Что показывает счетчик гейгера. Счетчик Гейгера: устройство и бытовые вариации

Счетчик Гейгера - основной сенсор для измерения радиации. Он регистрирует гамма-, альфа-, бета-излучение и рентгеновские лучи. Обладает самой высокой чувствительностью в сравнении с другими способами регистрации радиации, например, ионизационными камерами. Это главная причина его повсеместного распространения. Другие сенсоры для измерения радиации используются очень редко. Почти все приборы дозиметрического контроля построены именно на счетчиках Гейгера. Они выпускаются массово, и есть приборы различных уровней: от дозиметров военной приемки до китайского ширпотреба. Сейчас приобрести какой-либо прибор для измерения радиации — не проблема.

Повсеместного распространения дозиметрических приборов еще совсем недавно не было. Так к 1986 году во время чернобыльской аварии оказалось, что у населения нет просто никаких приборов дозиметрической разведки, что кстати, дополнительно усугубило последствия катастрофы. При этом, несмотря на распространение радиолюбительства и кружков технического творчества, счетчики Гейгера не продавались в магазинах, поэтому изготовление самодельных дозиметров было невозможным.

Принцип работы счетчиков Гейгера

Это электровакуумный прибор с предельно простым принципом работы. Датчик радиоактивных излучений представляет собой металлическую или стеклянную камеру с металлизацией, заполненную разряженным инертным газом. По центру камеры располагают электрод. Внешние стенки камеры подключают к источнику высокого напряжения (обычно 400 вольт). Внутренний электрод - к чувствительному усилителю. Ионизирующие излучения (радиация) представляют собой поток частиц. Они буквально переносят электроны от высоковольтного катода в нити анода. На ней просто наводится напряжение, которое можно уже измерить, подключив к усилителю.

Высокая чувствительность счетчика Гейгера обусловлена лавинообразным эффектом. Энергия, которую регистрирует усилитель на выходе, — это не энергия источника ионизирующего излучения. Это энергия высоковольтного блока питания самого дозиметра. Проникшая частица только переносит электрон (энергетический заряд, который превращается в ток, регистрируемый измерителем). Между электродами введена газовая смесь, состоящая из благородных газов: аргона, неона. Она призвана гасить высоковольтные разряды. Если возникнет такой разряд, то это будет ложное срабатывание счетчика. Последующая измерительная схема игнорирует такие выбросы. Кроме того, высоковольтный блок питания тоже должен быть от них защищен.

Схема питания в счетчике Гейгера обеспечивает ток на выходе в нескольких микроампер при выходном напряжении 400 вольт. Точное значение напряжения питания устанавливается для каждой марки счетчика по его технической спецификации.

Возможности счетчиков Гейгера, чувствительность, регистрируемые излучения

С помощью счетчика Гейгера можно зарегистрировать и с высокой точностью измерить гамма- и бета-излучение. К сожалению, нельзя распознать вид излучения напрямую. Это делается косвенным методом с помощью установки преград между сенсором и обследуемым объектом или местностью. Гамма-лучи обладают высокой проницаемостью, и их фон не меняется. Если дозиметр засек бета-излучение, то установка разделительной преграды даже из тонкого листа металла почти полностью перекроет поток бета-частиц.

Распространенные в прошлом комплекты индивидуальных дозиметров ДП-22, ДП-24 не использовали счетчиков Гейгера. Вместо них там использовался сенсор ионизационная камера, поэтому чувствительность была очень низкой. Современные дозиметрические приборы на счетчиках Гейгера обладают в тысячи раз большей чувствительностью. С помощью них можно регистрировать естественные изменения солнечного радиационного фона.

Примечательная особенность счетчика Гейгера - чувствительность, в десятки и сотни раз превышающая необходимый уровень. Если в совершенно защищенной свинцовой камере включить счетчик, то он покажет огромный естественный радиационный фон. Эти показания не являются дефектом конструкции самого счетчика, что было проверено многочисленными лабораторными исследованиями. Такие данные - следствие естественного радиационного космического фона. Эксперимент только показывает, насколько чувствительным является счетчик Гейгера.

Специально для измерения этого параметра в технических характеристиках указывается значение «чувствительность счетчика имп мкр» (импульсов в микросекунду). Чем больше этих импульсов - тем больше чувствительность.

Измерение радиации счетчиком Гейгера, схема дозиметра

Схему дозиметра можно разделить на два функциональных модуля: высоковольтный блок питания и измерительная схема. Высоковольтный блок питания - аналоговая схема. Измерительный модуль на цифровых дозиметрах всегда цифровой. Это счетчик импульсов, который выводит соответствующее значение в виде цифр на шкалу прибора. Для измерения дозы радиации необходимо подсчитать импульсы за минуту, 10, 15 секунд или другие значения. Микроконтроллер пересчитывает число импульсов в конкретное значение на шкале дозиметра в стандартных единицах измерения радиации. Вот самые распространенные из них:

  • рентген (обычно используется микрорентген);
  • Зиверт (микрозиверт - мЗв);
  • Грей, рад,
  • плотность потока в микроваттах/м2.

Зиверт - наиболее популярная единица измерения радиации. К ней соотнесены все нормы, никаких дополнительных пересчетов проводить не требуется. Бэр - единица для определения влияния радиации на биологические объекты.

Сравнение газоразрядного счетчика Гейгера с полупроводниковым датчиком радиации

Счетчик Гейгера является газоразрядным прибором, а современная тенденция микроэлектроники - повсеместное от них избавление. Были разработаны десятки вариантов полупроводниковых сенсоров радиации. Регистрируемый ими уровень радиационного фона значительно выше, чем для счетчиков Гейгера. Чувствительность полупроводникового сенсора хуже, но у него другое преимущество - экономичность. Полупроводникам не требуется высоковольтного питания. Для портативных дозиметров с батарейным питанием они хорошо подходят. Еще одно их преимущество - регистрация альфа-частиц. Газовый объем счетчика существенно больше полупроводникового сенсора, но все равно его габариты приемлемы даже для портативной техники.

Измерение альфа-, бета- и гамма-излучения

Гамма-излучение измерять наиболее просто. Это электромагнитное излучение, представляющее собой поток фотонов (свет - тоже поток фотонов). В отличие от света у него гораздо более высокая частота и очень малая длина волны. Это позволяет ему проникать сквозь атомы. В гражданской обороне гамма-излучение — это проникающая радиация. Она проникает сквозь стены домов, автомобили, различные сооружения и задерживается только слоем земли или бетона в несколько метров. Регистрация гамма-квантов проводится с градуировкой дозиметра по естественному гамма-излучению солнца. Источников радиации не требуется. Совсем другое дело с бета- и альфа-излучением.

Если ионизирующиее излучение α (альфа-излучение) исходит от внешних объектов, то оно почти безопасно и представляет собой поток ядер атомов Гелия. Пробег и проницаемость этих частиц небольшая — нескольких микрометров (максимум миллиметров) — в зависимости от проницаемости среды. Ввиду этой особенности оно почти не регистрируется счетчиком Гейгера. В то же время регистрация альфа-излучения важна, так как эти частицы чрезвычайно опасны при проникновении внутрь организма с воздухом, пищей, водой. Для их декретирования счетчики Гейгера используются ограничено. Больше распространены специальные полупроводниковые сенсоры.

Бета-излучение отлично регистрируется счетчиком Гейгера, потому что бета-частица представляет собой электрон. Она может пролететь сотни метров в атмосфере, но хорошо поглощается металлическими поверхностями. В связи с этим счетчик Гейгера должен иметь окошко из слюды. Металлическая камера изготавливается с небольшой толщиной стенки. Состав внутреннего газа подбирается таким образом, чтобы обеспечить небольшой перепад давления. Детектор бета-излучения ставится на выносном зонде. В быту такие дозиметры мало распространены. Это в основном военная продукция.

Индивидуальный дозиметр с счетчиком Гейгера

Этот класс приборов обладает высокой чувствительностью в отличие от устаревших моделей с ионизационными камерами. Надежные модели предлагаются многими отечественными производителями: «Терра», «МКС-05», «ДКР», «Радэкс», «РКС». Это все автономные приборы с выводом данных на экран в стандартных единицах измерения. Есть режим показания накопленной дозы облучения, так и мгновенного уровня фона.

Перспективное направление - бытовой дозиметр-приставка к смартфону. Такие устройства выпускают зарубежные производители. У них богатые технические возможности, есть функция хранения показаний, калькуляции, пересчета и суммирования излучения за дни, недели, месяцы. Пока что из-за низких объемов производства стоимость этих приборов довольно высокая.

Самодельные дозиметры, зачем они нужны?

Счетчик Гейгера является специфическим элементом дозиметра, совершенно недоступным для самостоятельного изготовления. Кроме того, он встречается только в дозиметрах или продается отдельно в магазинах радиотоваров. Если этот датчик есть в наличии, все остальные компоненты дозиметра могут быть собраны самостоятельно из деталей разнообразной бытовой электроники: телевизоров, материнских плат и др. На радиолюбительских сайтах, форумах сейчас предлагается около десятка конструкций. Собирать стоит именно их, поскольку это самые отработанные варианты, имеющие подробные руководства по настройке и наладке.

Схема включения счетчика Гейгера всегда подразумевает наличие источника высокого напряжения. Типичное рабочее напряжение счетчика - 400 вольт. Его получают по схеме блокинг-генератора, и это самый сложный элемент схемы дозиметра. Выход счетчика можно подключить к усилителю низкой частоты и подсчитывать щелчки в динамике. Такой дозиметр собирается в экстренных случаях, когда времени на изготовление практически нет. Теоретически, выход счетчика Гейгера можно подключить к аудиовходу бытовой аппаратуры, например, компьютера.

Самодельные дозиметры, пригодные для точных измерений, все собираются на микроконтроллерах. Навыки программирования здесь не нужны, так как программа записывается готовой из бесплатного доступа. Сложности здесь типичные для домашнего электронного производства: получение печатной платы, пайка радиодеталей, изготовление корпуса. Все это решается в условиях небольшой мастерской. Самодельные дозиметры из счетчиков Гейгера делают в случаях, когда:

  • нет возможности приобрести готовый дозиметр;
  • нужен прибор со специальными характеристиками;
  • необходимо изучить сам процесс постройки и наладки дозиметра.

Самодельный дозиметр градуируется по естественному фону с помощью другого дозиметра. На этом процесс постройки заканчивается.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

С помощью современного счетчика Гейгера можно измерить уровень радиации строительных материалов, земельного участка или квартиры, а также продуктов питания. Он демонстрирует практически стопроцентную вероятность заряженной частицы, ведь для ее фиксирования достаточно всего одной пары электрон-ион.

Технология, на основе которой создан современный дозиметр на базе счетчика Гейгера-Мюллера, позволяет получать результаты высокой точности за очень короткий промежуток времени. На измерение требуется не больше 60 секунд, а вся информация выводится в графическом и числовом виде на экране дозиметра.

Настройка прибора

У прибора есть возможность настройки порогового значения, когда он превышен, издается звуковой сигнал, предупреждающий вас об опасности. Выберите одно из заданных значений порога в соответствующем разделе настроек. Звуковой сигнал также можно отключить. Перед проведением измерений рекомендуют провести индивидуальную настройку прибора, выбрать яркость дисплея, параметры звукового сигнала и элементов питания.

Порядок выполнения измерений

Выберите режим «Измерение», при этом прибор начинает оценку радиоактивной обстановки. Примерно через 60 секунд на его дисплее появляется результат измерений, после чего начинается следующий цикл анализа. Для того чтобы получить точный результат, рекомендуют провести не менее 5 циклов измерений. Увеличение числа наблюдений дает более достоверные показания.

Чтобы измерить радиационный фон предметов, например стройматериалов или пищевых продуктов, нужно включить режим «Измерение» на расстоянии нескольких метров от объекта, затем поднести прибор к предмету и измерить фон максимально близко к нему. Сравните показания прибора с данными, полученными на расстоянии нескольких метров от предмета. Разница между этими показаниями - это дополнительный радиационный фон исследуемого объекта.

Если результаты измерений превышают естественный фон, характерный для той местности, в которой вы находитесь, это свидетельствует о радиационном загрязнении исследуемого объекта. Для оценки загрязнения жидкости рекомендуют проводить измерения над ее открытой поверхностью. Чтобы защитить прибор от влаги, его нужно обернуть полиэтиленовой пленкой, но не более чем в один слой. Если дозиметр длительное время находился при температуре ниже 0оС, перед проведением измерений его необходимо выдержать при комнатной температуре в течение 2 часов.

Газоразрядный счетчик Гейгера-Мюллера (Г-М). Рис.1 – это стеклянный цилиндр (баллон) заполненный инертным газом (с

примесями галогенов) под давлением несколько ниже атмосферного. Тонкий металлический цилиндр внутри баллона служит катодом К; анодом А служит тонкий проводник, проходящий по центру цилиндра. Между анодом и катодом прикладывается напряжение U В =200-1000 В. Анод и катод подключаются к электронной схеме радиометрического прибора.

Рис.1 Цилиндрический счетчик Гейгера-Мюллера.

1 – нить анода 2 – трубчатый катод

U в – источник высоковольтного напряжения

R н – нагрузочное сопротивление

С V – разделительно-накопительная емкость

Р – пересчетное устройство с индикацией

ξ – источник радиации.

С помощью счетчика Г-М можно регистрировать все частицы излучения (кроме легко поглощаемых α-частиц); чтобы β- частицы не поглощались корпусом счетчика в нем имеются прорези, закрытые тонкой пленкой.

Поясним особенности работы счетчика Г-М.

β-частицы непосредственно взаимодействуют с молекулами газа счетчика, в то время как нейтроны и γ-фотоны (незаряженные частицы) с молекулами газа взаимодействуют слабо. В этом случае механизм возникновения ионов иной.

проведем дозиметрический замер окружающей среды около точек К и А, полученные данные занесем в табл. 1.

Для проведения замера необходимо:

1. Подключить дозиметр к источнику питания (9в).

2. На тыльной стороне дозиметра закрыть задвижкой (экраном) окно детектора.

3. Установить переключатель MODE (режим) в положение γ («Р»).

4. Установить переключатель RANGE (диапазон) в положение x 1 (Р н =0,1-50 мкЗв/час).

5. Установить переключатель питания дозиметра в положение ON (Вкл.).

6. Если в положении х1 раздастся звуковой сигнал и числовые ряды дисплея полностью заполнятся, то необходимо перейти на диапазон х10 (Р н =50-500 мкЗв/час).

7. После завершения суммирования импульсов на дисплее дозиметра высветится доза, эквивалентная мощности P мкЗв/час; через 4-5 сек. произойдет сброс показаний.

8. Дозиметр вновь готов к замерам радиации. Автоматически начинается новый цикл замеров.

Таблица 1.

Результирующее значение в рабочем пространстве (АВ) определяется формулой

=
, мкЗв/час (6)

- показания дозиметра дают значения радиационного фона в точке;

Величина радиации в каждой точке замера подчиняется законам флуктуации. Поэтому, чтобы получить наиболее вероятное значение измеряемой величины, необходимо производить серию замеров;

- при дозиметрии β – излучений замеры необходимо проводить вблизи поверхности исследуемых тел.

4. Проведение измерений. П.1. Определение мощности эквивалентной дозы естественного радиационного фона.

Для определения γ-фона окружающей среды выделим (относительно каких-либо объектов (тел)) две точки А, К, расположенные друг от друга на расстоянии ~1 метр, и, не касаясь тел,

Нейтроны, взаимодействуя с атомами катода, порождают заряженные микрочастицы (осколки ядер). Гамма излучение

взаимодействует главным образом с веществом (атомами) катода, порождая фотонное излучение, которое далее ионизирует молекулы газа.

Как только в объеме счетчика появляются ионы, то под действием анодно-катодного электрического поля начнется движение зарядов.

Вблизи анода линии напряженности электрического поля резко сгущаются (следствие малого диаметра нити анода), напряженность поля резко возрастает. Электроны, подходя к нити, получают большое ускорение, возникает ударная ионизация нейтральных молекул газа , вдоль нити распространяется самостоятельный коронный разряд.

За счет энергии этого разряда, энергия первоначального импульса частиц резко усиливается (до 10 8 раз). При распространении коронного разряда часть зарядов будет медленно стекать через большое сопротивление R н ~10 6 Ом (рис.1). В цепи детектора на сопротивлении R н будут возникать импульсы тока, пропорциональный исходному потоку частиц. Возникший импульс тока передается на накопительную емкость С V (С~10 3 пикофарад), далее усиливается и регистрируется пересчетной схемой Р.

Наличие большого сопротивления R н в цепи детектора приводит к тому, что на аноде будут скапливаться отрицательные заряды. Напряженность электрического поля анода будет понижаться и в какой-то момент ударная ионизация прервется, разряд затухнет.

Важную роль в гашении возникшего газового разряда играют галогены, находящиеся в газе счетчика. Потенциал ионизации галогенов ниже, чем у инертных газов, поэтому атомы галогенов активнее «поглощают» фотоны, вызывающие самостоятельный разряд, переводя эту энергию в энергию диссипации, гася тем самостоятельный разряд.

После того как ударная ионизация (и коронный разряд) прервется, начинается процесс восстановление газа в исходное (рабочее) состояние. В течение этого времени счетчик не работает, т.е. не регистрирует пролетающие частицы. Этот промежуток

времени называется «мертвым временем» (временем восстановления). Для счетчика Г-М мертвое время = Δ t ~10 -4 секунды.

Счетчик Г-М реагирует на попадание каждой заряженной частицы, не различая их по энергиям, но, если мощность падаю

щего излучения неизменна, то скорость счета импульсов оказывается пропорциональна мощности излучения, и счетчик можно будет проградуировать в единицах доз излучения.

Качество газоразрядного самогасящегося детектора определяется зависимостью средней частоты импульсов N в единицу времени от напряжения U на его электродах при неизменной интенсивности излучения. Эта функциональная зависимость называется счетной характеристикой детектора (рис.2).

Как следует из рисунка 2, при U < U 1 приложенного напряжения недостаточно для возникновения газового разряда при попадании в детектор заряженной частицы или гамма-кванта. Начиная с напряжения U В > U 2 в счетчике возникает ударная ионизация, вдоль катода распространяется коронный разряд, счетчик фиксирует пролет почти каждой частицы. С ростом U В до U 3 (см. рис. 2) число фиксируемых импульсов несколько увеличивается, что связано с некоторым увеличением степени ионизации газа счетчика. У хорошего счетчика Г-М участок графика от U 2 до U Р почти не зависит от U В , т.е. идет параллельно оси U В , средняя частота импульсов почти не зависит U В .

Рис. 2. Счетная характеристика газоразрядного самогасящегося детектора.

3. Относительная погрешность приборов при измерении Р н : δР н = ±30%.

Поясним, как импульс счетчика преобразуются в показания дозы мощности излучений.

Доказывается, что при неизменной мощности излучений скорость счета импульсов пропорциональна мощности излучений (измеряемой дозе). На этом принципе основывается измерение дозы мощности радиации.

Как только в счетчике возникает импульс, сигнал этот передается в блок пересчета, где фильтруется по длительности, амплитуде, суммируется и результат передается на дисплей счетчика в единицах дозы мощности.

Соответствие между скоростью счета и измеряемой мощностью, т.е. градуировка дозиметра производится (на заводе) по известному источнику радиации С s 137 .

В связи с экологическими последствиями деятельности человека, связанной с атомной энергетикой, а также промышленностью (в том числе военной), использующую радиоактивные вещества как компонент или основу своей продукции изучение основ радиационной безопасности и радиационной дозиметрии становится сегодня достаточно актуальной темой. Помимо природных источников ионизирующего излучения с каждым годом все больше и больше появляется мест, загрязненных радиацией впоследствии человеческой деятельности. Таким образом, чтобы сохранить свое здоровье и здоровье своих близких необходимо знать степень зараженности той или иной местности или предметов и пищи. В этом может помочь дозиметр – прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени.

Прежде чем приступать к изготовлению (или же покупке) данного устройства необходимо иметь представление о природе измеряемого параметра. Ионизирующее излучение (радиация) – это потоки фотонов, элементарных частиц или осколков деления атомов, способные ионизировать вещество. Разделяется на несколько видов. Альфа-излучение представляет собой поток альфа частиц – ядер гелия-4, альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги, поэтому опасность представляет в основном при попадании внутрь организма. Бета-излучение – это поток электронов, возникающих при бета-распаде, для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной в несколько миллиметров. Гамма-излучение обладает гораздо большей проникающей способностью, поскольку состоит из высокоэнергичных фотонов, не обладающих зарядом, для защиты эффективны тяжелые элементы (свинец и т.п.) слоем в несколько сантиметров. Проникающая способность всех видов ионизирующего излучения зависит от энергии.

Для регистрации ионизирующего излучения в основном используются счетчики Гейгера-Мюллера. Это простое и эффективное устройство обычно представляет собой цилиндр металлический или стеклянный металлизированный изнутри и тонкой металлической нити, натянутой по оси этого цилиндра, сам цилиндр наполняется разреженным газом. Принцип работы основан на ударной ионизации. При попадании на стенки счетчика ионизирующего излучения выбивают из него электроны, электроны, двигаясь в газе и сталкиваясь с атомами газа, выбивают из атомов электроны и создают положительные ионы и свободные электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов, приводящая к размножению первичных носителей. При достаточно большой напряженности поля энергии этих ионов становится достаточной, чтобы порождать вторичные лавины, способные поддерживать самостоятельный разряд, в результате чего ток через счетчик резко возрастает.

Не все счетчики Гейгера могут регистрировать все виды ионизирующего излучения. В основном они чувствительны к одному излучению – альфа, бета или гамма-излучению, но часто так же в некоторой степени могут регистрировать и другое излучение. Так, например, счетчик Гейгера СИ-8Б предназначен для регистрации мягкого бета-излучения (да, в зависимости от энергии частиц излучение может разделяться на мягкое и жесткое), однако данный датчик так же в некоторой степени чувствителен к альфа-излучению и к гамма-излучению.

Однако, приближаясь все-таки к конструкции статьи, наша задача сделать максимально простой, естественно портативный, счетчик Гейгера или вернее сказать дозиметр. Для изготовления этого устройства мне удалось раздобыть только СБМ-20. Этот счетчик Гейгера предназначен для регистрации жесткого бета- и гамма излучения. Как и большинство других счетчиков, СБМ-20 работает при напряжении 400 вольт.

Основные характеристики счетчика Гейгера-Мюллера СБМ-20 (таблица из справочника):

Данный счетчик обладает относительно невысокими показателями точности измерения ионизирующего излучения, но достаточными для определения превышения допустимой для человека дозы излучения. СБМ-20 применяется во многих бытовых дозиметрах в настоящее время. Для улучшения показателей часто используется сразу несколько трубок. А для увеличения точности измерения гамма-излучения дозиметры оснащаются фильтрами бета-излучения, в этом случае дозиметр регистрирует только гамма-излучение, но зато достаточно точно.

При измерении дозы радиации необходимо учитывать некоторые факторы, которые могут быть важны. Даже при полном отсутствии источников ионизирующего излучения счетчик Гейгера будет давать некоторое количество импульсов. Это так называемый собственный фон счетчика. Сюда так же относится несколько факторов: радиоактивное загрязнение материалов самого счетчика, спонтанная эмиссия электронов из катода счетчика и космическое излучение. Все это дает некоторое количество «лишних» импульсов в единицу времени.

Итак, схема простого дозиметра на основе счетчика Гейгера СБМ-20:

Схему собираю на макетной плате:

Схема не содержит дефицитных деталей (кроме, естественно, самого счетчика) и не содержит программируемых элементов (микроконтроллеров), что позволит собрать схему в течении короткого времени без особого труда. Однако такой дозиметр не содержит шкалы, и определять дозу радиации необходимо на слух по количеству щелчков. Такой вот классический вариант. Схема состоит из преобразователя напряжения 9 вольт – 400 вольт.

На микросхеме NE555 выполнен мультивибратор, частота работы которого составляет примерно 14 кГц. Для увеличения частоты работы можно уменьшить номинал резистора R1 примерно до 2,7 кОм. Это будет полезно, если выбранный вами дроссель (а может и изготовленный) будет издавать писк – при увеличении частоты работы писк исчезнет. Дроссель L1 необходим номиналом 1000 – 4000 мкГн. Быстрее всего можно найти подходящий дроссель в сгоревшей энергосберегающей лампочке. Такой дроссель и применен в схеме, на фото выше он намотан на сердечнике, которые обычно используют для изготовления импульсных трансформаторов. Транзистор T1 можно использовать любой другой полевой n-канальный с напряжением сток-исток не менее 400 вольт, а лучше больше. Такой преобразователь даст всего несколько миллиампер тока при напряжении 400 вольт, но для работы счетчика Гейгера этого хватит с головой несколько раз. После отключения питания от схемы на заряженном конденсаторе C3 схема будет работать еще примерно секунд 20-30, учитывая его небольшую емкость. Супрессор VD2 ограничивает напряжение на уровне 400 вольт. Конденсатор C3 необходимо использовать на напряжение не менее 400 - 450 вольт.

В качестве Ls1 можно использовать любой пьезодинамик или динамик. При отсутствии ионизирующего излучения ток через резисторы R2 – R4 не протекает (на фото на макетной плате пять резисторов, но общее их сопротивление соответствует схеме). Как только на счетчик Гейгера попадет соответствующая частица внутри датчика происходит ионизация газа и его сопротивление резко уменьшается вследствие чего возникает импульс тока. Конденсатор С4 отсекает постоянную часть и пропускает на динамик только импульс тока. Слышим щелчок.

В моем случае в качестве источника питания используется две аккумуляторных батареи от старых телефонов (две, так как необходимое питание должно быть более 5,5 вольт для запуска работы схемы в силу примененной элементной базы).

Итак, схема работает, изредка пощелкивает. Теперь как это использовать. Самый простой вариант – это пощелкивает немного – все хорошо, щелкает часто или вообще непрерывно – плохо. Другой вариант – это примерно подсчитываем количество импульсов за минуту и переводим количество щелчков в мкР/ч. Для этого из справочника необходимо взять значение чувствительности счетчика Гейгера. Однако в разных источника всегда немного разные цифры. В идеальном случае необходимо провести лабораторные замеры для выбранного счетчика Гейгера с эталонными источниками излучения. Так для СБМ-20 значение чувствительности варьируется в пределах от 60 до 78 имп/мкР по разным источникам и справочникам. Так вот, подсчитали количество импульсов за одну минуту, далее это число умножаем на 60 для аппроксимации числа импульсов за один час и все это разделить на чувствительность датчика, то есть на 60 или 78 или что у вас ближе к действительности получается и в итоге получаем значение в мкР/ч. Для более достоверного значения необходимо сделать несколько замеров и посчитать между ними среднеарифметическое значение. Верхний предел безопасного уровня радиации составляет примерно 20 - 25 мкР/ч. Допустимый уровень составляет примерно до 50 мкР/ч. В разных странах цифры могут отличаться.

P.S. На рассмотрение этой темы меня подтолкнула статья о концентрации газа радон, проникающего в помещения, воду и т.д. в различных регионах страны и его источниках.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
IC1 Программируемый таймер и осциллятор

NE555

1 В блокнот
T1 MOSFET-транзистор

IRF710

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
VD2 Защитный диод

1V5KE400CA

1 В блокнот
C1, C2 Конденсатор 10 нФ 2 В блокнот
C3 Электролитический конденсатор 2.7 мкФ 1 В блокнот
C4 Конденсатор 100 нФ 1 400В

Регистрация ионизирующих излучений приборами основана на преобразовании излучений детектором и измерительной схемой в электрические сигналы, принятые в практике измерений.

Приборы для измерения ионизирующих излучений могут регистрировать различные физические величины. Наиболее интересны следующие из них: поглощенная, экспозиционная и эквивалентная дозы и их мощность, плотность потока частиц, флюенс частиц, объемная, массовая, поверхностная, эффективная активности.

Любой прибор, измеряющий ионизирующие излучения, содержит детектор, измерительную схему (регистратор или анализатор) и вспомогательные элементы.

Детектор преобразует информацию о параметрах излучений в энергию электрического сигнала. По преобразованию энергии излучения в другие виды энергии детекторы можно разделить на следующие группы:

  • ионизационные (газовые счетчики, ионизационные камеры, полупроводниковые счетчики);
  • сцинтилляционные;
  • фотографические;
  • химические.

Измерительная схема выделяет, преобразует, накапливает, хранит и выдает информацию в виде электрических сигналов, удобных для наблюдения, записи, вычисления или управления другими приборами. Вспомогательные элементы обеспечивают заданные режимы работы детектора и измерительной схемы. К ним относятся источники питания, блоки программирования режима работы, контроля исправности и градуировки, регистрирующие устройства (цифропечатающие устройства, самописцы, осциллографы, счетчики импульсов и т.д.).

Функциональные схемы приборов в значительной мере определяются формой сигналов, поступающих от детекторов излучений и с выхода измерительной схемы (в виде импульсов – дискретная форма информации или в виде медленно меняющегося тока (напряжения) – аналоговая форма информации).

Приборы с дискретной формой входной и выходной информации могут включать в себя усилители, стандартизаторы и дискриминаторы импульсов, счетные и анализирующие схемы с суммированием и памятью двоичным, десятичным и другими способами счисления.

Импульсы, несущие информацию о параметрах излучения, могут отличаться по амплитуде, форме и времени появления. Разделением этих импульсов но их параметрам с помощью анализирующих устройств удается измерять не только плотность потока излучения по средней скорости следования импульсов, но и энергию, вид и пространственное распределение излучения.

Анализирующие устройства обычно работают в двух режимах обработки информации. В первом случае анализатором отбираются импульсы с заданными параметрами, во втором – сигналы отбираются по группам в зависимости от заданных параметров отбора.

В приборах с аналоговым видом входной и выходной информации применяются электрометрические и выходные усилители постоянного тока. В схемах с предварительным преобразованием постоянного тока в переменный используются преобразователи и усилители переменного тока.

Для перекрытия необходимого диапазона измерений с заданной точностью в устройствах с аналоговым видом выходной информации применяются показывающие и самопишущие приборы с линейной и нелинейной шкалами (логарифмической, линейно-логарифмической и т.д.), а также цифровые вольтметры с цифропечатающими устройствами.

Информация на выходе приборов может быть как дискретной, так и аналоговой независимо от формы информации на входе.

Аналоговая информация, поступающая от токовых детекторов излучений (ионизационные камеры), в ряде приборов преобразуется в дискретную путем дозирования – квантования зарядов.

Значительное число приборов с дискретной информацией на входе имеют аналоговую выходную информацию; к ним относятся радиометры, рентгенометры, интенсиметры с измерителями средней скорости следования импульсов.

Результаты измерений могут представляться в виде сигналов, наблюдаемых визуально (показания стрелочных приборов, на экране осциллографа или компьютера и т.д.); зафиксированных регистрирующим устройством (счетчиком импульсов, самописцем, цифропtчатающим устройством и т.д.). Сигналы могут быть звуковыми, генерируемыми телефонами, звонками, сиренами и т.д., подаваться для управления другими приборами.

Любой вид излучения при взаимодействии с веществом приводит к появлению ионизации и возбуждения. Заряженные частицы вызывают эти процессы непосредственно, при поглощении g-квантов ионизацию создают быстрые электроны, возникающие в результате фотоэффекта, эффекта Комптона или при рождении пар, а в случае нейтронов ионизация создается быстролетящими ядрами. При этом одна первичная частица может привести к появлению сотен тысяч ионов, благодаря чему сопровождающие ионизацию вторичные эффекты (электрический ток, вспышка света, потемнение фотопластинки и др.) могут быть замечены человеком непосредственно с помощью его органов чувств; иногда эти эффекты остается лишь усилить в нужное число раз. Таким образом, ионизация является как бы своеобразным усилителем явлений взаимодействия ионизирующего излучения с веществом. Поэтому работа всех регистрирующих приборов так или иначе связана с использованием ионизации и возбуждения атомов вещества.

Электроны, образующиеся при различных видах взаимодействий, тормозятся в среде, затрачивая свою энергию на ионизацию и возбуждение атомов. Образовавшиеся ионы и свободные электроны быстро рекомбинируют, так что заряд через очень короткое время (10-5 с для газов) исчезает. Этого не происходит, если в среде создать электрическое поле. В этом случае носители заряда будут дрейфовать вдоль поля, положительные в одну сторону, отрицательные – в другую. Движение зарядов является электрическим током, измерив который, можно определить величину заряда.

Именно так действует ионизационная камера. Она представляет из себя герметичный объем, наполненный газом, в котором расположены два металлических электрода (рис. 7.1). К электродам приложено электрическое напряжение. При прохождении электрона, образовавшегося при взаимодействии γ-кванта с веществом, свободные заряды – ионы и электроны – дрейфуют к электродам, и в цепи возникает импульс тока, пропорциональный заряду, образованному электроном.

Рис. 7.1.

К сожалению, импульсы тока от электронов, образованных частицами малых энергий и γ-квантами, очень малы. Их трудно точно измерить, поэтому ионизационные камеры используются для регистрации тяжелых частиц, например, α-частиц, которые образуют при прохождении через ионизационную камеру значительно бо́льшие импульсы тока.

Если повысить напряжение на электродах ионизационной камеры, то возникает явление, названное газовым усилением. Свободные электроны, двигаясь в электрическом поле, приобретают энергию, достаточную для ионизации атомов газа, наполняющего камеру. При ионизации электрон образует еще одну пару ион – электрон, так что общее количество зарядов умножается на два, как это показано на рис. 7.2. В свою очередь новообразовавшиеся электроны тоже способны к ионизации, и таким образом заряд умножается еще и еще. При специальной форме электродов коэффициент газового усиления может достигать 105. Существенным здесь является тот факт, что конечный заряд остается пропорционален первичному, а значит, и энергии электрона, образованного частицей или γ-квантом. Именно по этой причине такие приборы называются пропорциональными счетчиками.

Обычно пропорциональный счетчик делают в виде цилиндра, вдоль оси которого натягивают тонкую металлическую проволочку – нить. К корпусу счетчика подключают отрицательный, а к нити – положительный полюс источника тока. При таком устройстве электрическое поле сосредоточивается главным образом около нити и максимальное значение напряженности поля оказывается тем выше, чем меньше радиус нити. Поэтому необходимые для газового усиления большие напряженности полей удается получить при сравнительно небольших разностях потенциалов между корпусом счетчика и нитью.

Рис. 7.2.

Пропорциональные счетчики получили широкое распространение благодаря своей простоте и большим импульсам тока при прохождении заряженных частиц. Сейчас пропорциональные счетчики используют главным образом для регистрации β-излучения, мягкого γ-излучения, α-частиц и нейтронов. На рис. 7.3 представлены основные тины пропорциональных счетчиков.

Рис. 7.3.

В электрическую цепь пропорциональный счетчик включается так же, как и ионизационная камера. И электрические импульсы от него получаются такие же, как от камеры, только большей величины. Казалось бы, стоит только применить достаточно высокое напряжение, чтобы газовое усиление было больше, и пропорциональный счетчик даст настолько большие импульсы, что работать с ними можно будет без дальнейшего усиления. Однако на самом деле это не так. Дело в том, что при больших газовых усилениях счетчик начинает работать нестабильно и пропорциональность между энергией частиц и амплитудой импульса нарушается.

Чтобы избежать появления пробоев и выровнять электрическое поле, счетчик приходится делать очень тщательно, зачищая и полируя его электроды. Отполировать же нить, диаметр которой измеряется сотыми долями миллиметра, очень сложно. Если электрическое поле в счетчике будет неоднородным вдоль нити, то импульс будет зависеть не только от энергии частицы, но и от места ее попадания в счетчик, что, естественно, нежелательно.

Поэтому конструкцию пропорционального счетчика часто приходится усложнять, вводя в него дополнительные электроды для выравнивания поля. В результате всех этих усложнений удается изготовить счетчики с газовыми усилениями в десятки, сотни, а иногда даже в тысячи раз, но и этого зачастую оказывается слишком мало, чтобы с получаемыми от них импульсами можно было работать без последующего усиления.

Рассмотрим, что произойдет, если еще больше увеличить напряжение между электродами счетчика. В этом случае при попадании в счетчик заряженной частицы образуется чрезвычайно мощная лавина электронов, которая с большой скоростью обрушивается на положительный электрод и выбивает из него несколько фотонов – квантов ультрафиолетового излучения.

Эти фотоны, попадая на отрицательный электрод, могут вырвать новые электроны, последние опять устремятся к положительному электроду и т.д. В результате в счетчике возникает так называемый самостоятельный разряд, который будет гореть с постоянной силой независимо от того, попадают в счетчик новые частицы или нет. (Точно так горит разряд в неоновых трубках световых реклам.)

Счетчик же должен реагировать на каждую попадающую в него частицу, поэтому такой режим работы никому не нужен. Однако, применяя специальные схемы включения или добавляя в атмосферу счетчика некоторые тяжелые газы, можно создать условия, при которых возникший при попадании в счетчик частицы самостоятельный разряд сам по себе будет гаснуть через очень короткое время. Таким образом, попадание в счетчик каждой новой частицы будет вызывать появление кратковременного, но довольно сильного тока.

Самым распространенным детектором (датчиком) ионизирующего излучения, работающим в описанном выше режиме, является счетчик Гейгера – Мюллера. Принцип его работы основан на возникновении разряда в газе при пролете ионизирующих частиц. В хорошо вакуумированный герметичный баллон с двумя электродами, находящийся под напряжением, введена газовая смесь, состоящая в основном из легко ионизируемых неона и аргона (устройство должно регистрировать β- и γ-излучение). Баллон может быть стеклянным, металлическим и др. Обычно счетчики воспринимают излучение всей своей поверхностью, но существуют и такие, у которых для этого в баллоне предусмотрено специальное "окно".

К электродам прикладывают высокое напряжение U (рис. 7.4), которое само по себе не вызывает каких-либо разрядных явлений. В этом состоянии счетчик будет пребывать до тех пор, пока в его газовой среде не возникнет центр ионизации – след из ионов и электронов, порождаемый пришедшей извне ионизирующей частицей. Первичные электроны, ускоряясь в электрическом поле, ионизируют "по дороге" другие молекулы газовой среды, порождая все новые и новые электроны и ионы. Развиваясь лавинообразно, этот процесс завершается образованием в межэлектродном пространстве электронно-ионного облака, резко увеличивающего его проводимость. В газовой среде счетчика возникает разряд, видимый (если баллон прозрачный) даже простым глазом.

Рис. 7.4.

Обратный процесс – возвращение газовой среды в ее исходное состояние в так называемых галогеновых счетчиках – происходит сам собой. В действие вступают галогены (обычно хлор или бром), в небольшом количестве содержащиеся в газовой среде, которые способствуют интенсивной рекомбинации зарядов. Но этот процесс идет значительно медленнее. Отрезок времени, необходимый для восстановления радиационной чувствительности счетчика Гейгера и фактически определяющий его быстродействие – "мертвое" время – является важной его паспортной характеристикой. Например, для газоразрядного счетчика Гейгера – Мюллера, типа СБМ-20-1 "мертвое" время при U = 400 В составляет 190 Р/мкс.

Счетчики Гейгера способны реагировать на самые разные виды ионизирующего излучения – альфа, бета, гамма, ультрафиолетовое, рентгеновское, нейтронное. Но реальная спектральная чувствительность счетчика в значительной мере зависит от его конструкции.

Амплитуда импульса от счетчика Гейгера – Мюллера может достигать нескольких десятков или даже сот вольт. С такими импульсами можно работать без всякого усиления. Но эта победа была завоевана дорогой ценой. Дело в том, что амплитуда импульса в счетчике Гейгера – Мюллера определяется только свойствами самого счетчика и параметрами электрической цепи и совершенно не зависит ни от вида, ни от энергии первичной частицы.

Импульсы от медленного электрона, создавшего всего лишь несколько пар ионов, и от α-частицы, создавшей несколько тысяч ионов, оказываются одинаковыми. Поэтому счетчики Гейгера – Мюллера можно использовать только для подсчета числа пролетевших частиц в однородных полях излучений, но не для определения их типа и энергии.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо