Почвенные бактерии в жизни человека. Почвенные микроорганизмы

Почва – среда обитания многих видов микроорганизмов и один из крупнейших резервуаров их в природе. Микробы встречаются в почвах различных поясов земли от Крайнего севера до тропиков.

Из структурных частей почвы для микробиологии особый интерес представляет ее органическое вещество – гумус, состоящий из остатков животных и растительных организмов и обитающих в почве микробов. Поверхностный слой почвы беднее микробами, так как на них вредно воздействуют факторы внешней среды: высушивание, ультрафиолетовые лучи, солнечный свет, повышенная температура и др.

Наибольшее количество микроорганизмов находится на глубине 5-15 см, меньше их на глубине 20-30 и еще меньше на глубине 30-40 см. Почвы, богатые бактериями, биологически более активны. Между плодородием почвы и содержанием в ней микроорганизмов имеется определенная зависимость. Подсчеты показали, что на каждый гектар малоплодородной почвы приходится 2,5-3,0 т микробной массы, высокоплодородной – до 16 т. Число микроорганизмов в 1 г почвы может колебаться от 1-3 х10 6 до

Наиболее богаты микрофлорой возделываемые (культурные) почвы; бедны – песчаные, горные и почвы лишенные растительности; содержание микробов в почве увеличивается с севера на юг. Цвет и запах придают определенные виды актиномицетов. К типичным почвенным бактериям относятся Bac.subtilis, Bac.mycoides, Bac.mesentericus, Cl. histolyticus, Cl.botulinum, Cl.chauvoei, а также термофильные, пигментные и другие микроорганизмы, составляющие иногда 80-90% всей микрофлоры почвы.

В ряде случаев почва представляет резервуар для некоторых патогенных микробов, попадающих с выделениями больных животных или трупами. Длительность выживаемости в почве патогенных бактерий зависит от их биологических свойств и условий среды обитания. Наиболее длительно живут спорообразующие микробы – возбудители столбняка, злокачественного отека, ботулизма; споры бацилл сибирской язвы могут сохраняться десятилетиями. При благоприятных условиях микробы в почве могут не только выживать, но и долго (недели, месяцы и даже годы) сохранять вирулентные свойства.

Для общей оценки санитарного состояния почвы основное значение имеет наличие E.coli, так как сроки выживания кишечной палочки приблизительно равны срокам выживания других патогенных представителей. С этой же целью проводят индикацию Ent.faecalis, Cl.perfringens, Bact.thermophylus.

С микроорганизмами связаны все биохимические процессы в почве. В аэробных условиях размножение доходит до полной минерализации остатков с образованием окисленных соединений простого состава, в анаэробных – образуются газообразные вещества и промежуточные продукты в виде органических кислот.

Микрофлору почвы делят на автохтонную (от лат. autochthonous – местная, коренная), которая усваивает гумусовые вещества непосредственно из почвы, и сапрофитную, или зимогенную (от лат. zimogenic – возбуждающие брожение), которая разлагает органические соединения, поступающие в почву извне. К автохтонным относятся представители родов Pseudomonas, Bacterium, Mycobacterium, Bactoderma, Clostridium, а также грибы – Penicillium, Aspergillus. В составе зимогенной микрофлоры преобладают бактерии, особенно неспорообразующие формы, родовую принадлежность которых установить довольно трудно.

В качестве эктосимбионта микроорганизмы обитают в почве, непосредственно окружающей корни растений. Участки почвы, непосредственно окружающие корни растения, вместе с поверхностью корней составляют ризосферу растения . В функциональном смысле ее можно определить как область, лежащую в пределах нескольких миллиметров от поверхности каждого корня, в которой химическая активность растения влияет на микробную популяцию. Это влияние в основном проявляется в количественном отношении: число бактерий в ризосфере обычно превышает их число в окружающей почве в 10, а часто и в несколько сотен раз. Наблюдаются также и качественные изменения. В ризосфере преобладают короткие грамотрицательные палочки, тогда как грамположительные палочковидные и кокковидные формы встречаются здесь реже, чем в остальной части почвы. Однако не установлено никаких специфических ассоциаций конкретных бактериальных видов с конкретным растением.

Причина относительного обилия бактерий в ризосфере, несомненно, кроется в том, что корни растений выделяют органические питательные вещества, которые избирательно стимулируют рост бактерий с определенными типами питания. Однако не установлено никаких четких трофических взаимосвязей, хотя многие органические продукты, выделяемые корнями растений, уже идентифицированы. Остается также неясным, извлекает ли растение какую-либо пользу из ассоциации с микроорганизмами. Однако известно, что многие свободноживущие почвенные бактерии выполняют необходимые для растений функции, такие как фиксация азота и минерализация органических соединений. Поэтому логично предположить, что некоторые растения выигрывают от тесного контакта с микроорганизмами.

Микрофлора воды

Вода – естественная среда обитания микробов. С точки зрения ветеринарной медицины имеет значение качество питьевой воды для животных, которая должна отвечать требованиям питьевой воды для человека и специально установленным требованиям. С точки зрения ветеринарной микробиологии питьевая вода для животных не должна содержать какие-либо патогенные бактерии, а количество сапрофитных микробов должно быть минимальным. Загрязненная вода представляет опасность, она может быть фактором передачи болезней.

Атмосферная, еще не сконденсировавшаяся, вода практически не содержит бактерий. В осадках (дождь, снег, град) в момент попадания на поверхность земли часто уже можно обнаружить бактерии и тем больше, чем теснее контакт осадков с частицами пыли в воздухе. При этом содержание бактерий находится в интервале от менее 10 до нескольких сотен в 1 см 3 . Осадки, попавшие с поверхности в сток, могут быть особенно обсеменены микробами на первом участке стока. Часто содержание бактерий в стоках с участков земли, используемой в сельском хозяйстве, составляет от нескольких сотен до миллиона в 1 см 3 . Осадки, попавшие с поверхности в сток, могут быть особенно обсеменены микробами на первом участке стока.

Образующиеся потоки в зависимости от наплыва воды содержат резко отличающиеся друг от друга количества бактерий. В неподвергавшихся внешнему воздействию средних и нижних слоях потоков и в бурных течениях количество бактерий снова уменьшается, так как здесь могут действовать многочисленные факторы, способствующие уменьшению содержания бактерий: разбавление водой источников с небольшим содержанием бактерий, седиментация крупных органических частиц и гибель вегетативных форм бактерий.

Факторы самоочищения тем эффективнее, чем дольше воздействие седиментации, активности других микроорганизмов, температуры, солнечного света, токсических продуктов обмена веществ, органического запаса питательных веществ, недостатка кислорода и других факторов, которые способствуют уменьшению содержания бактерий в природных и искусственных водоемах. Микрофлора водоема в естественных условиях вписывается в установившееся биологическое равновесие. Микроорганизмы играют важную роль в минерализации органических веществ в воде и, таким образом, являются важным звеном в круговороте веществ в природе. Количество автохтонных бактерий (самостоятельная, первоначально существующая микрофлора, для которой вода является естественной средой обитания) составляет от нескольких сотен до 1000 бактерий в 1 см 3 воды. Особенно большое количество бактерий находится на поверхности ила.

Различные атмосферные осадки питают подземные грунтовые воды. В результате фильтрации и адсорбции в грунте удерживаются не только проникающие бактерии, но и питательные вещества. В собственно грунтовых водах количество бактерий в 1 см 3 изменяется в интервале от менее 10-ти до нескольких сотен. Лишь изредка встречаются грунтовые воды, полностью свободные от бактерий. Доминируют здесь очень медленно размножающиеся формы, которые во многих случаях обусловливают условную стерильность воды.

Вода во всех своих формах представляет вторичный биоток, в котором в естественных условиях может устанавливаться биологическое равновесие. Чуждые бактерии (аллохтонные), которые попадают в воду из грунта, из загнивающих растений и в особенности из сточных вод в виде аллохтонных намывов, приобретают решающее гигиеническое значение при использовании воды в качестве питьевой или даже в хозяйственных целях.

К постоянно живущим в воде микроорганизмам относятся: Azotobacter,

Nitrobacter, Microccus roseus, Pseudomonas fluorescens, Bact.aquatalis, Proteus vulgaris, Spirillum и др. Кроме сапрофитов, в воде могут быть возбудители инфекционных болезней животных и человека.

Определить конкретного возбудителя сложно, поэтому санитарную оценку воды дают по наличию в ней кишечной палочки (E.coli). Кроме того, определяют бродильный титр, микробное число, коли-титр и коли-индекс воды, титр фекального стрептококка (Ent.faecalis), который является постоянным обитателем кишечника животных и человека.

Для бактериального исследования отбирают 400-500 мл воды в стерильную бутыль, которую наполняют на ¾ объема и закрывают стерильной пробкой. Из открытых водоемов пробы воды берут на глубине 10-15 мин от поверхности, а из мелких - на уровне 10-15 см от дна. Из водопровода предварительно в течение 10 мин спускают воду, обжигают кран, а затем берут пробу, пробы воды доставляют в лабораторию не позднее чем через 4 ч после взятия.

Бродильный титр - наименьший объем воды, при посеве которого в глюкозную среду обнаруживается газообразование.

Общее микробное число или количество МАФАнМ устанавливают по количеству микроорганизмов, содержащихся в 1 мл воды. Водопроводная вода считается пригодной для питья, если общее число микробов в 1 мл не более 100, сомнительной – 100-150, загрязненной - 500 микробов и более. В воде колодцев и открытых водоемов в 1 мл не должно быть более 1 тыс. микробов. Степень биологического загрязнения оценивают по коли-титру и коли-индексу. Коли-титром называется наименьший объем воды в миллилитрах или сухого вещества в граммах, в котором обнаруживается хотя бы одна кишечная палочка. Бродильный титр соответствует коли-титру в том случае, если сбраживание глюкозы вызывает E.coli, а не другие микроорганизмы.

Коли-индексом называется число кишечных палочек, обнаруженных в 1 л воды. По существующим нормативам вода считается качественной, если коли-индекс ее не более 3, а коли-титр не менее 300. Вода шахтных колодцев должна иметь коли-индекс не более 10, а коли-титр не менее 100. Для перевода коли-титра в коли-индекс 1000 делят на показатель коли-титра, а для перевода коли-индекса в коли-титр 1000 делят на число, выражающее коли-индекс.

Микрофлора воздуха

Источником контаминации воздуха микроорганизмами служат поверхность почвы, вода, организм животных и человека. Воздух является неблагоприятной средой для размножения микроорганизмов. На выживаемость микробов в воздухе влияют различные факторы. Отсутствие питательных веществ, солнечные лучи и высушивание обусловливают быструю гибель микроорганизмов в воздухе. Вследствие этого микрофлора воздуха не так обильна, как микрофлора почвы и воды.

Количественный и качественный состав микрофлоры атмосферного воздуха претерпевает значительные колебания в зависимости от сезона года, климатических и метеорологических условий, а также характера почвы, удаления от поверхности почвы и общего санитарного состояния территории. Максимальное количество микробов обнаруживают в июне-августе, а минимальное – в декабре-январе; доля спорообразующих бактерий (процентное содержание) больше в зимнее время. Ветры способствуют обогащению воздуха микробами. Атмосферные осадки (дождь, снег) при прохождении через воздушные слои растворяют и адсорбируют находящиеся в воздухе взвешенные частицы с микробными клетками. В 1 мл дождевой воды, выпадающей в больших городах, содержатся тысячи бактерий, значительное количество микроорганизмов содержит также снег.

Основную массу микробов воздуха составляют сапрофитные виды, состав которых формируется в основном за счет почвенных микробов. В естественных условиях в воздухе обнаружено около 1200 видов бактерий и актиномицетов, около 40000 видов грибов, мхов, папортников и др. В поверхностных слоях атмосферы преобладают плесени, вблизи земли преобладают бактериальные формы. Более часто из воздуха выделяют: Bac.subtilis, Bac. мegatherium, Bac.mycoides, Micrococcus candicans, M. flavus, Staphylococcus aureus, St. citreus, Sarcina alba, Torula alba, Penicillium, Aspergillus, Mucor, Actinomyces и др.

Вместе с пылью в воздух могут попадать патогенные микроорганизмы, выделяемые человеком и животными. В витающей пыли обнаруживают споры плесени и пигментные микробы, в осевшей пыли – анаэробы и споровые аэробы. Воздух имеет большое значение как фактор передачи возбудителей инфекционных болезней с воздушно-капельным механизмом передачи.

В животноводческих помещениях аэрозоли возникают при кашле, отфыркивании, быстром перемещении животных, во время раздачи кормов, особенно грубых, а также при чихании, кашле, разговоре обслуживающего персонала. Доказано, что в 1 м 3 воздуха животноводческих помещений содержится до 2 млн. микробных клеток, иногда более, в том числе патогенных. Степень обсемененности воздуха микроорганизмами зависит от вентиляции, скученности животных, вида помещений, способа содержания животных и раздачи сухих кормов. В помещениях с плохой вентиляцией число микробов в 1 м 3 воздуха в 5-6 раз больше, чем в хорошо вентилируемых помещениях.

Санитарное состояние воздуха оценивается по микробному числу – количеству микроорганизмов, обнаруженных в 1 м 3 атмосферного воздуха, а в помещениях для животных (коровниках, свинарниках, птичниках, крольчатниках) мясо- и птицекомбинатов – по микробному числу и наличию санитарно-показательных микробов.

Бактериологическое исследование воздуха осуществляется с использованием седиментационных, аспирационно-фильтрационных (сорбционных) методов, основанных на осаждении микроорганизмов из воздуха на поверхности твердых питательных сред или задержке их в жидкой среде путем сифонирования и барботажа.

Допустимые санитарно-бактериологические показатели для воздуха животноводческих помещений не должны превышать 500-1000 бактерий

Почва представляет собой одно из главных биокосных тел биосферы, в котором плотность жизни весьма велика, а геохимическая деятельность микроорганизмов определяет многие геохимические процессы не только в самой почве, но в геохимически связанных с нею в единую систему компонентах.

Численность микроорганизмов в почвах и в почвообразующих породах, несмотря на значительные ее колебания (основываясь на средних цифрах из большого количества наблюдений), имеет некоторые закономерности. Если при исследовании разных типов почв пользоваться одной методикой (прямой подсчет, электронно-микроскопический метод и другие), то можно получить сопоставимые результаты.

Подсчет общего количества микроорганизмов в различных типах почв при посеве на питательные среды дает самые низкие показатели численности микроорганизмов.

Применение прямого микроскопического метода С. Н. Виноградского для установления численности микроорганизмов в почвах позволяет учесть почти на три порядка больше бактериальных клеток, чем при посевах на питательные среды.

В последние годы для увеличения количества учитываемых клеток микроорганизмов стали широко использовать обработку почвенных образцов ультразвуком, что дает возможность учитывать и адсорбированные клетки; в черноземе, обработаном ультразвуком, в 1 г почвы содержалось микроорганизмов в 8,5 раз больше, чем в дерново-подзолистой почве.

Определение численности микроорганизмов в 1 г почвы н дает возможности вскрыть специфику количественного распре деления микроорганизмов по почвенным типам. Целесообразнее учитывать их количество на единицу площади.

Распределение микроорганизмов по горизонтам почв и в ризосфере обусловлено содержанием гумуса, живых корней органических остатков, механическим составом, ОВ-потенциалом. В подзолистой почве наблюдается скачкообразное распре деление бактерий, что связано с резким убыванием гумуса при переходе от одного горизонта к другому. В черноземе, где содержание гумуса снижается постепенно, численность микроорганизмов по профилю уменьшается относительно равномерно. Даже на одном горизонте на одной и той же глубине количество микроорганизмов существенно различно непосредственно вблизи корней и в остальной почвенной массе. Выделения корней, а также их отмершие остатки являются источником энергетического вещества для бактериальной микрофлоры. При подсчете микроорганизмов различными методами во всех случаях отмечается явное возрастание их обилия от тундровых почв к подзолистым и черноземам, в каштановых почвах и сероземах оно несколько снижается.

Микроорганизмы пронизывают не только всю почвенную толщу, но и проникают в материнскую породу (Звягинцев, 1973; Хлебникова, 1980; и др.). На основании изучения биологической активности почв и подпочвенных горизонтов, рыхлых отложений до глубины 7-13 м установлено, что микроорганизмы постоянно присутствуют в подстилающих почву породах в количестве 10 11 -10 12 кл. на 1 см 2 , или 40- 100 млн. кл/г (по результатам люминесцентного микроскопического метода) и 10 6 -10 8 кл. на 1 см 2 , или 10 тыс. - 1 млн. кл/г (по данным посева), что всего лишь на порядок меньше, чем в почвенном профиле. Численность микроорганизмов снижается до определенной глубины почвенного профиля, а за ее пределами этого не наблюдается.

При сравнении численности бактерий подпочвенных горизонтов, природных вод и почв было отмечено, что в породах их в 100-5000 раз меньше, чем в почве, но значительно больше, чем в природных водах и морях (Хлебникова, 1980). Илистая фракция рыхлых почвообразующих пород обладает, как оказалось, такой же ферментативной активностью, как и почва.

Активная деятельность микроорганизмов проявляется в определенных экологических микронишах: ризосфера, остатки растений и животных (в том числе и микронаселения почвы), некоторые минералы.

Размеры экологических микрониш обусловлены структурой и измельченностью субстрата, непостоянны, так как постепенное истощение запасов пищи в них и накопление продуктов распада приводит либо к гибели, либо к переселению микроорганизмов в другие места, часто вместе со своими нишам (благодаря почвенной фауне, движению воздуха, воды ил подвижности самих микроорганизмов).

На специфику распределения микроорганизмов в почве, я микроочаговость заметно влияет адсорбция, благодаря которой они удерживаются в конкретном почвенном горизонте. Большинство микроорганизмов, обитающих в почве, на поверхности скальных пород и минералов, в грунтах и ряде других естественных субстратов, находятся в адсорбированном состоянии.

К настоящему времени выполнено много работ по изучению адсорбции микроорганизмов и их активности в адсорбированом состоянии. Для изучения адсорбции и активности микроорганизмов на веществах, не обладающих оптической прозрачностью, применен метод люминесцентной микроскопии (Звягинцев, 1977). Адсорбция установлена для самых различных групп микроорганизмов; споровых и неспоровых, грамотрицательных и грамположительных бактерий, проактиномицетов, актиномицетов, дрожжей, водорослей, грибов, микоплазм и др. Она зависит от подверженности микроорганизмов адсорбции, свойств адсорбента, химических и физических свойств среды, в которой происходит адсорбция, а также от условий, определяющих возможности контакта между бактериальными клетками и частицами.

Наличие в среде катионов способствует адсорбции микроорганизмов; она увеличивается от меньшей валентности катионов к большей. Влияет на нее и наличие органического вещества. Наибольшее количество клеток адсорбируют черноземы, перегнойно-глеевые почвы (до 90%), меньшее - дерново-подзолистые, серые и бурые лесные почвы (до 50-60%), среднее - каштановые почвы, красноземы и сероземы. Она происходит в широком диапазоне pH и обычно меньше в щелочной среде. Адсорбированные клетки могут сохранять свою подвижность и часто даже передвигают почвенные частицы малого диаметра. С уменьшением размеров частиц адсорбция микроорганизмов возрастает, последнее связано с увеличением удельной поверхности адсорбента на единицу массы и способностью мелких частиц образовывать агрегаты с клетками микроорганизмов, так как во фракции <0,01 мм растет относительное содержание вторичных минералов, полуторных окислов, а также органических коллоидов.

Группы микроорганизмов распределены по почвенным частицам разных размеров неравномерно: бактерии есть почти на всех частицах, а актиномицеты и грибы приурочены к более крупным. Прикрепление клеток к твердым частицам происходит с помощью различных органоидов (выростов, фимбрий, капсул, но не жгутиков) и может быть довольно прочным.

Изучение адсорбции подтвердило положение об очаговости распространения микроорганизмов в почве (Красильников, 1958), а также о наличии среди почвенных микроорганизмов обитателей почвенного раствора (некоторые грамотрицательные бактерии) (Takietal, 1970) и обитателей только твердой фазы; грибы и актиномицеты сосредоточены на твердых частицах. В дерново-подзолистых почвах Подмосковья они распределены следующим образом (Новогрудский, 1956):

Развитие микроорганизмов в почвах, илах, грунтах обычно происходит в капиллярах, заполненных почвенным раствором или в тонких водных пленках. В тонких капиллярах и тонких пленках размножение клеток различных микроорганизмов идет гораздо медленнее и размеры клеток меньше, чем в толстых (Звягинцева, 1973). По-видимому, на микроорганизмы, расположенные в капиллярах и пленках, кроме большой адсорбционной поверхности оказывают влияние распределение — веществ и их диффузия, специфика форм и строение воды и др.

Состав микрофлоры изменяется по профилю почвы: наиболее быстро исчезают с глубиной водоросли, затем грибы и актиномицеты; в нижних горизонтах они встречаются обычно в виде стерильных форм. Вниз по профилю исчезают спороносные бактерии и псевдомонады; наблюдается увеличение количества психрофильных или психротолерантных микроорганизмов, уменьшаются размеры клеток. Численность аэробов и анаэробов в нижних горизонтах примерно одинакова.

В некоторых почвах отмечаются два максимума микроорганизмов (целинные сероземы около Ташкента, некоторые поливные и песчаные почвы Казахстана), оглеенные лесные почвы.

Микрофлора различных почв изучалась многими микробиологами. Е. Н. Мишустин (1978) исследовал эколого-географическое распространение бактерий на отдельных видах и установил доминирование определенных видов спорообразующш бактерий в разных типах почв. Для Крайнего Севера, например, характерна группировка Bacillus agglomeratus и Вас. сеreus, в почвах средней полосы СССР и подзолах преобладают Вас. mycoides и Вас. cereus; Вас. virgulus приурочен в основном к лесным почвам, а в черноземах в больших количествам присутствуют Вас. idosus и Вас. megaterium; каштановые и сероземные почвы отличаются обилием Вас. mesentericus и Вас. subtilis. В почвах горных поясов была обнаружена аналогичная смена спорообразующих бациллярных форм, как и в ряду зональных равнинных почв.

Отмечено также преобладание грибов определенных видов в разных типах почв, например в северной зоне, где слабы минерализационные процессы, - грибы родов Penicillium ц Mucor, размножающиеся на субстратах с большим количестввом свежих растительных остатков. По мере продвижений к югу их вытесняют представители рода Aspergillus, в южных почвах уменьшается не только общая численность грибов рода Penicillium, но и разнообразие их видового состава. В черноземах, каштановых почвах и сероземах обильна развиваются грибы рода Fusarium, широко распространенные и в почвах тропических лесов. Некоторые грибы живут в широком диапазоне щелочно-кислотных условий и встречаются в кислых, нейтральных и щелочных почвах.

Численность актиномицетов и их видовое разнообразие возрастают с севера на юг.

Дрожжи обитают преимущественно в почвах с грубым гумусом, обилием слаборазложившихся растительных остатков, так как им необходимы простые сахара и органические кислоты; это почвы северных областей с высокой влажностью и кислой реакцией. Для разных почв характерна определенная дрожжевая микрофлора: в кислых дерново-подзолистых почвах преобладает род Candida, в тундрово-глеевых и болотных - род Cryptococcus. Таким образом, накопленный к настоящему времени материал свидетельствует об определенных эколого-географических различиях численности и состава микроорганизмов.

В течение вегетационного периода в почвах неоднократно возобновляется микробная биомасса, старые клетки отмирают, появляются новые. Скорость размножения бактерий измеряется временем, в течение которого удваивается число клеток (время одного деления или одной генерации), и зависит от вида бактерий, типа почв, гидротермических условий и др. В лабораторных условиях представители семейства Enterobacteriaceae при температуре 37° С делятся примерно через каждые 15-30 мин. У большинства бактерий время генерации значительно больше, у почвенных бактерий оно составляет 60- 150 мин, у Nitrosomonas и Nitrobacter - 5-10 ч (Шлегель, 1972). Для актиномицетов рода Streptomyces (в лабораторных условиях) спорообразование наблюдалось на 3-5 сут, у представителей рода Nocardia жизненный цикл проходит за 24 ч.

Суммируя скорости размножения, для каждого периода подъема численности можно рассчитать среднюю скорость размножения за весь вегетационный срок. По данным Н. А. Красильникова (1958), в течение месяца бактерии делятся приблизительно 2 раза; за вегетационный период на юге бактериальная масса регенерирует 14-18 раз, а в средней полосе - 6-8. В некоторых почвах за месяц образуется более двух генераций; за один июль сменяется до 10 новых поколений бактерий (Никитина, Шарабарин, 1972). Число генераций - величина непостоянная, она колеблется по горизонтам одного типа почв и по сезонам. В верхних горизонтах почв время генерации (для учитываемой на МПА) быстро растущей части почвенной микрофлоры составляет 25-50 сут. При внесении в почву чистых культур за год число генераций достигает 30.

Многие советские и зарубежные ученые на основании данных о численности бактерий, грибов, дрожжей, водорослей рассчитали микробную биомассу с учетом массы и объема микробных тел. Приведем некоторые из них. По данным С. Руссела (1955), живая бактериальная масса в пахотном слое почвы на 1 га (Ротамстед) равна 1,68-3,9 т, или в пересчете на сухую массу, 338-780 кг/га. Е. Н. Мишустин подсчитал, что в почвах различных почвенных зон СССР бактериальная масса составляет от 0,1 до 1,3 т сухого вещества микробной массы, или 0,6-5 т/га живой массы микроорганизмов. Н. А. Красильников (1958) для некоторых почв Средней Азии определил размеры живой биомассы в 7-9 т/га, а для почв Подмосковья - 4 т/га. В перегнойно-глеевых почвах (Звягинцев, 1969) вес сырой микробной массы - около 0,1% массы почвы. Степные почвы юго-восточного Забайкалья содержат 3-9 т/га бактериальной массы в слое 0-10 см (Михайлова, Никитина, 1972).

По подсчетам Т. Г. Мирчинк (1976), грибная биомасса в почвах составляет в гумусовом горизонте, кг/га: дерново-подзолистая под березняком - 500; под ельником зеленомошником - 2400; сильноподзолистая супесчаная под ельником зеленомошником - 3200, под березняком - 1600.

Дрожжевой биомассы в 1 га пахотного слоя содержится 1,4 кг (Бабьева, Решетова, 1972).

Ежегодная продукция микробной биомассы составляет десятки и сотни центнеров на 1 га в год. С бактериальными телами ежегодно поступает в почву 15-48 ц/га сухого органического вещества (Тюрин, 1946). Продукция бактерий черноземных почв Онон-Аргунской степи - 150 ц/га; в хорошо удобренных окультуренных почвах ежегодная продукция микробной массы - 200-500 ц/га (Ковда, Якушевская, 1973).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Почвенные микроорганизмы не просто обитают в естественной гетерогенной среде, но сами являются ключевым фактором почвообразования и участвуют в процессах преобразования горной породы в почву с характерным строением. Оценивая роль микроорганизмов, Т. В. Аристовская выделила пять важнейших элементарных почвенно-микробиологических процессов: разложение растительного опада, образование гумуса, разложение гумуса, деструкция минералов почвообразующей породы и новообразование минералов. Указанные и другие функции почвенных микроорганизмов составляют как бы фундамент наземных экосистем. Относительно более подробно исследован процесс разложения органического вещества в почве.

Ежегодно при фотосинтезе связывается примерно 5 Ю 10 т атмосферного углерода, а в виде опада в почву поступает приблизительно 4 I0 10 т. Основную часть опада почвенные микроорганизмы минерализуют до углекислого газа и воды. Вместе с тем существенная часть опада превращается в гуминовые вещества (от 0,6

до 2,5-10 9 т) - особый класс природных соединений, для которых до сих пор нет точных молекулярных формул и выделение которых задается операционально (процедурой). Гуминовые вещества извлекают из почвы раствором щелочи. Затем осаждают кислотой фракцию гуминовых и гиматомелановых кислот. В растворе остаются фульвокислоты и неспецифические вещества. Нерастворимую часть называют гумином.

Все гуминовые вещества содержат большой набор функциональных групп. При их гидролизе в раствор переходят до 22 аминокислот (их массовая доля достигает 10%), разнообразные моносахариды (до 25 %) и другие соединения. Продуктами окисления являются в основном бензолполикарбоновые кислоты. Источниками аминокислот и сахаров в гуминовых веществах могут быть белки и углеводы растений и микроорганизмов, а исходным материалом для бензоидных циклов служат лигнин и флавоноиды. Некоторое представление о содержании гумуса дает окраска почвы. В сухом состоянии малогумусные почвы (не более 1,5 % гумуса) имеют светло-серый цвет. Черный или буро-черный цвет (5 - 6 % гумуса и более) сухих образцов характерен для почв с высоким уровнем плодородия (чернозем). Несмотря на то что до сих пор дискуссионными остаются многие вопросы по строению, механизмам образования и разложения гуминовых веществ, эти соединения играют исключительную роль в поддержании плодородия и других почвенных характеристик. Согласно одной из гипотез образования гумуса (П. А. Костычев, Т. Г. Мирчинк, Д. Г. Звягинцев и др.), ядра молекул гумуса представлены микробными меланинами.

Процессы разложения растительного опада (продукты фотосинтеза как основной ресурс почвенных микроорганизмов) в первом приближении удовлетворительно описывает кинетическое уравнение первого порядка:

где А, и А 0 - концентрация ресурса в момент /ив начальный момент; к - константа с размерностью обратного времени. Формально применимость такой простейшей модели предполагает, что обильный микробный потенциал не лимитирует процесс. Лабораторные и полевые эксперименты показывают, что к чаще всего не зависит от количества поступившего в почву органического вещества при условии, что нагрузка по углероду не превышает 1,5 % от массы сухой почвы (в противном случае могут существенно измениться почвенные характеристики).

Поступивший в почву органический материал содержит, как правило, разные компоненты. Определенное представление о диапазонах скоростей разложения органики в почве могут дать значения к для разных ресурсов в условиях лабораторного эксперимента: от 0,02-0,03 - для соломы, гемицеллюлозы и мертвой грибной биомассы до 0,003 сут -1 для лигнина.

Процесс разложения органики в почве существенно зависит от процентного содержания в растительном опаде углеводов (U ) и лигнина (L), а также от соотношения C/N. Примером может служить эмпирическое уравнение для индекса дыхания почвы:

Отношение C/N для почвенных бактерий варьирует обычно в диапазоне от 3: 1 до 8: 1. Для биомассы почвенных грибов максимальное значение отношения C/N выше и достигает 16. В этом отношении грибы более конкурентоспособны при разложении соединений с низким содержанием азота (например, лигнина). К тому же мицелиальная организация позволяет осуществлять перенос соединений азота по гифе как трубе (транслокация лимитирующего ресурса). Не исключено, что мицелий грибов поставляет азот в подстилку (здесь значение C/N очень высокое: 40 - 100) из нижележащего почвенного горизонта.

Общее правило заключается в следующем. Если C/N микробной массы больше C/N органического вещества, то в результате минерализации почва обогащается азотом. Это наблюдается, в частности, при разложении мертвой биомассы животных (C/N = 10) и фитомассы бобовых растений (C/N = 18). Если C/N микробной массы меньше C/N органического вещества, то в ходе иммобилизации начнется потребление минерального азота почвы. При этом общая скорость разложения может существенно снизиться, пока не погибнет часть микробной биомассы и (или) не появится дополнительный источник азота в ходе микробной атаки на почвенное органическое вещество. Указанные закономерности учитываются в классическом эмпирическом правиле внесения соломы: чтобы исключить нежелательный процесс иммобилизации ресурса в почве, к 100 кг соломы следует добавить 1 кг азота.

Сходные проблемы возникают при решении оптимизационных задач по восстановлению почвенного плодородия в ситуациях с загрязнением среды. Например, крайне сложная ситуация возникает при загрязнении почв углеводородным сырьем на нефтяных месторождениях и при авариях на нефтепроводах. При этом в силу разных причин (ухудшение водного режима в гидрофобной обстановке, выпадение растений, возрастание отношения C/N и т.д.) ингибируется активность большинства почвенных микроорганизмов. Для активизации микробных сообществ и ускорения процессов самоочищения необходимо внесение удобрений (на окисление 1 г нефти требуется примерно 80 мг азота и 8 мг фосфора) с созданием соответствующих условий по влажности и аэрации (например, путем внесения торфа, соломы и других рыхлых материалов). Помимо прочего интерес представляет интродукция микробных популяций, разлагающих нефтепродукты. Любопытной представляется возможность применения коры хвойных деревьев с природным микробным комплексом, адаптированным к природным смолам.

Процесс разложения органического вещества в почве зависит от влажности, температуры, pH, окислительно-восстановительного потенциала и других параметров. Относительно подробно изучен температурный фактор. Зависимость дыхания почвы от температуры в первом приближении соответствует правилу Вант-Гоффа: скорость продукции С0 2 при нагревании на 10 °С увеличивается примерно в 2 раза (обычно Q i0 варьирует от 2,0 до 2,5). Близкие значения Q l0 получены для продукции N 2 0, NO и СН 4 .

Вполне очевидно, что процесс разложения органического вещества почвенными микроорганизмами зависит также от влажности почвы и других факторов (и их взаимодействия). Примерная картина зависимости скорости разложения растительного опада от температуры и влажности почвы как ключевых факторов в обобщенном случае показана на рис. 2.3.

Попыткам уточнить эту зависимость посвящены многочисленные работы по сценариям последствий глобального изменения климата.

На глобальном уровне запасы углерода в почвах, биомассе суши и в атмосфере составляют примерно (1500, 600 и 720) 10 15 г соответственно. Изменение уровня почвенного углерода может существенно повлиять на пул атмосферного углерода, который усту-


Рис. 2.3. Зависимость относительной скорости разложения органического вещества (%) от температуры и влажности почвы. Для характеристики влажности почвы представлены простейшие градации полевого описания в диапазоне примерно от -0,01 до -100 бар: «мокрая» - выделяет воду при сжимании в руке, «сырая» - напоминает тесто, «влажная» - увлажняет фильтровальную бумагу, «свежая» - холодит руку, «сухая» - пылит пает почвенному. Подобные расчеты подчеркивают значимость почвенного органического вещества и почвенного микробного блока как факторов, определяющих климат. Для глобальной оценки величины углерода почвенной микробной биомассы предлагались разные методы и схемы расчета, которые позволили очертить диапазон значений - (2,5- 10) 10 15 г.

В относительно сбалансированных экосистемах («климакс») отношение углерода микробной биомассы к углероду почвенного органического вещества С МИ|ф /С орг составляет примерно 2 %. Через это «игольное ушко» должно пройти органическое вещество, поступающее в почву. Отклонение С МИ|ф /С орг отданного значения может указывать на нарушение режима системы по органическому веществу.

Для оценки увлажнения почв часто используются показатели объемной и весовой влажности, однако эти показатели неудовлетворительно характеризуют степень доступности воды для микроорганизмов. Вода может находиться в природной среде в различных состояниях, начиная от гигроскопической влаги, прочно адсорбированной на почвенных частицах, до гравитационной воды, свободно перемещающейся в крупных порах под действием силы тяжести. Для более строгой оценки степени доступности воды информативным является определение потенциала влаги как количества термодинамической работы, которая должна быть затрачена организмом на извлечение воды. Чаще всего диапазоны потенциалов воды для почвенных микроорганизмов представлены в барах. Среди других термодинамических показателей используют также показатель активности воды - отношение показателей давления водяного пара в исследуемой системе и чистой воды.

Развитие микроорганизмов в почвах обычно проходит не в большом объеме жидкости, а в капиллярах, заполненных водным раствором, или в тонких пленках. Толщина пленок и капилляров имеет существенное значение для жизнедеятельности микроорганизмов. Даже толстые капилляры часто заполнены воздухом и только на поверхности их стенок находится пленочная вода. В тонких пленках микроорганизмы практически не развиваются. По некоторым данным, органическое вещество в капиллярах с диаметром менее 1 мкм недоступно для микроорганизмов. Хорошее развитие микроорганизмов наблюдается в водных пленках толщиной 10 мкм и более.

Па микроорганизмы, расположенные в капиллярах и пленках, оказывает влияние (кроме большой адсорбирующей поверхности) специфика распределения и диффузии ресурсов и продуктов жизнедеятельности. Отмечено, что при развитии в тонких водных пленках уменьшаются размеры клеток. По всей видимости, одна из основных причин более мелких размеров клеток в почве по сравнению с питательными средами заключается в том, что в почве клетки развиваются в капиллярах. Статистический анализ особенностей размножения почвенных микроорганизмов с помощью разработанной Б. В. Перфильевым капиллярной микроскопии показал, что микроколонии бактерий разных классов в стеклянных капиллярах in situ распределены по закону редких событий (закон Пуассона). По мнению японского микробиолога Т.Хаттори, наблюдаемая малая величина вероятности размножения бактерий в почве объясняет, почему в ней не выполняется теорема Гаузе о конкурентном исключении популяций с близкими экологическими нишами.

В зависимости от влажности почвы режим функционирования почвенной биоты меняется столь существенно, что это может принципиально изменить направленность экосистемных процессов и привести к нежелательным последствиям. Нижний предел водного потенциала для микроорганизмов существенно ниже, чем для растений, и составляет -150 бар и менее для некоторых почвенных грибов, включая Penicillium spp. и Aspergillus spp. В таких условиях активная биота может быть представлена системой, построенной в основном на грибах и их хищниках (некоторых почвенных клещах).

При повышении потенциала почвенной влаги примерно до -55 бар и выше биоразнообразие возрастает. В частности, заметную роль в минерализации органического вещества в почве начинают играть актиномицеты - мицелиальные бактерии, которые являются продуцентами основных антибиотиков, используемых в медицине. Вероятно, эффективность метода лечения специально подготовленной землей (почвенная катаплазма), который, в частности, применял в прошлом веке выдающийся специалист в области гнойной хирургии В. Ф. Войно-Ясенецкий, связана с синтезом актиномицетами комплекса антибиотиков. Характерный запах почвы определяется некоторыми летучими продуктами жизнедеятельности актиномицетов (геосмин, 2-метилизоборнеол), причем в ряде случаев показана значимость этих соединений в координации процессов в микробном сообществе (например, инициация прорастания спор микоризных грибов).

Рост большинства бактерий обеспечивается при более высоких значениях потенциала почвенной влаги: от - 40 до 0 бар, а миграция бактерий возможна в диапазоне - (0,1-0,5) бар и выше. Применяя бактериальные удобрения, необходимо обеспечить непосредственный контакт клеток бактерий с корнем растения. Примером может служить активная миграция симбиотических азот- фиксаторов клубеньковых бактерий к корню растения-хозяина с последующим проникновением в корень и формированием клубеньков. При благоприятных условиях на 1 см 2 поверхности корня из почвы поступает примерно 20 клеток клубеньковых бактерий за 1 ч, причем значимость фактора миграции на этом этапе взаимодействия может превосходить значимость процесса размножения бактерий.

Вместе с тем в этом же интервале потенциала почвенной влаги активно прорастают многие фитопатогенные грибы (Pythium spp., Phytophtora spp., Fusarium spp.). При наличии таких популяций в природной среде это может привести к их доминированию в микробном сообществе, болезням растений и существенной потере урожая.

Самая высокая скорость разложения органического вещества микроорганизмами как условия снабжения растений основными минеральными ресурсами обеспечивается примерно при -0,1 бар. В этом случае почвенная биота наиболее эффективно выполняет свою основную экосистемную функцию по рециклизации ресурсов.

При переувлажнении скорость минерализации снижается, а в микробной системе на первый план выходят анаэробные бактерии. В ряде случаев такое переключение режима микробной системы нежелательно для сельскохозяйственного производства, поскольку в результате денитрификации происходит потеря азота и могут накапливаться токсические продукты (летучие жирные кислоты, аммиак, этилен, сероводород, двухвалентное железо и др.). В переувлажненной почве обычно окислительно-восстановительный потенциал на первых этапах разложения органического вещества сохраняется на уровне примерно 200 мВ, а затем происходит резкое снижение потенциала до -200 мВ, что близко к пороговому значению для образования метана. Наличие в почве нитратов существенно задерживает возникновение условий сильного восстановления. В этом случае в среде появляются продукты денитрификации, включая азот.

Анаэробные микрозоны создаются и в почвах, которые не переувлажнены. Примером может служить небольшой почвенный агрегат с органическим веществом. На его поверхности в аэробных условиях в результате жизнедеятельности нитрифицирующих бактерий образуются нитраты. Внутренняя часть агрегата будет анаэробной и благоприятной для денитрификации при диффузии нитрата в почвенной влаге внутрь комочка.

В ряде случаев переключение в анаэробный режим может оказаться эффективным для ликвидации загрязнения окружающей среды. Например, при интенсивном сельскохозяйственном производстве серьезной проблемой стала избыточная концентрация нитратов. Для их удаления предложен микробиологический механизм денитрификации с помощью временного переувлажнения почв. Нитраты в этом случае будут использоваться почвенными микроорганизмами в качестве альтернативного акцептора электронов с образованием газов - азота и закиси азота. Таким путем удается достаточно быстро устранить загрязнение почв нитратами и предотвратить их поступление в поверхностные воды. Однако может возникнуть и другая проблема. Закись азота после поступления в атмосферу способствует разрушению озонового слоя. Поэтому возникает необходимость контроля процесса денитрификации с созданием условий для преимущественного образования азота как конечного продукта. Создание анаэробных условий с помощью переувлажнения почвы может оказаться также эффективным способом микробиологического разрушения некоторых ксенобиотиков.

Особенность почвы как природного местообитания различных организмов состоит в том, что условия для жизнедеятельности биоты непостоянны, а меняются в зависимости от климатических и других факторов. Например, типична ситуация с чередованием процессов увлажнения (после дождя или полива) и высушивания почв. В таких условиях существенно снижается функциональное потенциальное разнообразие почвенного бактериального сообщества, оцениваемое по способности утилизировать различные органические вещества. Есть основания полагать, что ведущая экоси- стемная функция почвенной биоты определяется не только параметрами, складывающимися в местообитании в данный момент времени, но и предысторией водного режима.


Почвы в том виде, в котором они есть на планете Земля, – результат работы бактериальных сообществ. Смешивая частицы горных пород и минералов с продуктами переработки отмершей органики и с продуктами собственной жизнедеятельности, микроорганизмы шаг за шагом превращали безжизненные скалистые пустыни в покрытые плодородным гумусом территории, которые стали базой для реализации нового витка круговорота веществ на планете. Бактерии в почве – основные двигатели этого круговорота.

Строго говоря, почвенные бактерии – это и есть часть почвы. Вернее, не самой почвы, а ее плодородного слоя – гумуса. В одной чайной ложке гумуса живет более одного миллиарда микроорганизмов, которые постоянно заняты либо определенной стадией разложения отмершей органики, либо фиксацией поступающих в почву неорганических веществ и построением из них сложных органических молекул.

Группа почвенных бактерий ведет свою историю с тех времен, когда представители органической жизни (растения и животные) только начали выбираться на сушу и оставлять на скалистых морских берегах остатки своей жизнедеятельности. Вот эти остатки и стали первым домом почвенных бактерий. Научившись преобразовывать органику в почву, микроорганизмы живут в ней и поныне, приспосабливаясь к меняющимся условиям окружающей среды.

В микробиологии существует функциональное деление почвенных микробов, которое строится на том, какое экологическое значение имеют те или иные микроорганизмы в процессе преобразования неорганических и органических веществ:

  1. Деструкторы – бактерии, которые живут в почве и минерализуют (разлагают) органические соединения, попавшие в верхние слои почвы. Их роль – превращать останки животных и растений в неорганические вещества.
  2. Азотфиксирующие или клубеньковые микробы – симбионты растений. Их роль заключается в том, что только виды клубеньковых микробов могут связывать неорганический атмосферный азот и снабжать им растение. Тем самым азотфиксаторы обогащают минеральный состав растительных тканей.
  3. Хемоавтотрофы – собирают имеющуюся неорганику в органические молекулы, используя при этом энергию химических реакций, которые протекают внутри самой бактерии. Это группа автотрофов. Их роль заключается в том, что они могут обработать накапливающиеся в почве неорганические вещества и «кормить» ими растения.

Кроме названных, в почве присутствуют и другие виды бактерий, которые не играют особой роли и не имеют значения при формировании плодородного слоя, но могут стать причиной губительного поражения живых тканей. Это болезнетворные микробы, которые попадают в почву с зараженными органическими остатками или переносятся с аэрозолями (воздушные потоки с мелкодисперсной взвесью).

Деструкторы

Это одна из самых многочисленных групп, в которой могут быть как аэробные (дышащие кислородом) бактерии, так и анаэробные (дышащие за счет протекания других реакций). Какие из них преобладают – сказать сложно. Микробиологи не придают значения выведению таких соотношений.

В группу деструкторов входят не только бактерии. Также активно разлагают органику так называемые детритофаги (жуки-скоробеи, термиты, дождевые черви и т.д.). Их роль заключается в первичном разложении органических молекул на более простые соединения, которые после обрабатывают бактерии-редуценты.

Редуценты (сапротрофы) осуществляют окончательное глубокое разложение, в результате которого создается особая микрофлора, питающая растительность определенной экосистемы.

  1. В почве широко распространены представители класса Клостридии. Известны и азотфиксирующие Клостридии, и Клостридии-редуценты. Среди этого класса микроорганизмов встречаются и болезнетворные патогенные микробы, но в почве такие могут присутствовать только в качестве аллохтонных (случайных) прокариотов. Известные почвенные Клостридии – анаэробные микробы, роль которых заключается в высвобождении углекислого газа из органических сахаров, содержащихся в клетках тканей погибших растений.
  2. Бациллы – еще одно семейство спорообразующих бактерий, которыми богаты почвы. Бациллы в основном аэробы и факультативные анаэробы, которые могут жить в присутствии кислорода, но не могут им дышать. Среди Бацилл обнаружены самые крупные виды, которые могут достигать размеров до 5 мкм. Самая известная Бацилла – Сенная палочка.
  3. Еще одно семейство бактерий, которое широко распространено в почвах – Псевдомонады. Это аэробные микроорганизмы, их не бывает среди анаэробов. Некоторые группы могут быть патогенными для растений. Псевдомонады могут расщеплять буквально любой субстрат. Их большое количество на очистных сооружениях, также они перерабатывают синтетические и токсичные отходы.

Основная зона обитания аэробных редуцентов – ризосфера, прикорневая область и область корней растений. Анаэробные редуценты живут в более глубоких слоях почв, куда плохо проникает кислород.

Азотфиксирующие обитатели почв

Одна из самых популярных в быту групп микроорганизмов – клубеньковые бактерии.

Клубеньковые микробы — единственные микроорганизмы, с помощью которых можно быстро и с минимальными трудозатратами насытить почвы азотом, что в свою очередь значительно повышает урожайность на таких полях.

К клубеньковым микробам относятся те же Клостридии (их аэробные роды), но основная группа клубеньковых прокариотов — это все-таки представители рода Ризобиум.

Этим клубеньковым микроорганизмам даже дают названия по названию того растения, мутуалистический симбиоз с которым образовывает данный клубеньковый микроб.

Суть симбиоза клубеньковых микробов и растений состоит в том, что колония бактерий формирует нарост на корне растения, через который растение получает преобразованный в аммиак молекулярный азот, а взамен снабжает колонию бактерий необходимыми ей питательными веществами.

Представители рода Ризобиум являются анаэробами. Создание анаэробных условий является также одной из задач, которые решают данные бактерии с помощью симбиоза с растениями.

Хемолитотрофы

Группа бактерий – автотрофов. Они единственные на планете организмы, которые могут из неорганических веществ продуцировать органические вещества. Их роль глобальна, поскольку в круговороте веществ их не могут заменить никакие другие организмы.

Автотрофы представлены пятью основными группами:

  • нитрифицирующие – аэробные микробы, которые включают неорганический азот в органические соединения;
  • окислители серы – аэробные прокариоты, включают неорганическую серу в органические молекулы;
  • железобактерии – аэробные ацидофильные (живут в средах с повышенной кислотностью) бактерии, включающие в состав органики неорганическое железо;
  • водородные и карбоксидобактерии – аэробные микроорганизмы, которые преобразуют молекулярный водород и углекислый газ.

Среди автотрофов нет патогенных видов, поскольку основная причина патогенности – продуцирование процессов гниения (разложения органической материи). Автотрофам органика в качестве пищи не интересна.

Патогенная микрофлора

Патогенные микроорганизмы в почве – результат фекального загрязнения. Практически все микробы, провоцирующие процессы гниения, попадают в почву из кишечников растений или животных.

Основные представители патогенной микрофлоры – колиформные прокариоты, так называемые бактерии группы кишечной палочки. Попадая в почву, эти микробы могут довольно долго существовать, если к ним перекрыт доступ прямых солнечных лучей и почва достаточно прогрета.

Особенно опасны для человека колиформные бактерии, попавшие в почвы из кишечника животных. Они вызывают те формы гниения органических тканей человека, которые сложно оперативно остановить.

Кроме того, большую опасность для животных и человека несут бактерии гниения, вырабатывающие высокотоксичные протеолитические ферменты, которые становятся причиной гангрены и столбняка.

Почва является основным средством производства в сельском хозяйстве. Все продукты сельского хозяйства состоят из органических веществ, синтез которых происходит в растениях под воздействием, главным образом, солнечной энергии. Разложение органических остатков и синтез новых соединений, входящих в состав перегноя, протекает при воздействии ферментов, выделяемых разными ассоциациями микроорганизмов. При этом наблюдается непрерывная смена одних ассоциаций микробов другими.

Микроорганизмов в почве очень большое количество. По данным М.С. Гилярова, в каждом грамме чернозема насчитывается 2-2,5 миллиарда бактерий. Микроорганизмы не только разлагают органические остатки на более простые минеральные и органические соединения, но и активно участвуют в синтезе высокомолекулярных соединений - перегнойных кислот, которые образуют запас питательных веществ в почве. Поэтому, заботясь о повышении почвенного плодородия (а, следовательно, и о повышении урожайности), необходимо заботиться о питании микроорганизмов, создании условий для активного развития микробиологических процессов, увеличении популяции микроорганизмов в почве.

Основными поставщиками питательных веществ для растений являются аэробные микроорганизмы, которым для осуществления процессов жизнедеятельности необходим кислород. Поэтому увеличение рыхлости, водопроницаемости, аэрации при оптимальной влажности и температуре почвы обеспечивает наибольшее поступление питательных веществ к растениям, что и обуславливает их бурный рост и увеличение урожайности.

Однако растениям для нормального роста и полноценного развития необходимы не только макроэлементы, такие как калий, азот, фосфор, но и микроэлементы, например, селен, который выступает как катализатор в различных биохимических реакциях и без которого растения не в состоянии сформировать действенную иммунную систему. Поставщиками микроэлементов могут быть анаэробные микроорганизмы - это микроорганизмы, которые живут в более глубоких почвенных пластах и для которых кислород - яд. Анаэробные микроорганизмы способны по пищевым цепям «поднимать» необходимые растениям микроэлементы из глубинных слоев почвы.

В окультуренных плодородных почвах бурно развиваются не только микрофлора, но и почвенная фауна. Животные в почве представлены дождевыми червями, личинками различных почвенных насекомых и живущими в почве грызунами. Из числа микроскопической фауны черви являются наиболее активными почвообразователями. Они живут в поверхностных горизонтах почвы и питаются растительными остатками, пропуская через свой кишечный тракт большое количество органического вещества и минеральной составляющей почвы. Микроорганизмы в почве образуют сложный биоценоз, в котором различные их группы находятся между собой в сложных отношениях. Одни из них успешно сосуществуют, а другие являются антагонистами (противниками). Антагонизм их обычно проявляется в том, что одни группы микроорганизмов выделяют специфические вещества, которые тормозят или делают невозможным развитие других.

Почвы населены многочисленными представителями микроскопических существ. Мир их разделен на растительные и животные виды. Микроскопический растительный мир почвы представлен бактериями, актиномицетами, дрожжами, грибами, водорослями. Животный мир почвы составляют простейшие (протозоа), насекомые, черви и прочие. Кроме них, в почве обитают различные ультрамикроскопические существа - фаги (бактериофаги, актинофаги) и многие другие еще мало изученные виды.

Особенно широко представлены в почве гнилостные, маслянокислые и нитрифицирующие бактерии, актиномицеты и плесневые грибы.

Количество микробной флоры зависит от плодородия почв. Чем плодороднее почвы, чем больше в них перегноя, тем плотнее заселены они микроорганизмами. Накопление микроорганизмов в значительной степени зависит от количественного и качественного содержания органических веществ в свежеотмерших растительных и животных остатках и продуктах их первичного распада; вначале микробов больше, а после минерализации уменьшается.

Существенное значение в жизни микроорганизмов имеют витамины, ауксины и другие биотические вещества. Небольшие дозы их заметно ускоряют развитие и размножение клеток микробного населения.

Почва при высушивании обедняется микроорганизмами. Иногда численность их при высушивании образцов почвы уменьшается в 2-3 раза, а нередко в 5-10 раз. Наиболее стойко сохраняют жизнеспособность актиномицеты, затем микобактерии. Самый высокий процент гибели отмечается среди бактерий. Однако полного вымирания бактерий, даже в условиях длительной засухи почвы, как правило, не происходит. Даже у весьма чувствительных к высушиванию культур имеются единичные клетки, которые длительное время сохраняются в сухом состоянии.

На распределение отдельных микробов сильное влияние оказывает кислотность почвенного раствора. В почвах с нейтральной или слегка щелочной реакцией бактерий бывает значительно больше, чем в кислых, заболоченных или торфяных почвах.

Плесневые грибы лучше переносят кислую среду, чем бактерии, поэтому они обычно доминируют в кислых почвах.

Вопрос о распределении микробов в почве освещен недостаточно. Повседневные микробиологические исследования почв показывают, что клетки бактерий размещаются отдельными очагами, в каждом из которых разрастаются и концентрируются клетки одного или нескольких неантагонистических видов.

Групповой состав бактерий в разных почвах не одинаков. Из бактерий в почве преобладают формы, не образующие спор. Спороносные бактерии составляют около 10-20%.

В почве в больших количествах обитают также актиномицеты, грибы, водоросли и простейшие. Грибов и актиномицетов в 1 г почвы насчитывается десятки и сотни тысяч, а нередко миллионы. Общая масса водорослей, по мнению исследователей, немногим уступает общей массе бактерий.

Простейшие и насекомые на гектар пахотного слоя составляют массу, равную 2-3 т. Вся эта масса живых существ находится в непрерывном развитии. Отдельные клетки - особи растут, размножаются, стареют и погибают. Происходит непрерывная смена и обновление всей живой массы. Вся бактериальная масса, по самым скромным подсчетам, регенерируется за лето в южной полосе 14-18 раз. Таким образом, общая бактериальная продукция пахотного горизонта почвы за вегетационный период определяется десятками тонн живой массы.

Самый верхний слой почвы беден микрофлорой, потому что находится под непосредственным влиянием вредно действующих на нее факторов: высушивание, ультрафиолетовые лучи солнечного света, повышенная температура и прочее. Наибольшее количество микроорганизмов располагается в почве на глубине 5-15 см, меньше - в слое 20-30 см и еще меньше - в подпочвенном горизонте 30-40 см. Глубже могут существовать лишь анаэробные формы микробов.

Влияние обработки почвы на интенсивность микробиологических процессов. Вспашка, культивация, боронование значительно стимулируют развитие микрофлоры. Это связано с улучшением водно-воздушного режима почв.

Наиболее благоприятные условия при обработке создаются для аэробных микробов, в результате чего весной уже через 8-20 дней после обработки численность микрофлоры возрастает в 5-10 раз .

Разные приемы обработки почвы действуют неодинаково на микробы и мобилизацию питательных веществ в пахотном слое. Поверхностное рыхление подмосковных подзолистых почв усиливает развитие микроскопических существ, только в самом верхнем слое почвы сапрофитных бактерий в этом слое в 3-4 раза больше, чем в других. Послойное рыхление без оборота пласта активировало микрофлору незначительно. При рыхлении с оборотом пласта почти в 3 раза возросла численность микроорганизмов в нижнем слое, попадающем наверх. Даже в среднем слое, остающемся при такой обработке на месте, содержание микробов явно увеличивается. Аналогичные изменения наблюдались и в развитии нитрифицирующих бактерий. Эти данные показывают, что положительный эффект от оборота пласта в основном объясняется интенсивной минерализацией в нижней его части органических веществ.

В условиях орошаемого земледелия глубина и способ обработки заметно увеличивают количество полезных микроорганизмов как в поверхностных, так и в нижних слоях почвы. При глубокой вспашке наверх выворачивается малоплодородный, бедный микроорганизмами слой почвы, количество микробов в горизонте 0-20 было больше, чем при пахоте на глубину 20 см. . Это можно объяснить положительным влиянием удобрений, орошения и другими факторами.

В связи с тем, что превращения органических веществ в почве тесно связаны с деятельностью микроорганизмов, в слоях, где возросло их количество, увеличилось и содержание растворимых питательных веществ, включая нитраты. Существенно значение обработки почвы и в какой степени зависит от этого активность отдельных групп микроорганизмов, участвующих в мобилизации питательных веществ для растений. Однако беспрерывная обработка почвы без периодического внесения органических удобрений снижает содержание гумуса.

Чтобы количество гумуса в почве находилось на достаточном уровне, необходимо систематически вносить органические удобрения, которые повышают общую численность в почве не только бактерий, но и актиномицетов и плесневых грибов. Этим создаются благоприятные условия для развития всех групп почвенных микроорганизмов. Повышение общей активности микрофлоры обусловливается как количеством в почве энергетических или питательных веществ, так и внесением перегноя, торфа, навоза, которые усиливают аэрацию и повышают влагоудерживающую способность почвы, делая ее более структурной. Применение минеральных удобрений на почвах, богатых органическим веществом, оказывает стимулирующее действие на микрофлору. Питательные элементы, входящие в минеральные удобрения, обеспечивают возможность расщепления органических веществ и, следовательно, вызывают интенсивное размножение микробов.

Механизм действия минеральных удобрений на микрофлору в почве многогранен. Из повышающих факторов главными являются такие:

  • 1. Изменение физических свойств почвы, оказывающих благоприятное влияние на размножение микробов.
  • 2. Изменение реакции (рН) почвы в сторону нейтральной или слабощелочной.
  • 3. Минеральные удобрения в значительной степени усиливают развитие растений, что, в свою очередь, оказывает стимулирующее действие на микрофлору: более интенсивно растут корни, а, следовательно, и количество ризосферных организмов быстро увеличивается.

Различные факторы внешней среды, стимулирующие или ограничивающие развитие микроорганизмов, оказывают непосредственное влияние и на содержание гумуса в почве. К этим факторам можно отнести температуру, аэрацию, влажность почвы, кислотность и др. Оптимальными условиями для разложения органических остатков является температура 30-35° С и влажность 70-80% предельной полевой влагоемкости. Но эти условия в то же время максимально благоприятны и для минерализации гумуса. Для сохранения перегноя необходимы рациональная обработка почвы и регулярное возобновление запасов органических веществ внесением навоза, торфа, сидератов и т. п. Способствует этому также применение минеральных удобрений.

Гумус повышает количество водопрочных агрегатов почвы, что способствует хорошей водопроницаемости, экономному расходу воды, улучшает аэрацию и создает благоприятный биологический режим в структурной почве, гармонически сочетает аэробный процесс с анаэробным. Перегной служит источником энергии для микроорганизмов и одновременно делает почву более благоприятной для развития растений. Он, постепенно и медленно разлагаясь под действием почвенных микроорганизмов, является источником усвояемых питательных веществ для растений. Учитывая его многогранное влияние на почву, можно сказать, что основные свойства ее, включая плодородие, определяются гумусом.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва