этот метод сжигания газа положен в основу устройства газовых горелок для бытовых приборов и отопительных котельных.

В третьем случае факел значительно укорачивается и газ сгорает полнее, так как газовоздушная смесь была предварительно приготовлена. О полноте сгорания газа свидетельствует короткий прозрачный факел голубого цвета (беспламенное горение), которое применяют в приборах инфракрасного излучения при газовом отоплении.



- Процесс горения газа

Антропотоксины;

Продукты деструкции полимерных материалов;

Вещества, поступающие в помещение с загрязненным атмосферным воздухом;

Химические вещества, выделяющиеся из полимерных материалов даже в небольших количествах, могут вызвать существенные нарушения в состоянии живого организма, например, в случае аллергического воздействия полимерных материалов.

Интенсивность выделения летучих веществ зависит от условий эксплуатации полимерных материалов - температуры, влажности, кратности воздухообмена, времени эксплуатации.

Установлена прямая зависимость уровня химического за­грязнения воздушной среды от общей насыщенности помещений полимерными материалами.

Более чувствителен к воздействию летучих компонентов из полимерных материалов растущий организм. Установлена также повышенная чувствительность больных к воздействию химических веществ, выделяющихся из пластиков, по сравне­нию со здоровыми. Исследования показали, что в помещениях с большой насыщенностью полимерами подверженность насе­ления аллергическим, простудным заболеваниям, неврастении, вегетодистонии, гипертонии оказалась выше, чем в помеще­ниях, где полимерные материалы использовались в меньшем количестве.

Для обеспечения безопасности применения полимерных материалов принято, что концентрации выделяющихся из по­лимеров летучих веществ в жилых и общественных зданиях не должны превышать их ПДК, установленные для атмосферного воздуха, а суммарный показатель отношений обнаруженных концентраций нескольких веществ к их ПДК должен быть не выше единицы. С целью предупредительного санитарного надзора за полимерными материалами и изделиями из них предложено лимитировать выделение ими вредных веществ в окружающую среду или на стадии изготовления, или вскоре после их выпуска заводами-изготовителями. В настоящее время обоснованы допустимые уровни около 100 химических веществ, выделяющихся из полимерных материалов.

В современном строительстве все отчетливее проявляется тенденция к химизации технологических процессов и использо­ванию в качестве смесей различных веществ, в первую очередь бетона и железобетона. С гигиенической точки зрения важно учитывать неблагоприятное влияние химических добавок в стро­ительные материалы из-за выделения токсических веществ.

Не менее мощным внутренним источником загрязнения среды помещений служат и продукты жизнедеятельности человека - антропотоксины. Установлено, что в процессе жиз­недеятельности человек выделяет примерно 400 химических соединений.

Исследования показали, что воздушная среда невентилируемых помещений ухудшается пропорционально числу лиц и времени их пребывания в помещении. Химический анализ воз­духа помещений позволил идентифицировать в них ряд токси­ческих веществ, распределение которых по классам опасности представляется следующим образом: диметиламин, сероводород, двуокись азота, окись этилена, бензол (второй класс опасности - высокоопасные вещества); уксусная кислота, фенол, метилсти-рол, толуол, метанол, винилацетат (третий класс опасности - малоопасные вещества). Пятая часть выявленных антропотоксинов относится к высокоопасным веществам. При этом обнаруже­но, что в невентилируемом помещении концентрации диметиламина и сероводорода превышали ПДК для атмосферного воздуха. Превышали ПДК или находились на их уровне и концентрации таких веществ, как двуокись и окись углерода, аммиак. Осталь­ные вещества, хотя и составляли десятые и меньшие доли ПДК, вместе взятые свидетельствовали о неблагополучии воздушной среды, поскольку даже двух-четырехчасовое пребывание в этих условиях отрицательно сказывалось на умственной работоспо­собности исследуемых.



Изучение воздушной среды газифицированных помеще­ний показало, что при часовом горении газа в воздухе помещений концентрация веществ составляла (мг/м 3): окиси углерода - в среднем 15, формальдегида - 0,037, окиси азота - 0,62, дву­окиси азота - 0,44, бензола - 0,07. Температура воздуха в помещении во время горения газа повышалась на 3-6 °С, влаж­ность увеличивалась на 10-15%. Причем высокие концентрации химических соединений наблюдались не только в кухне, но и в жилых помещениях квартиры. После выключения газовых приборов содержание в воздухе окиси углерода и других хими­ческих веществ снижалось, но к исходным величинам иногда не возвращалось и через 1,5-2,5 ч.

Изучение действия продуктов горения бытового газа на внешнее дыхание человека выявило увеличение нагрузки на систему дыхания и изменение функционального состояния цен­тральной нервной системы.

Одним из самых распространенных источников загрязнения воздушной среды закрытых помещений является курение. При спектрометрическом анализе воздуха, загрязненного табачным дымом, обнаружено 186 химических соединений. В недостаточно проветриваемых помещениях загрязнение воздушной среды продуктами курения может достигать 60-90%.

При изучении воздействия компонентов табачного дыма на некурящих (пассивное курение) у испытуемых наблюдалось раздражение слизистых оболочек глаз, увеличение содержания в крови карбоксигемоглобина, учащение пульса, повышение уровня артериального давления. Таким образом, основные источники загрязнения воздушной среды помещения условно можно разделить на четыре группы:

Значимость внутренних источников загрязнения в различ­ных типах зданий неодинакова. В административных зданиях уровень суммарного загрязнения наиболее тесно коррелиру­ет с насыщенностью помещений полимерными материалами (R = 0,75), в крытых спортивных сооружениях уровень химичес­кого загрязнения наиболее хорошо коррелирует с численностью людей в них (R = 0,75). Для жилых зданий теснота корреляцион­ной связи уровня химического загрязнения как с насыщенностью помещений полимерными материалами, так и с количеством людей в помещении приблизительно одинаковая.

Химическое загрязнение воздушной среды жилых и об­щественных зданий при определенных условиях (плохой вен­тиляции, чрезмерной насыщенности помещений полимерными материалами, большом скоплении людей и др.) может достигать уровня, оказывающего негативное влияние на общее состояние организма человека.

В последние годы, по данным ВОЗ, значительно возросло число сообщений о так называемом синдроме больных зданий. Описанные симптомы ухудшения здоровья людей, проживаю­щих или работающих в таких зданиях, отличаются большим раз­нообразием, однако имеют и ряд общих черт, а именно: головные боли, умственное переутомление, повышенная частота воздуш­но-капельных инфекций и простудных заболеваний, раздраже­ние слизистых оболочек глаз, носа, глотки, ощущение сухости слизистых оболочек и кожи, тошнота, головокружение.

Первая кате­гория - временно "больные" здания - включает недавно пос­троенные или недавно реконструированные здания, в которых интенсивность проявления указанных симптомов с течением времени ослабевает и в большинстве случаев примерно через полгода они исчезают совсем. Уменьшение остроты проявления симптомов, возможно, связано с закономерностями эмиссии ле­тучих компонентов, содержащихся в стройматериалах, красках и т. д.

В зданиях второй категории - постоянно "больных" опи­санные симптомы наблюдаются в течение многих лет, и даже широкомасштабные оздоровительные мероприятия могут не дать эффекта. Объяснение такой ситуации, как правило, найти трудно, несмотря на тщательное изучение состава воздуха, работы вентиляционной системы и особенностей конструкции здания.

Следует отметить, что не всегда удается обнаружить пря­мую зависимость между состоянием воздушной среды помеще­ния и состоянием здоровья населения.

Однако обеспечение оптимальной воздушной среды жилых и общественных зданий - важная гигиеническая и инженерно-техническая проблема. Ведущим звеном в решении этой пробле­мы является воздухообмен помещений, который обеспечивает требуемые параметры воздушной среды. При проектировании систем кондиционирования воздуха в жилых и общественных зданиях необходимая норма воздухоподачи рассчитывается в объеме, достаточном для ассимиляции тепло- и влаговыделений человека, выдыхаемой углекислоты, а в помещениях, предна­значенных для курения, учитывается и необходимость удаления табачного дыма.

Помимо регламентации количества приточного воздуха и его химического состава известное значение для обеспечения воздушного комфорта в закрытом помещении имеет электри­ческая характеристика воздушной среды. Последняя определя­ется ионным режимом помещений, т. е. уровнем положительной и отрицательной аэроионизации. Негативное воздействие на организм оказывает как недостаточная, так и избыточная ио­низация воздуха.

Проживание в местностях с содержанием отрицательных аэроионов порядка 1000-2000 в 1 мл воздуха благоприятно влия­ет на состояние здоровья населения.

Присутствие людей в помещениях вызывает снижение содержания легких аэроионов. При этом ионизация воздуха изменяется тем интенсивнее, чем больше в помещении людей и чем меньше его площадь.

Уменьшение числа легких ионов связывают с потерей воз­духом освежающих свойств, с его меньшей физиологической и химической активностью, что неблагоприятно действует на организм человека и вызывает жалобы на духоту и "нехватку кислорода". Поэтому особый интерес представляют процессы деионизации и искусственной ионизации воздуха в помещении, которые, естественно, должны иметь гигиеническую регламен­тацию.

Необходимо подчеркнуть, что искусственная ионизация воздуха помещений без достаточного воздухоснабжения в ус­ловиях высокой влажности и запыленности воздуха ведет к неизбежному возрастанию числа тяжелых ионов. Кроме того, в случае ионизации запыленного воздуха процент задержки пыли в дыхательных путях резко возрастает (пыль, несущая электри­ческие заряды, задерживается в дыхательных путях человека в гораздо большем количестве, чем нейтральная).

Следовательно, искусственная ионизация воздуха не яв­ляется универсальной панацеей для оздоровления воздуха закрытых помещений. Без улучшения всех гигиенических па­раметров воздушной среды искусственная ионизация не только не улучшает условий обитания человека, но, напротив, может оказать негативный эффект.

Оптимальными суммарными концентрациями легких ионов являются уровни порядка 3 х 10, а минимально необходимыми 5 х 10 в 1 см 3 . Эти рекомендации легли в основу действующих в Российской Федерации санитарно-гигиенических норм допу­стимых уровней ионизации воздуха производственных и обще­ственных помещений (табл. 6.1).

Lд. - действительное количество воздуха, подаваемое в топку, его обычно подают с избытком. Соотношение между теоретическим и действительным расходом выражается уравнением:

где α - коэффициент избытка воздуха (как правило, больше 1).

Неполное сжигание газа ведет к перерасходу топлива и повышает опасность отравления продуктами неполного сгорания газа, в состав которых входит и оксид углерода (СО).

Продукты сгорания газа и контроль за процессом горения.

Продукты сгорания природного газа - это диоксид углеро­да (углекислый газ) , водяные пары, некоторое количество избыточного кислорода и азот. Избыточный кислород содержится в продуктах горения только в тех случаях, когда горение происходит с избытком воз­духа, а азот в продуктах сгорания содержится всегда, так как яв­ляется составной частью воздуха и не принимает участия в горе­нии.

Продуктами неполного сгорания газа могут быть оксид уг­лерода (угарный газ ), несгоревшие водород и метан, тяжелые углеводороды, сажа.

О процессе горения правильнее всего можно судить по приборам анализа уходящих газов, показывающим содержание в нем углекислого газа и кислорода. Если в топке котла пламя вытянутое и имеет темно-желтую окраску, это говорит недостатке воздуха, а если пламя становится коротким и имеет ослепительно-белую окраску, то о его избытке.

Регулировать работу котлоагрегата можно двумя способам изменением тепловой мощности всех горелок, установленных котле, или отключением их части. Способ регулирования зависит от местных условий и должен быть указан в производственной инструкции. Изменение тепловой мощности горелок допустимо в том случае, если она не выходит за пределы устойчивой работы. Отклонение тепловой мощности за пределы устойчивой работы может привести к отрыву или проскоку пламени.

Регулировать работу отдельных горелок следует в два-приема, медленно и постепенно изменяя расход воздуха и газа.

При уменьшении тепловой мощности сначала уменьшают подачу воздуха , а затем газа; при увеличении тепловой мощности сначала увеличивают подачу газа , а затем воздуха.



При этом следует регулировать разрежение в топке, меняя положение шибера котлом или лопаток направляющего аппарата перед дымососом.

При необходимости повышения тепловой мощности горелок пред­варительно увеличивают разрежение в топке ; при снижении тепловой мощности сначала регулируют работу горелок, а затем уменьшают разрежение в топке.

Методы сжигания газа.

В зависимости от способа образования ГВС методы сжигания можно разделить на диффузионный, смешанный и кинетический .

При диффузионном методе к фронту горения газ поступает под давлением, а воздух из окружающего пространства за счёт молекулярной или турбулентной диффузии, смесеобразование протекает одновременно с процессом горения, поэтому скорость процесса горения определяется скоростью смесеобразования.

Процесс горения начинается после образования контакта между газом и воздухом и образования ГВС необходимого состава. При этом к струе газа диффундирует воздух, а из струи газа в воздух - газ. Таким образом, вблизи струи газа создаётся ГВС, в результате горения которой образуется зона первичного горения газа(2) . Горение основной части газа происходит в зоне(З), а зоне(4) движутся продукты горения.

Этот метод сжигания в основном применяется в быту (духовки, газовые плиты и т.д.)

При смешанном методе сжигания газа горелка обеспечивает предварительное смешение газа только с частью воздуха, необходимого для полного сгорания газа. Остальной воздух поступает из окружающей среды непосредственно к факелу.

В этом случае сначала выгорает лишь часть газа, смешанная с первичным воздухом (50%-60%), а оставшаяся часть газа, разбавленная продуктами горения, выгорает после присоединения кислорода вторичного воздуха.

Воздух, окружающий пламя горелки называется вторичным .



При кинетическом методе сжигания газа к месту горения подаётся ГВС полностью подготовленная внутри горелки.

Классификация газовых горелок.

Газовой горелкой называют устройство, обеспечивающее устойчивое сжигание газообразного топлива и регулирование процесса горения.

Основные функции газовых горелок:

Подача газа и воздуха к фронту горения;

Смесеобразование;

Стабилизация фронта воспламенения;

Обеспечение требуемой интенсивности процесса горения газа.

По методу сжигания газа все горелки можно разделить на три группы:

Диффузионные - без предварительного смешения газа с воздухом;

Диффузионно-кинетические - с неполным предварительным смешением газа с воздухом;

Кинетические - с полным предварительным смешением газа с воздухом.

По способу подачи воздуха горелки подразделяются на:

Бездутьевые - у которых воздух поступает в топку за счёт разряжения в ней.

Инжекционные - в которых воздух засасывается за счёт энергии струи газа.

Дутьевые - у каторых воздух подаётся в горелку или топку с помощью вентилятора.

По давлению газа, на котором работают горелки:

- низкого давления до 0,05 кгс/см 2 ;

- среднего давления свыше 0,05 до З кгс/см 2 ;

- высокого давления свыше 3 кгс/см 2 .

Общие требования для всех горелок :

Обеспечение полноты сгорания газа;

Устойчивость при изменении тепловой мощности;

Надёжность при эксплуатации;

Компактность;

Удобство при обслуживании.

Физико-химические свойства природного газа

Природный газ не имеет цвета, запаха и вкуса, нетоксичен.

Плотность газов при t = 0°С, Р = 760 мм рт. ст.: метана - 0,72 кг/м 3 , воздуха -1,29 кг/м 3 .

Температура самовоспламенения метана 545 – 650°С. Это означает, что любая смесь природного газа с воздухом, нагретая до этой температуры, воспламеняется без источника зажигания и будет гореть.

Температура горения метана 2100°С в топках 1800°С.

Теплота сгорания метан: Q н = 8500 ккал/м 3 , Q в = 9500 ккал/м 3 .

Взрываемость. Различают:

– нижний предел взрываемости - это наименьшее содержание газа в воздухе, при котором происходит взрыв, он составляет для метана – 5%.

При меньшем содержании газа в воздухе взрыва не будет из-за недостатка газа. При внесении стороннего источника энергии – хлопки.

– верхний предел взрываемости - это наибольшее содержание газа в воздухе, при котором происходит взрыв, он составляет для метана – 15%.

При большем содержании газа в воздухе взрыва не будет из-за недостатка воздуха. При внесении стороннего источника энергии – загорание, пожар.

Для взрыва газа кроме содержания его в воздухе в пределах его взрываемости необходим сторонний источник энергии (искра, пламя и т. д.).

При взрыве газа в закрытом объеме (помещение, топка, резервуар и т. д.) разрушений больше, чем на открытом воздухе.

При сжигании газа с недожогом, т. е. с недостатком кислорода, в продуктах сгорания образуется окись углерода (СО), или угарный газ, который является высокотоксичным газом.

Скорость распространения пламени – это скорость перемещения фронта пламени относительно свежей струи смеси.

Ориентировочная скорость распространения пламени метан - 0,67 м/с. Она зависит от состава, температуры, давления смеси, соотношения газа и воздуха в смеси, диаметра фронта пламени, характера движения смеси (ламинарное или турбулентное) и определяет устойчивость горения.

Одоризация газа – это добавление в газ сильно пахнущего вещества (одоранта) для придания газу запаха перед поставкой потребителям.

Требования, предъявляемые к одорантам:

– резкий специфический запах;

– не должны препятствовать горению;

– не должны растворяться в воде;

– должны быть безвредны для человека и оборудования.

В качестве одоранта используется этилмеркаптан (С 2 Н 5 SH), его добавляют в метан – 16 г на 1000 м 3 , зимой норма удваивается.

Человек должен ощущать запах одоранта в воздухе при содержании газа в воздухе 20% от нижнего предела взрываемости для метана – 1% по объему.

Это химический процесс соединения горючих компонентов (водорода и углерода) с кислородом, содержащимся в воздухе. Происходит с выделением тепла и света.



При сгорании углерода образуется углекислый газ (С0 2), а водорода водяной пар (Н 2 0).

Этапы горения: подача газа и воздуха, образование газовоздушной смеси, зажигание смеси, её горение, удаление продуктов сгорания.

Теоретически, когда сгорает весь газ и все необходимое количество воздуха принимает участие в горении, реакция горения 1 м 3 газа:

CН 4 + 20 2 = СО 2 + 2Н 2 О + 8500 ккал/м 3 .

Для сжигания 1 м 3 метана необходимо 9,52 м 3 воздуха,.

Практически не весь воздух, подаваемый на горение, будет принимать участие в горении.

Поэтому в продуктах сгорания кроме углекислого газа (С0 2) и водяных паров (Н 2 0) появятся:

– окись углерода, или угарный газ (СО), при попадании в помещение может вызвать отравление обслуживающего персонала;

– атомарный углерод, или сажа (С), осаждаясь в газоходах и топках, ухудшает тягу, а на поверхностях нагрева - теплообмен.

– несгоревший газ и водород - скапливаясь в топках и газоходах, образуют взрывоопасную смесь.

При нехватке воздуха происходит неполное сгорание топлива – процесс горения происходит с недожогом. Недожог происходит также при плохом перемешивании газа с воздухом и низкой температуре в зоне горения.

Для полного сгорания газа воздух на горение подается в достаточном количестве, воздух и газ должны быть хорошо перемешаны, и в зоне горения необходима высокая температура.

Для полного сгорания газа воздух подается в большем количестве, чем требуется теоретически, т. е. с избытком, не весь воздух примет участие в горении. Часть тепла уйдет на нагрев этого лишнего воздуха и будет выброшена в атмосферу.

Коэффициент избытка воздуха α – число, показывающее во сколько раз действительный расход на горение больше, чем его требуется теоретически:

α = V д / V т

где V д - действительный расход воздух, м 3 ;

V т - теоретически необходимый воздух, м 3 .

α = 1,05 – 1,2.

Методы сжигания газа

Воздух, идущий на горение, может быть:

– первичный – подается внутрь горелки, перемешивается с газом, и на горение идет газовоздушная смесь;

– вторичный – поступает в зону горения.

Методы сжигания газа:

1. Диффузионный метод – газ и воздух на горение подаются раздельно и перемешиваются в зоне горения, весь воздух является вторичным. Пламя длинное, требуется большое топочное пространство.

2. Смешанный метод – часть воздуха подается внутрь горелки, смешивается с газом (первичный воздух), часть воздуха подается в зону горения (вторичный). Пламя короче, чем при диффузионном методе.

3. Кинетический метод – весь воздух перемешивается с газом внутри горелки, т. е. весь воздух является первичным. Пламя короткое, требуется небольшое топочное пространство.

Газогорелочные устройства

Газовые горелки - это устройства, обеспечивающие подачу газа и воздуха к фронту горения, образование газовоздушной смеси, стабилизацию фронта горения, обеспечение требуемой интенсивности процесса горения.

Горелка, оборудованная дополнительным устройством (тоннель, воздухораспределительное устройство и т. д.), называется газогорелочным устройством.

Требования к горелкам:

1) должны быть заводского изготовления и пройти государственные испытания;

2) должны обеспечивать полноту сжигания газа при всех рабочих режимах с минимальным избытком воздуха и минимальным выбросом вредных веществ в атмосферу;

3) иметь возможность применения автоматики регулирования и безопасности, а также измерения параметров газа и воздуха перед горелкой;

4) должны иметь простую конструкцию, быть доступными для ремонта и ревизии;

5) должны устойчиво работать в пределах рабочего регулирования, при необходимости иметь стабилизаторы для предотвращения отрыва и проскока пламени;

6) у работающих горелок уровень шума должен быть не выше 85 дБ, а температура поверхности не более 45°С.

Параметры газовых горелок

1) тепловая мощность горелки N г – количество тепла, выделяемое при сгорании газа за 1 ч;

2)низший предел устойчивой работы горелки N н. .п. . – наименьшая мощность, при которой горелка работает устойчиво без отрыва и проскока пламени;

3) минимальная мощность N мин – мощность низшего предела, увеличенная на 10%;

4) верхний предел устойчивой работы горелки N в. .п. . - наибольшая мощность, при которой горелка работает устойчиво без отрыва и проскока пламени;

5) максимальная мощность N макс – мощность верхнего предела, уменьшенная на 10%;

6) номинальная мощность N ном – наибольшая мощность, с которой горелка работает длительное время с наивысшим к.п.д.;

7) диапазон рабочего регулирования – значения мощностей от N мин до N ном;

8) коэффициент рабочего регулирования – отношение номи­нальной мощности к минимальной.

Классификация газовых горелок:

1) по способу подачи воздуха на горение:

– бездутьевые – воздух поступает в топку за счёт разрежения в ней;

– инжекционные – воздух засасывается в горелку за счёт энергии струи газа;

– дутьевые – воздух подается в горелку или в топку с помощью вентилятора;

2) по степени подготовки горючей смеси:

– без предварительного смешения газа с воздухом;

– с полным предварительным смешением;

– с неполным или частичным предварительным смешением;

3) по скорости истечения продуктов горения (низкая – до 20 м/с, средняя – 20-70 м/с, высокая – более 70 м/с);

4) по давлению газа перед горелками:

– низкому до 0,005 МПа (до 500 мм вод. ст.);

– среднему от 0,005 МПа до 0,3 МПа (от 500 мм вод. ст. до 3 кгс/см 2);

– высокому более 0,3 МПа (более 3 кгс/см 2);

5) по степени автоматизации управления горелками – с ручным управлением, полуавтоматические, автоматические.

По способу подачи воздуха горелки могут быть:

1) Диффузионные. Весь воздух поступает к факелу из окружающего пространства. Газ подаётся в горелку без первичного воздуха и, выходя из коллектора, смешивается с воздухом за его пределами.

Самая простая по конструкции горелка, обычно труба с насверленными в один или два ряда отверстиями.

Разновидность – подовая горелка. Состоит из газового коллектора, изготовленного из стальной трубы, заглушенной с одного торца. В трубе в два ряда просверлены отверстия. Коллектор устанавливается в щели, из огнеупорного кирпича, опирающегося на колосниковую решетку. Газ через отверстия в коллекторе выходит в щель. Воздух поступает в ту же щель через колосниковую решетку за счёт разрежения в топке или с помощью вентилятора. В процессе работы огнеупорная футеровки щели разогревается, обеспечивая стабилизацию пламени на всех режимах работы.

Достоинства горелки: простота конструкции, надежность работы (невозможен проскок пламени), бесшумность, хорошее регулирование.

Недостатки: малая мощность, неэкономична, высокое пламя.

2) Инжекционные горелки:

а) низкого давления или атмосферная (относятся к горелкам с частичным предварительным смешением). Струя газа выходит из сопла с большой скоростью и за счёт своей энергии захватывает в конфузор воздух, увлекая его внутрь горелки. Смешение газа с воздухом происходит в смесителе, состоящем из горловины, диффузора и огневого насадка. Разрежение, создаваемое инжектором, возрастает с увеличением давления газа, при этом изменяется количество подсасываемого первичного воздуха. Количество первичного воздуха можно изменять при помощи регулировочной шайбы. Изменяя расстояние между шайбой и конфузором, регулируют подачу воздуха.

Для обеспечения полного сгорания топлива часть воздуха поступает за счёт разрежения в топке (вторичный воздух). Регулирование его расхода производится путём изменения разрежения.

Обладают свойством саморегулирования: с увеличением нагрузки возрастает давление газа, который инжектирует в горелку увеличенное количество воздуха. При снижении нагрузки количество воздуха уменьшается.

Горелки ограниченно применяются на оборудовании большой производительности (более 100 кВт). Связано с тем, что коллектор горелки располагается непосредственно в топке. При работе нагревается до высоких температур и быстро выходит из строя. Имеют высокий коэффициент избытка воздуха, что приводит к неэкономичному сжиганию газа.

б) Среднего давления. При повышении давления газа обеспечивается инжекция всего воздуха, необходимого для полного сгорания газа. Весь воздух является первичным. Работают при давлении газа от 0,005 МПа до 0,3 МПа. Относятся к горелкам полного предварительного смешения газа с воздухом. В результате хорошего перемешивания газа и воздуха работают с малым коэффициентом избытка воздуха (1,05-1,1). Горелка Казанцева. Состоит из регулятора первичного воздуха, сопла, смесителя, насадка и пластинчатого стабилизатора. Выходя из сопла, газ имеет достаточно энергии для того, чтобы инжектировать весь воздух необходимый для горения. В смесителе происходит полное перемешивание газа с воздухом. Регулятор первичного воздуха одновременно глушит шум, который возникает из-за высокой скорости газовоздушной смеси. Достоинства:

– простота конструкции;

– устойчивая работа при изменении нагрузки;

– отсутствие подачи воздуха под давлением (нет вентилятора, электродвигателя, воздухопроводов);

– возможность саморегулирования (поддержания постоянного соотношения газ-воздух).

Недостатки:

– большие габариты горелок по длине, особенно горелок увеличенной производительности;

– высокий уровень шума.

3) Горелки с принудительной подачей воздуха. Образование газовоздушной смеси начинается в горелке и завершается в топке. Воздух подаётся с помощью вентилятора. Подача газа и воздуха осуществляется по отдельным трубам. Работают на газе низкого и среднего давления. Для лучшего перемешивания поток газа направляют через отверстия под углом к потоку воздуха.

Для улучшения смешения потоку воздуха сообщают вращательное движение, используя завихрители с постоянным или регулируемым углом установки лопаток.

Горелка газовая вихревая (ГГВ) – газ из распределительного коллектора выходит через отверстия, просверленные в один ряд, и под углом 90 0 поступает в закрученный с помощью лопаточного завихрителя поток воздуха. Лопатки приварены под углом 45 0 к наружной поверхности газового коллектора. Внутри газового коллектора расположена труба для наблюдения за процессом горения. При работе на мазуте в неё устанавливают паромеханическую форсунку.

Горелки, предназначенные для сжигания нескольких видов топлива, называются комбинированными.

Достоинства горелок: большая тепловая мощность, широкий диапазон рабочего регулирования, возможность регулирования коэффициента избытка воздуха, возможность предварительного подогрева газа и воздуха.

Недостатки горелок: достаточная сложность конструкции; возможены отрыв и проскок пламени, в связи с чем возникает необходимость применения стабилизаторов горения (керамический туннель, пилотный факел и т. д.).

Аварии на горелках

Количество воздуха в газовоздушной смеси важнейший фактор, влияющий на скорость распространения пламени. В смесях, в которых содержание газа превышает верхний предел его воспламенения, пламя вообще не распространяется. С увеличением количества воздуха в смеси скорость распространения пламени увеличивается, достигая наибольшей величины при содержании воздуха около 90 % его теоретического количества, необходимого для полного сгорания газа. При увеличении расхода воздуха на горелку создается смесь, более бедная газом, способная гореть быстрее и вызвать проскок пламени внутрь горелки. Поэтому, если требуется увеличить нагрузку, сначала увеличивают подачу газа, а затем воздуха. В случае необходимости уменьшения нагрузки поступают наоборот – сначала уменьшают подачу воздуха, а затем газа. В момент пуска горелок воздух не должен в них поступать и зажигание газа проводится в диффузионном режиме за счет воздуха, поступающего в топку, с последующим переходом к подаче воздуха на горелку

1.Отрыв пламени - перемещение зоны факела от выходных отверстий горелки по направлению горения топлива. Происходит, когда скорость газовоздушной смеси становится больше скорости распространения пламени. Пламя становится неустойчивым и может погаснуть. Через погасшую горелку продолжает идти газ, что приводит к образованию взрывоопасной смеси в топке.

Отрыв происходит при: повышении давления газа выше допустимого, резком увеличении подачи первичного воздуха, увеличении разряжения в топке, работа горелки в запредельных режимах относительно указанных в паспорте.

2. Проскок пламени - перемещение зоны факела навстречу горючей смеси. Бывает только в горелках с предварительным смешением газа и воздуха. Происходит тогда, когда скорость газовоздушной смеси ста­новится меньше скорости распространения пламени. Пламя проскакивает внутрь горелки, где продолжает гореть, вызывая деформацию горелки от перегрева. При проскоке возможен небольшой хлопок, пламя погаснет, через неработающую горелку произойдет загазовывание топки и газоходов.

Проскок происходит при: снижении давления газа перед горелкой ниже допустимого; розжиге горелки при подаче первичного воздуха; большой подаче газа при низком давлении воздуха, уменьшение производительности горелок предварительным смешением газа и воздуха ниже значений, указанных в паспорте. Не возможен при диффузионном методе сжигания газа.

Действия персонала при аварии на горелке:

– выключить горелку,

– провентилировать топку,

– выяснить причину аварии,

– сделать запись в журнале,

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва