Каркас это несущая основа промздания, которая состоит из поперечных и продольных элементов. Кирсанов Н.М

От воздействия внешней нагрузки, приложенной к узлам фермы, в её элементах появляются сжимающие и растягивающие усилия. В этом случае верхний пояс работает на сжатие, а нижний — на рас-тяжение. Элементы решетки в зависимости от характера и направле-ния действующей нагрузки могут работать как на сжатие, так и на растяжение. При этом сжимающие усилия создают опасность поте-ри устойчивости конструкции. Потеря устойчивости верхнего пояса может происходить в двух плоскостях: в плоскости фермы и из ее плоскости. В первом случае потеря устойчивости происходит за счет выпучивания между узлами фермы (по длине панели). Во втором случае потеря устойчивости возникает между точками пояса, закреп-ленными от смещения в горизонтальном направлении. Устойчивость фермы из ее плоскости является значительно меньшей по сравнению с устойчивостью в ее плоскости, что очевидно из-за того, что длина одной панели значительно меньше длины сжатого пояса.

Отдельная стропильная ферма является балочной конструкци-ей, обладающей очень малой боковой жесткостью. Для того чтобы обеспечить пространственную жесткость сооружения из плоских ферм, они должны быть раскреплены связями, образующими со-вместно с фермами геометрически неизменяемые пространствен-ные системы, обычно решетчатые параллелепипеды (рис. ниже).

Кроме обеспечения пространственной неизменяемости, систе-ма связей должна обеспечивать устойчивость сжатых поясов в на-правлении, перпендикулярном плоскостям раскрепляемых ферм (из плоскости фермы), воспринимать горизонтальные нагрузки и со-здавать условия для высококачественного и удобного монтажа со-оружения.

Связи по конструкциям покрытия здания располагают:

  • в плоскости верхних поясов ферм — горизонтальные попереч-ные связевые фермы 1 и продольные элементы — распорки 2 между ними (рис. ниже);
  • в плоскости нижних поясов ферм — горизонтальные попереч-ные и продольные связевые фермы 3 и распорки 2 (рис. ниже);
  • между фермами — вертикальные связи 4 (рис. ниже).

Связи по покрытию

Горизонтальные связи в плоскости верхних (сжатых) поясов ферм обязательны во всех случаях. Они состоят из раскосов и сто-ек, образующих совместно с поясами стропильных ферм горизон-тальные связевые фермы с крестовой решеткой. Горизонтальные связи располагают между крайними парами ферм в торцах здания (или в торцах температурного отсека), но не реже, чем через 60 м.

Для связи между верхними поясами промежуточных стропиль-ных ферм ставят специальные распорки над опорами и у коньково-го узла при пролете ферм до 30 м; при больших пролетах добавля-ют промежуточные распорки для того, чтобы расстояние между ними не превышало 12 м. Горизонтальные связи по верхним по-ясам ферм обеспечивают устойчивость сжатых поясов из плоско-сти фермы во время монтажа: в этот период расчетная длина таких поясов равна расстоянию между распорками. В процессе эксплуа-тации здания смещению верхних узлов из плоскости фермы пре-пятствуют ребра кровельных плит или прогоны, но только при ус-ловии, что они закреплены от продольных смещений связями, рас-положенными в плоскости кровли.

Горизонтальные связи по нижним поясам ферм устанавливают в зданиях с крановым оборудованием.

Они состоят из поперечных и продольных связевых ферм и рас-порок. В зданиях с кранами легкого и среднего режима работы час-то ограничиваются только поперечными связевыми фермами, рас-полагаемыми между нижними поясами соседних ферм по торцам здания (или температурного отсека). Если длина здания или отсека велика, то устанавливают дополнительную поперечную связевую ферму, чтобы расстояние между такими фермами не превышало 60 м. Ширину продольной связевой фермы обычно принимают рав-ной опорной панели нижнего пояса стропильной фермы.

Горизонтальные связевые фермы воспринимают горизонталь-ные нагрузки от ветра и торможения (поперечного и продольного) кранов.

Стропильные фермы обладают незначительной боковой жест-костью, поэтому процесс монтажа без их предварительного взаим-ного раскрепления невозможен. Эту функцию выполняют верти-кальные связи между фермами, располагающиеся в плоскости опор-ных стоек ферм и в плоскости средних стоек (в фермах пролетом до 30 м) или стоек, ближайших к коньковому узлу, но не реже, чем че-, рез 12 м. Чаще всего вертикальные связи проектируют с крестовой решеткой, но при шаге ферм 12 м может быть применена и тре-угольная решетка. Средние стойки стропильных ферм, к которым прикрепляют вертикальные связи, проектируют крестового сечения.

Конструкция связей, устанавливаемых в покрытии, зависит от схемы и материала каркаса, типа покрытия, высоты здания, вида крана, его грузоподъемности и режима работы.
Вертикальные связи между опорами железобетонных ферм или балок покрытия ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций связи располагают в каждом ряду колонн, а с такими конструкциями — только в крайних рядах колонн при шаге 6 м.

Вертикальные связи между опорами ферм или балок ставят не чаще, чем через один шаг. Их количество при длине температурного блока 60—72 At на каждый ряд колонн может быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. На рис. 69, а показаны четыре такие связи.

При наличии вертикальных связей между опорами ферм или балок покрытия или связей между колоннами (в зданиях без кранов) по верху колонн ст."шяг распорки (рис. 69, а, в).

В зданиях с шагом колонн в средних и крайних рядах 12 м предусматривают горизонатальные фермы в торцах - по две в каждом пролёте на температурный блок. Эти фермы ставят на уровне нижнего пояса стропильных ферм (рис. 69, в). В зданиях с подстропильными конструкциями в средних рядах колонн устраивают горизонтальные распорки в количестве 2—4 на один ряд колонн температурного блока (рис. 69, б).

Рис. 69. Связи в покрытиях при железобетонных фермах

В зданиях с мостовыми кранами тяжелого режима работы или при наличии оборудования, вызывающего колебания конструкций, по нижнему поясу стропильных ферм или балок в середине каждого пролета устанавливают распорки (тяжи) и вертикальные связи в двух крайних шагах температурного блока. Роль горизонтальных связей по верхнему поясу ферм или балок выполняют крупнопанельные плиты покрытия.

В пролетах с фонарями для обеспечения устойчивости верхнего пояса стропильных ферм устанавливают распорки (тяжи) по коньку ферм и горизонтальные связи по их верхнему поясу в пределах ширины фонаря в крайних (или вторых) шагах температурного блока.

В покрытиях с прогонами в крайних шагах температурных блоков по всей их ширине под прогонами устраивают горизонтальные связи крестовой схемы.
Вертикальные и горизонтальные связи делают в большинстве случаев из уголков и крепят к железобетонным конструкциям с помощью косынок (рис. 69, г, д). Тяжи изготовляют из круглой стали, а распорки, работающие на сжатие,— из железобетона.

Система связей покрытия в зданиях со стальным каркасом состоит из горизонтальных связей в плоскости нижних и верхних поясов стропильных ферм и вертикальных связей между фермами.

Горизонтальные связи по нижним поясам стропильных ферм располагают как поперек здания (поперечные горизонтальные), так и вдоль его (продольные горизонтальные). Поперечные горизонтальные связи по нижним поясам устанавливают у торцов и у температурных швов здания. При температурных блоках длиной 120—150 м и при кранах большой грузоподъемности предусматривают также промежуточные связе-вые фермы через каждые 60 м.
Продольные горизонтальные связи располагают по крайним панелям нижних поясов стропильных ферм и устраивают в зданиях с кранами Q>10T и в зданиях с подстропильными фермами.

В однопролетных зданиях такие связи располагают вдоль обоих рядов колонн, а в многопролетных — вдоль крайних рядов колонн и через ряд вдоль средних рядов (при кранах грузоподъемностью до 50 7) или более часто (при грузоподъемности кранов более 50 Т).
Вдоль средних рядов колонн при одинаковой высоте смежных пролетов продольные связи рекомендуется располагать с одной стороны колонн, а в мечтах ш"ропала высот — с обеих сторон ряда колонн.

Боковую жёсткость нижних поясов ферм, расположенных в промежутке между двумя поперечными связевыми фермами почивают специальными растяжками из уголков, закрепленными за узлы связевых ферм. Схема разбивки поперечных и продольных связей по нижним поясам ферм показана на рис. 70, а.

Горизонтальные поперечные связи по верхним поясам ферм обеспечивают устойчивость верхних поясов ферм из их плоскости, и ставят их в покрытиях с прогонами. В панельных покрытиях указанные связи предусматривают только в торцах здания и у температурных швов. В промежутках между поперечными связевыми фермами боковая устойчивость верхних поясов ферм обеспечивается прогонами, а на участках под фонарями — растяжками из уголков. Поперечные связи по верхним и нижним поясам ферм рекомендуется совмещать в плане.

Рис. 70. Связи в покрытиях при стальных фермах

При наличии подстропильных ферм в однопролетных покрытиях без прогонов и в многопролетных покрытиях, расположенных в одном уровне, предусматривают продольные горизонтальные связи в плоскости верхних поясов в одной из крайних панелей ферм. В случае перепада высот смежных пролетов предусматривают по одной продольной системе в каждом уровне.

Вертикальные связи покрытия располагают в плоскостях опорных стоек стропильных ферм, в плоскости коньковых стоек, для ферм пролетом до 30 м, а также в плоскости стоек, находящихся под узлом крепления наружных ног фонаря для ферм пролетом более 30 м. Вертикальные связи делают в виде ферм с параллельными поясами, имеющими высоту, равную высоте стоек, к которым связи крепят.

Связи по прогонам в виде ферм жесткости, распорок и тяжей обеспечивают проектное положение прогонов, повышают устойчивость и облегчают работу прогонов на скатную составляющую вертикальных нагрузок и воспринимают ветровые усилия.

Все типы связевых ферм выполняют из уголков с перекрестной решеткой, распорки также из уголков, а тяжи — из круглой стали. Крепят связи на черных болтах, в зданиях же с кранами большой грузоподъемности и тяжелого режима работы, а также в случае значительных усилий в элементах связей — на монтажной сварке и реже — на заклепках или чистых болтах. Некоторые детали крепления связей приведены на рис. 70, б — г.

1 марта 2012

Для придания цеху пространственной жесткости, а также для обеспечения устойчивости элементов рам устраиваются связи, располагаемые между рамами.

Различают связи: горизонтальные — в плоскости верхних и нижних поясов ферм — и вертикальные — как между , так и между колоннами.

Назначение горизонтальных связей по верхним поясам ферм было рассмотрено в разделе . Эти связи обеспечивают устойчивость верхнего пояса ферм из их плоскости. На фигуре показан пример расположения связей по верхним поясам ферм в покрытии с прогонами.

В беспрогонных покрытиях, в которых крупнопанельные железобетонные плиты привариваются к верхним поясам ферм, жесткость кровли настолько велика, что, казалось бы, нет необходимости в постановке связей.

Учитывая, однако, необходимость обеспечения надлежащей жесткости конструкций на время монтажа плит, а также и то обстоятельство, что нагрузка от плит не приложена строго вертикально по оси ферм и потому может вызвать кручение, считают необходимым ставить связи по верхним поясам ферм по краям температурных отсеков. Столь же необходимы распорки у конька ферм, у опор и под фонарными стойками.

Эти распорки служат для завязки верхних поясов всех промежуточных ферм. Гибкость верхнего пояса между раскрепленными на время монтажа плит точками не должна превышать 200 — 220. Связи по верхним поясам стропильных ферм крепятся к поясам черными болтами.

При изготовлении связей важно точно приварить фасонку к уголку, обеспечив соответствующий угол наклона, так как при помощи связей частично контролируется правильность геометрической схемы смонтированного сооружения.

Поэтому приварку фасонок к элементам связей рекомендуется производить в кондукторах. На фигуре показан простейший тип кондуктора в виде швеллера, на котором точно пробиты отверстия под необходимым углом.

Горизонтальные связи по нижним поясам ферм располагаются как поперек цеха (поперечные связи), так и вдоль цеха (продольные связи). Поперечные связи, расположенные у торцов цеха, используются в качестве ветровых ферм.

На них опираются стойки каркаса торцовой стены цеха, воспринимающего давление ветра. Поясами ветровой фермы служат нижние пояса стропильных ферм. Такие же поперечные связи по нижним поясам ферм устраивают у температурных швов (в целях образования жесткого диска).

При большой длине температурного блока поперечные связи ставятся также в средней части блока с тем, чтобы расстояние между поперечными связями не превышало 50 — 60 м. Это приходится делать потому, что соединение связей часто производится на черных болтах, допускающих большие сдвиги, вследствие чего влияние связей ре распространяется на большие расстояния.

Поперечная деформация каркаса от местной (крановой) нагрузки: а — при
отсутствии продольных связей; б — при наличии продольных связей.

Горизонтальные продольные связи по нижним поясам ферм имеют своим главным назначением вовлечение в пространственную работу соседних рам при действии местных, например крановых, нагрузок; тем самым уменьшаются деформации рамы и увеличивается поперечная жесткость цеха.

Особо важное значение приобретают продольные связи при тяжелых кранах и в цехах с тяжелым режимом работы, а также при легких и нежестких кровлях (из волнистой стали, асбестоцементных листов и т. п.). В зданиях с тяжелым режимом работы связи следует приваривать к нижнему поясу.

Для связевых ферм, как правило, принимают крестовую решетку, считая, что при воздействии нагрузок с какой-либо одной стороны работает только система вытянутых раскосов, а другая часть раскосов (сжатых) выключается из работы. Такое предположение справедливо, если раскосы гибкие (λ > 200).

Поэтому элементы крестовых связей, как правило, проектируют из одиночных уголков. При проверке гибкости перекрестных растянутых раскосов связей из одиночных уголков радиус инерции уголка принимается относительно оси, параллельной полке.

При треугольной решетке связевых ферм во всех раскосах могут возникнуть сжимающие усилия, а потому их необходимо проектировать с гибкостью λ < 200, что менее экономично.

В пролетах более 18 м из-за ограничения боковой гибкости нижних поясов ферм во многих случаях приходится ставить дополнительные распорки по середине пролета. Этим устраняется дрожание ферм при работе кранов.

Вертикальные связи между фермами обычно устанавливают у опор ферм (между колоннами) и в середине пролета (либо под стойками фонаря), располагая их по длине цеха в жестких панелях, т. е. там, где расположены поперечные связи по поясам ферм.

Основное назначение вертикальных связей заключается в приведении в жесткое неизменяемое состояние пространственной конструкции, состоящей из двух стропильных ферм и поперечных связей по верхнему и нижнему поясам ферм.

В цехах с кранами легкого, а иногда и среднего, режима работы при наличии жесткой кровли из крупнопанельных железобетонных плит, приваренных к стропильным фермам, система вертикальных связей может заменить систему поперечных связей по поясам ферм (кроме торцовых ветровых ферм).

При этом промежуточные фермы должны быть связаны распорками.

Конструкция вертикальных связей принимается в виде креста из одиночных уголков с обязательным горизонтальным замыкающим элементом или в виде фермочки с треугольной решеткой. Крепление вертикальной связи к стропильной ферме осуществляется на черных болтах.

Вследствие незначительности усилий, действующих в элементах связей покрытия, при конструировании их креплений может быть допущено незначительное отступление от центрирования.

Вертикальные связи между колоннами устанавливают вдоль цеха для обеспечения устойчивости цеха в продольном направлении, а также для восприятия сил продольного торможения и давления ветра на торец здания.

Если в поперечном направлении рамы, защемленные в фундаментах, являются неизменяемой конструкцией, то в продольном направлении ряд установленных рам, шарнирно связанных подкрановыми балками, представляет собой изменяемую систему, которая при отсутствии вертикальных связей между колоннами может сложиться (опоры колонн в продольном направлении надо считать шарнирными).

Поэтому сжатые элементы связей между колоннами (ниже подкрановых балок), а в зданиях с тяжелым режимом работы и растянутые элементы этих связей, имеющих существенное значение для устойчивости всего сооружения в целом, делают достаточно жесткими, чтобы избежать их дрожания. С этой целью ограничивают предельную гибкость таких элементов значением λ = 150.

Для прочих растянутых элементов связей между колоннами гибкость не должна превышать λ = 300, а сжатых λ = 200. Элементы крестовых связей между колоннами обычно делают из уголков. Особо мощные крестовые связи делают из парных швеллеров, соединенных решеткой или планками.

При определении гибкости пересекающихся стержней (в крестовой решетке) расчетная длина их в плоскости решетки принимается от центра узла до точки их пересечения. Расчетная длина стержней из плоскости фермы принимается по таблице.

Расчетная длина из плоскости фермы стержней перекрестной решетки

Характеристика узла пересечения стержней решетки При растяжении в поддерживающем стержне При неработающем поддерживающем стержне При сжатии в поддерживающем стержне
Оба стержня не прерываются 0,5 l 0,7 l l
Поддерживающий стержень прерывается и перекрывается фасонкой 0,7 l l l

Расчет крестовых связей обычно производится в предположении, что работают только растянутые элементы (на полную нагрузку). В случае, если учитывается работа элементов крестовой решетки также и на сжатие, нагрузка распределяется между раскосами поровну.

Для обеспечения свободы температурных продольных деформаций каркаса вертикальные связи между колоннами лучше всего располагать в середине температурного блока или вблизи от нее.

Но так как монтаж сооружения обычно начинается с краев, то желательно первые две колонны связать в раму так, чтобы они были устойчивы. Это заставляет конструировать связи так, как показано на фигуре Связи по нижним поясам ферм и между колоннами б, т. е. в крайних панелях устанавливать связи только в пределах верхней части колонн.

Такие связи допускают деформацию изгиба нижних частей колонн при изменениях температуры. В то же время один из раскосов, работая от ветровой нагрузки на растяжение, передает эти усилия на подкрановую балку.

Дальнейший путь ветровых усилий показан на фигуре Связи по нижним поясам ферм и между колоннами б; они передаются по жестким подкрановым балкам до средних связей и по ним спускаются в землю. Желательно выбирать такую схему связей, чтобы они примыкали к колоннам под углом, близким к 4 — 5°. В противном случае получаются слишком вытянутые тяжелые фасонки.

Рамные вертикальные связи: а — при шаге колонн 6 м;
б — при шаге колонн не меньше 12 м.

В случае, если по технологическим условиям нельзя полностью занять под связи ни одного пролета, а также при больших шагах колонн устраивают рамные связи; при этом считают, что от односторонней нагрузки работают на растяжение связи одного угла, а элементы другого угла из-за большой гибкости (λ = 200 / 250) выключаются из работы. При такой схеме работы конструкции мы получаем «трехшарнирную арку».

Вертикальные связи устанавливаются ниже подкрановой балки в плоскости подкрановой ветви колонны, а выше подкрановой балки — по оси сечения колонны. В цехах с тяжелым режимом работы связи ниже подкрановых балок прикрепляются к колоннам на заклепках (преимущественно) или на сварке.

«Проектирование стальных конструкций»,
К.К.Муханов


Выбор поперечного профиля многопролетных цехов зависит не только от заданного полезного габарита цеха и габарита мостовых кранов, но и от ряда общестроительных требований, в первую очередь от организации отвода воды с крыши и от устройства освещения средних пролетов. Отвод воды может быть как наружным, так и внутренним. Наружные водостоки устраиваются в нешироких цехах, а также…

1. горизонтальные поперечные связи по нижним поясам ферм размещаются в торцах температурного блока при шаге колонн крайнего и среднего ряда 12 м. При длине блока более 144 м. дополнительно устраивают в середине блока. Образуются путем объединения нижних поясов 2-х соседних стропильных ферм с помощью решетки. В результате они выполняют совместно функции: воспринимают от стоек торцового фахверка ветровую нагрузку и передают ее на связи между колоннами и далее на фундамент, а также предотвращают перемещения вертикальных связей и растяжки между нижними поясами ферм. Распорки между нижними поясами ферм- закрепляют эти пояса от смещения, тем самым сокращая расчетную длину из плоскости фермы, уменьшает вибрации нижних поясов ферм.

2. горизонтальные продольные связи по нижним поясам ферм служат опорами для верхних концов стоек продольного фахверка; при действии крановых нагрузок вовлекают в работу соседние рамы, уменьшая поперечные деформации и избегая заклинивания мостовых кранов. Эти связи обязательны в однопролетных зданиях большой высоты, с тяжелыми мостовыми кранами, при наличии продольного фахверка. Распорки обеспечивают проектное положение ферм в процессе монтажа, ограничивают гибкость ферм из их плоскости. Роль распорок выполняют прогоны, которые закреплены от смещения.

3. горизонтальные поперечные связи по верхним поясам ферм по конструкциям и схемам размещения аналогичны связям по нижним поясам. Служат от смещения распорок по верхним поясам ферм. От них можно отказаться, если между соседними стропильными фермами блока установить вертикальные связи и через них обеспечит крепление распорок к поперечным связям по нижним поясам ферм.

4. 4. вертикальные связи между опорами ферм или балок ставят только в зданиях с плоской кровлей, причем в зданиях без подстропильных конструкций размещаются в каждом ряду колонн, а с подстропильными конструкциями – только в крайних рядах колонн при шаге 6 м. Ставят не чаще, чем через один шаг. При длине температурного блока 60-72 м на каждый ряд колонн их должно быть не более 5 при шаге 6 м и не более 3 при шаге 12 м. при наличии этих связей по верху колонн ставят распорки.

Единая модульная система в строительстве

Типизация в строительстве осуществляется на основе Единой Модульной Системы. Это правила по которым назначаются и согласуются между собой размеры зданий и конструкций.

Размеры по правилам ЕМС назначают по базе модуля. Основной модуль (М) равен 100 мм. При выборе размеров для зданий, конструкций пользуются укрупненным модулем: 6000 мм = 60М; 7200 мм = 72М. Дробный модуль применяют для назначения сечений конструкций: 50 мм = ½М.

ЕМС - единая модульная система, представляющая собой свод правил, которые координируют размеры объемно-планировочных и конструктивных частей строительных объектов и размеры сборных модулей и оборудования.

МКРС - модульная координация размеров в строительстве. Стандарт, применение которого при проектировании зданий позволяет унифицировать размеров строительных конструкций и объемно-планировочные размеры зданий. Данный стандарт предполагает унификацию следующих параметров: высоты этажей (Н0), шагов (В0) и пролетов (L0).

ЕМС основана на принципе кратности размеров. Размер любого из элементов здания должен быть кратен величине, называемой модулем. В системе ЕМС принят модуль в 100 миллиметров, который в технической документации обозначается буквой М. Соответственно, размеры крупных элементов конструкций будут обозначаться как производные от модуля. Например, 6000 мм - 60 М, 3000 мм - 30 М и так далее. Мелкие элемент обозначаются как дробные о т модуля: 50 мм - ½ М, 20 мм - 1/5 М.

15 основа планировки промзданий

Промышленные здания подразделяются по двум видам планировки:

раздельные (отдельно стоящие) здания , планировка которых хотя и дает конструктивную простоту и высокий уровень индустриальности в производстве зданий, однако отличается такими недостатками, как большая площадь застройки, большая протяженность инженерных и транспортных сетей, невозможность организации поточного производства, значительные энергозатраты на отопление помещений;

сплошные (сблокированные) здания , которые представляют собой

многопролетные корпуса большой площади (до 30...35 тыс. кв.м).Сплошная планировка обеспечивает многовариантную расстановку технологического оборудования, уменьшение площади завода на 30…40 %, снижение стоимости строительства на 10…15 %, сокращение длины инженерных и транспортных коммуникаций, сокращение периметра наружных стен на 50 % со снижением расходов на эксплуатацию. Однако недостатками сплошных зданий являются удорожание естественного освещения, затрудненный водоотвод с покрытий, усложнение путей передвижения транспорта и персонала. Блокировать цеха целесообразно в тех случаях, когда смежные производства не требуется разделять капитальными стенами и при этом не ухудшаются условия технологии производства и труда рабочих.

Планировка промышленных зданий сопровождается зонированием в пределах объема производственных зданий, помещений, участков и зон, выделяемых по признакам однотипности технологии, уровню производственной вредности, уровню пожаро- и взрывоопасности, направленности транспортных и людских потоков, по перспективам расширения и переоснащения.

На выбор этажности промышленного здания влияют:

технология производства;

климатические условия района;

требования к застройке (городская, периферийная);

характер отведенного участка (свободный, стесненный рельеф);

достоинства и недостатки.

Одноэтажные здания имеют следующие достоинства :

простое объемно-планировочное решение;

склонность к унификации и блокированию;

снижение стоимости 1 кв. м на 10 % по сравнению со стоимостью многоэтажных зданий;

облегчение установки технологического оборудования;

упрощение путей грузовых потоков и использование горизонтального транспорта;

равномерное освещение рабочих мест естественным светом через фонари;

обеспечение естественного воздухообмена.

Недостатками одноэтажных зданий являются:

большая площадь застройки;

большая протяженность инженерных и транспортных сетей;

повышенные расходы на благоустройство территории;

большая площадь наружных ограждающих конструкций и в результате значительные расходы на отопление.

Многоэтажные здания лишеныбольшинства недостатков одноэтажных зданий и рациональны по применению, особенно при нагрузках до 10 кН/кв. м.

К основным недостаткам многоэтажных зданий относятся:

потребность в вертикальном транспорте;

повышенная стоимость;

ограничение по ширине при необходимости естественного освещения (ширина не более 24 м);

высокий удельный вес подсобных помещений.

Температурный блок.

Для ограничения усилий, возникающих в конструкциях от перепада температур, здание разрезается температурно-деформационными швами на отсеки (температурные блоки), размеры которых зависят от материала каркаса, теплового режима здания и климатических условий района строительства. Эти размеры определяются расчетом.

Продольные и поперечные температурно-деформационные швы указаны синим и красным цветами соответственно.

Для железобетонного и смешанного каркаса длина температурного блока А ≤ 72 м – если в здании по длине присутствуют неразрезные элементы (например, подкрановые балки). Для бескрановых зданий нормами разрешено увеличивать А до 144 м. Однако, если в здании есть подвесное оборудование (монорельс и т.п.) длина температурного блока не должна превышать 72 м. Допускается А увеличивать до 280 м, но при этом высота строения не должна превышать 8,4 м.

Ширина температурного блока Б не должна быть больше 90-96 м.

В особых климатических районах и для неотапливаемых помещениях длину температурного блока А назначают по инструкциям, привязанным к местным климатическим условиям.

В стальных каркасах зданий с мостовыми кранами А ≤ 120 м, в бескрановых зданиях А ≤ 240 м, а Б ≤ 210 м. В зданиях с кранами большой грузоподъемности (Q до 4500 кН) или при тяжелом или особо тяжелом режиме их работы А не должна превышать 96 м.

Температурный шов

Прежде всего, необходимо разобраться с понятием температурного шва и выполняемой им функции. Тактемпературный шов представляет собой сквозную прорезь в стене здания или его кровельной плите. Для каждого здания выполняется несколько таких прорезей, в результате чего оно разделяется на несколько независимых блоков. В результате каждый из этих блоков может свободно деформироваться, что не приводит к образованию трещин в плитах. Дело в том, что деформационные швы и представляют собой своего рода искусственные трещины, которые оформлены таким образом, чтобы не создавать каких-либо проблем при эксплуатации здания. Ширина деформационного шва определяет величину, в пределах которой возможно изменение линейных размеров каждого из блоков. Точнее будет сказать наоборот, ширина температурного шва должна выбираться, исходя из возможной величины деформаций.

Проектирование температурных швов является одной из важнейших стадий строительства здания. При этом необходимо, в первую очередь, определить длину каждого из блоков, на которые стены разбиваются деформационными швами, а также ширину швов. Любые деформационные швы, в том числе и температурные, устраиваются в тех зонах, где концентрируются напряжения, вызываемые соответствующими деформациями. При этом длина блоков должна быть такой, чтобы каждый из них мог подвергаться температурным деформациям без потери конструктивной жесткости и без разрушения. Поэтому для определения данного параметра учитывается целый ряд факторов, к числу которых относятся тип стенового материала, конструктивные особенности, средние температуры в летний и зимний период, характерные для региона строительства.

Важной особенностью температурных швов является то, что они устраиваются только на высоту надземной части строения, в то время как некоторые другие деформационные швы, например осадочные, устраиваются на всю высоту здания до подошвы фундамента. Это связано с тем, что фундамент здания в значительно меньшей степени подвержен перепадам температуры и не нуждается в специальной защите

Усилия от ветровой нагрузки, действующей на наружные стены, собираются в плоскостях перекрытий и покрытия и далее передаются к вертикальным элементам несущего каркаса. В большинстве случаев несущие конструкции перекрытий и покрытия образуют жесткие диски, способные передавать ветровые нагрузки с наружных стен на каркас здания. В противном случае требуется устройство специальных горизонтальных связей. В многоэтажных зданиях горизонтальные связи достаточно иметь в плоскости каждого второго или третьего перекрытия. Несущая способность колонн в большинстве случаев достаточна для восприятия ветровой нагрузки с грузовой площади высотой два-три этажа.

Плиты перекрытий могут выполнять функции горизонтальных ветровых связей только после того, как они приобретут требуемую прочность после бетонирования, поэтому на период монтажа каркаса необходимы временные связи, которые позднее могут быть сняты.

Ветровые связи необходимы не по всей площади покрытия или междуэтажного перекрытия, а размещение их должно быть таким, чтобы была обеспечена передача горизонтальных усилий на вертикальные связи.


1. Вертикальные связи расположены вокруг лестничной клетки в трех плоскостях. Горизонтальная связевая ферма в продольном направлении здания образована постановкой раскосов между рандбалками и поясом параллельно наружной стене. Поперечная горизонтальная связевая ферма образована между двумя балками перекрытия, служащими ее поясами.

2. Вертикальные связи в плоскостях торцовых стен и между двумя внутренними колоннами. Горизонтальная связевая ферма в продольном направлении здания образована между рандбалками и прогонами, идущими в плоскости вертикальных связей. Поясами поперечной связевой фермы служат две балки перекрытия.

3. Вертикальные связи в плоскостях торцовых стен и между двумя внутренними колоннами. Горизонтальная связевая ферма в продольном направлении здания образована между двумя рядами внутренних колонн (удачное решение при планировке центрально расположенного коридора).

Поперечная горизонтальная связевая ферма образована между двумя средними рядами балок перекрытия.

4. Горизонтальные связи в плоскости верхних поясов балок перекрытия и рандбалки Раскосы из уголков. Фасонка и головки болтов могут мешать укладке гофрированных листов настила.

5. Связи установлены в плоскости нижнего пояса балки перекрытия.

6. Крепление раскосов из уголков в узле примыкания рандбалки и балки перекрытия к колонне.

7. При отсутствии продольной балки, являющейся одновременно поясом связевой фермы, необходим дополнительный элемент (здесь один швеллер).

8. Крепление пересекающихся связевых стержней к балке перекрытия.

9. Если балки перекрытия лежат на прогонах, то наилучшим решением будет размещение связей в плоскости нижних поясов балок.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо