В основе строения вирусов находятся. Строение и жизнедеятельность вирусов

Простейшие вирусы представляют собой нуклеопротеид, который состоит из нуклеиновой кислоты (РНК или ДНК ) и капсида - белковой оболочки. Более сложные вирусы имеют дополнительную липидную оболочку. Существует тип вирусов - бактериофаги , которые имеют специальное строение, позволяющее им внедрять свой геном в клетки бактерий. Бактериофаги имеют тело, состоящее из головки с геномом, хвостик (трубка, которая транспортирует геном в клетку) и отростки.

Вирусы могут попадать в клетку путем растворения оболочки клетки или с помощью погружения фрагментов оболочки вместе с вирусом в цитоплазму или вместе с пиноцитозными пузырьками.

Попадая в клетку, вирус начинает размножаться с помощью клетки, которая синтезирует ДНК или РНК вируса. Клетка повреждается, а после гибнет, а вирусы получают возможность поразить другие клетки. Таким образом, вирус может существовать и размножаться практически бесконечно. Существует огромное количество различных вирусов, которые вызывают опасные болезни: грипп, гепатит, СПИД и другие.

Самым опасным и неизученным до конца является вирус иммунодефицита человека (ВИЧ) , который вызывает синдром приобретенного иммунодефицита человека (СПИД ), который попадает в организм при половом контакте или через кровь. Этот вирус поражает клетки иммунитета человека, делая его уязвимым перед любой болезнью, из-за чего человек может умереть даже от насморка.

Вирусы, поражающие организм человека и животных, имеют способность мутировать очень быстро размножаться. Этот факт делает вирусные болезни предельно устойчивыми для лечения.

2.4.1. Открытие

В 1852 г. русский ботаник Д.И. Ивановский впервые получил инфекционный экстракт из растений табака, пораженных мозаичной болезнью. Когда такой экстракт пропустили через фильтр, задерживающий , отфильтрованная жидкость все еще сохраняла инфекционные свойства. В 1898 г. голландец Бейеринк придумал новое слово «вирус» (от латинского слова, означающего «яд»), чтобы обозначить этим словом инфекционную природу определенных профильтрованных растительных жидкостей. Хотя удалось достичь значительных успехов в получении высокоочищенных проб вирусов и было установлено, что по химической природе это нуклеопротеины (сложные соединения, состоящие из и нуклеиновых кислот), сами частицы все еще оставались неуловимыми и загадочными, потому что они были слишком малы, чтобы их можно было увидеть с помощью светового . Именно поэтому вирусы и оказались в числе первых биологических структур, которые были исследованы в электронном микроскопе сразу же после его изобретения в тридцатые годы XX столетия.

2.4.2. Свойства вирусов

Вирусы обладают следующими свойствами.

Ниже мы рассмотрим эти свойства более подробно.

Размеры

Вирусы – это мельчайшие живые организмы, размеры которых варьируют в пределах от 20 до 300 нм; в среднем они раз в пятьдесят меньше . Их нельзя увидеть с помощью светового микроскопа, и они проходят через фильтры, не пропускающие бактерий.

Происхождение

Исследователи часто задаются вопросом, живые ли вирусы? Если считать живой любую структуру, обладающую генетическим материалом (ДНК или РНК) и способную к самовоспроизведению, то ответ должен быть утвердительным: да, вирусы – живые. Если же признаком живого считать наличие клеточного строения, то ответ будет отрицательным: вирусы не живые. К этому следует добавить, что вне клетки-хозяина вирусы неспособны к самовоспроизведению.

Для более полного представления о вирусах необходимо знать их происхождение в процессе эволюции. Существует предположение, хотя и недоказанное, что вирусы – это генетический материал, некогда «сбежавший» из прокариотических и эукариотических клеток и сохранивший способность к воспроизведению при возвращении в клеточное окружение. Вне клетки вирусы находятся в совершенно инертном состоянии, однако они обладают набором инструкций (генетическим кодом), необходимых для того, чтобы вновь проникнуть в клетку и, подчинив ее своим инструкциям, заставить производить много идентичных себе (вирусу) копий. Следовательно, логично предположить, что в процессе эволюции вирусы появились позже клеток.

Строение

Строение вирусов очень простое. Они состоят из следующих структур:

  1. сердцевины – генетического материала, представленного либо ДНК, либо РНК; ДНК или РНК может быть одноцепочечной или двухцепочечной;
  2. капсида – защитной белковой оболочки, окружающей сердцевину;
  3. нуклеокапсида – сложной структуры, образованной сердцевиной и капсидом;
  4. оболочки – у некоторых вирусов, таких как ВИЧ и вирусы гриппа, имеется дополнительный липопротеиновый слой, происходящий из плазматической мембраны клетки-хозяина;
  5. капсомеров – идентичных повторяющихся субъединиц, из которых часто бывают построены капсиды.
  6. Рис. 2.16. Схематическое изображение вируса в разрезе.

    Общая форма капсида отличается высокой степенью симметрии, обусловливая способность вирусов к кристаллизации. Это дает возможность исследовать их как методом рентгеновской кристаллографии, так и с помощью электронной микроскопии. Как только в клетке-хозяине образуются субъединицы вируса, они сразу же могут путем самосборки объединиться в полную вирусную частицу. Упрощенная схема строения вируса показана на рис. 2.16.

    Рис. 2.17. А. Икосаэдр. Б. Электронная микрофотография вируса простого герпеса, полученная методом негативного контрастирования (окрашивается не сам препарат, а его фон). Обратите внимание, насколько отчетливо видны детали строения вируса. Индивидуальные капсомеры просматриваются как раз там, где между ними проник краситель.

    Для структуры капсида характерны определенные типы симметрии, особенно полиэдрическая и спиральная. Полиэдр – это многогранник. Наиболее распространенная полиэдрическая форма у вирусов – икосаэдр, у которого имеется 20 треугольных граней, 12 углов и 30 ребер. На рис. 2.17, А мы видим правильный икосаэдр, а на рис. 2.17, Б – вирус герпеса, в частице которого 162 капсомера организованы в икосаэдр.

    Рис. 2.18. А. Строение вируса табачной мозаики (ВТМ); видна спиральная симметрия капсида. Показана только часть палочковидного вируса. Рисунок построен на основе результатов рентгено-структурного анализа, биохимических данных и электронно-микроскопических исследований. Б. Электронная микрофотография вируса табачной мозаики, полученная методом негативного контрастирования (х 800 000). Капсид (оболочка) образован 2130 идентичными белковыми капсомерами. В. Растение табака, инфицированное ВТМ. Обратите внимание на характерные пятна в тех местах, где ткань листа отмирает.

    Наглядной иллюстрацией спиральной симметрии может служить показанный на рис. 2.18, Б РНК-содержащий вирус табачной мозаики (ВТМ). Капсид этого вируса образован 2130 идентичными белковыми капсомерами. ВТМ был первым вирусом, выделенным в чистом виде. При заражении этим вирусом на листьях больного растения появляются желтые крапинки – так называемая мозаика листьев (рис. 2.18, В). Вирусы распространяются очень быстро либо механически, когда больные растения или его части приходят в соприкосновение со здоровыми растениям, либо воздушным путем с дымом от сигарет, для изготовления которых были использованы зараженные листья.

    Рис. 2.19. А. Строение бактериофага Т2. Б. Электронная микрофотография бактериофага, полученная методом негативного контрастирования.

    Вирусы, атакующие бактерий, образуют группу, называемую бактериофагами или просто фагами. У некоторых бактериофагов имеются четко выраженная икосаэдрическая головка и хвост, обладающий спиральной симметрией (рис. 2.19). На рис. 2.20 и 2.21 приводятся схематические изображения некоторых вирусов, иллюстрирующие их относительные размеры и общее строение.

    Рис. 2.20. Несколько упрощенных схематических изображений вирусов, отражающих различие их симметрии и размеров. Фаг Т2 показан с нитями хвостового отростка, которые фаг выпускает перед тем как инфицировать клетку; у фага? нитей хвостового отростка нет.

    Рис. 2.21. Строение вируса иммунодефицита человека (ВИЧ), относящегося к ретровирусам. Конусовидный капсид состоит из уложенных по спирали капсомеров. Спереди капсид срезан, чтобы были видны две копии РНК-геномов. Под действием фермента, называемого обратной транскриптазой, информация, закодированная в этих одноцепочечных РНК-цепях, транскрибируется в соответствующие двухцепочечные ДНК-нити. Капсид окружен белковой оболочкой, заякоренной в липидном бислое – оболочке, полученной от плазматической мембраны клетки-хозяина. В этой оболочке содержатся встроенные в нее вирусные гликопротеины, которые, специфически связываясь с рецепторами Т-клеток, обеспечивают проникновение вируса в клетку-хозяина.

Определение 1

Строение вирусов

Основа вирусной частицы – молекулы нуклеиновой кислоты ДНК или РНК, при этом форма и число молекул могут сильно варьировать у разных видов.

Нуклеиновая кислота вируса упакована внутри капсида – белковой оболочки. При этом внутри капсида кроме нуклеиновой кислоты могут находиться различные ферменты, помогающие вирусу проникать в клетку хозяина или размножаться.

Для вирусов характерен дизъюнктивный способ репродукции, что означает, что синтез различных компонентов вирусной частицы происходит в разных частях инфицированной вирусом клетки. После синтеза нуклеиновой кислоты и необходимых белков, происходит самосборка вирусной частицы и выход ее из клетки. После прохождения полного цикла внутри клетки, зрелый вирус называется вирионом.

Замечание 1

Вирусные частицы имеют очень маленький размер и изучение их строения требует использования электронной микроскопии, методом ультрафильтрации, ультрацентрифугирования и методов молекулярной биологии (полимеразная цепная реакция, секвенирование). Кроме того, для изучения патологического процесса, вызываемого вирусом, используются биологические модели – культуры клеток, эмбрионы кур и лабораторные животные.

Существует разнообразное деление вирусов по морфологии. По строению оболочек они делятся на простые вирусы (вирус гепатита А) и сложные вирусы (вирусы гриппа, герпеса, ВИЧ).

Простые вирусы не имеют дополнительных оболочек, кроме капсида. Капсид складывается из белков. Которые могут образовывать мономерные структуры – капсомеры, которые затем при сборке вириона образуют цельный футляр. Некоторые простые вирусы могут формировать своеобразные белковые кристаллы (например, вирус ящура).

Замечание 2

Функция капсида – защита генетического материала вируса, а также участие в прикреплении вируса к клетке хозяина и проникновение нуклеиновой кислоты внутрь клетки. Большинство простых вирусов выходят из клетки, вызывая ее лизис - разрушение.

Сложные вирусы имеют дополнительную оболочку – суперкапсид, который представляет собой липидный бислой, отличающийся от цитоплазматической мембраны клетки-хозяина большим числом специфических липопротеинов. Кроме того, на поверхности оболочки вируса могут формироваться гликопротеиновые шипы.

Классификация вирусов

На данный момент широко используется классификация Д. Балтимора, которая основана на механизме синтеза вирусами мРНК. Она подразделяет вирусы на 7 группах. Таксономия вирусов включает семейства, подсемейство, род и вид. Виды вирусов не имеют биноминального названия, как у других организмов.

Замечание 3

Кроме того вирусы классифицируются по типу нуклеиновой кислоты (ДНК или РНК), ее структуре и количеству нитей, имеет значение размер и морфология вирионов, количество капсомеров, тип симметрии, наличие суперкапсида, чувствительность к химическим реагентам (дезинфицирующим средствам), место присутствия в клетке, антигенные свойства.

Значение для человека

Вирусы вызывают огромное количество самых разнообразных заболеваний и могут поражать живые организмы всех уровней от бактерий до человека. Эволюция вирусов идет параллельно с эволюцией хозяев. Кроме заболеваний человека и связанных с ним живых организмов, вирусы используются в качестве векторов нуклеиновых кислот в молекулярной биологии и помогаю классифицировать живые организмы.

Вирусы. Классификация вирусов. Типы взаимодействия клеток и вирусов

Размеры – от 15 до 2000 нм (некоторые вирусы растений). Наибольшим среди вирусов животных и человека является возбудитель естественной оспы – до 450 нм.

Простые вирусы имеют оболочку – капсид , которая состоит лишь из белковых субъединиц (капсомеров ). Капсомеры большинства вирусов имеют спиральную или кубическую симметрию. Вирионы со спиральной симметрией имеют палочкообразную форму. По спиральному типу симметрии построено большинство вирусов, поражающих растения. Большая часть вирусов, поражающих клетки человека и животных, имеют кубический тип симметрии.

Сложные

Сложные вирусы могут быть дополнительно покрыты липопротеидной поверхностной мембраной с гликопротеидами, которые являются частью плазматической мембраны клетки хозяина (например, вирусы оспы, гепатита В), то есть имеют суперкапсид . С помощью гликопротеидов происходит распознавание специфических рецепторов на поверхности оболочки клетки хозяина и прикрепление вирусной частицы к ней. Углеводные участки гликопротеидов выступают над поверхностью вируса в виде заостренных палочек. Дополнительная оболочка может сливаться с плазматической мембраной клетки хозяина и способствовать проникновению содержимого вирусной частицы вглубь клетки. Дополнительные оболочки могут включать ферменты, обеспечивающие синтез вирусных нуклеиновых кислот в клетке хозяина и некоторые другие реакции.

Бактериофаги имеют довольно сложное строение. Их относят к сложным вирусам. Например, бактериофаг Т4 состоит из расширенной части – головки, отростка и хвостовых нитей. Головка состоит из капсида, в котором содержится нуклеиновая кислота. Отросток включает воротничок, полый стержень, окруженный сокращающимся чехлом и напоминающий растянутую пружину, и базальную пластинку с хвостовыми шипами и нитями.

Классификация вирусов

Классификация вирусов основана на симметрии вирусов, наличии или отсутствии внешней оболочки.

Дезоксивирусы Рибовирусы
ДНК

двухцепочечная

ДНК

одноцепочечная

РНК

двухцепочечная

РНК

одноцепочечная

Кубический тип симметрии:

– без внешних оболочек (аденовирусы);

– с внешними оболочками (герпес)

Кубический тип симметрии:

– без внешних оболочек (некоторые фаги)

Кубический тип симметрии:

– без внешних оболочек (ретровирусы, вирусы ранковых опухолей растений)

Кубический тип симметрии:

– без внешних оболочек (энтеровирусы, полиовирус)

Спиральный тип симметрии:

– без внешних оболочек (вирус табачной мозаики);

– с внешними оболочками (гриппа, бешенства, онкогенные РНК-содержащие вирусы)

Смешанный тип симметрии (Т-парные бактериофаги)
Без определенного типа симметрии (оспы)

Проявляют жизнедеятельность вирусы только в клетках живых организмов. Их нуклеиновая кислота способна вызвать синтез вирусных частиц клетки хозяина. Вне клетки вирусы не проявляют признаков жизни и называются вирионами .

Жизненный цикл вируса состоит из двух фаз: внеклеточной (вирион), в которой он не проявляет признаков жизнедеятельности, и внутриклеточной . Вирусные частицы вне организма хозяина некоторое время не теряют способности к заражению. Например, вирус полиомиелита может сохранять инфекционную активность на протяжении нескольких суток, оспы – месяцев. Вирус гепатита В сохраняет ее даже при кратковременном кипячении.

Активные процессы одних вирусов протекают в ядре, других – в цитоплазме, у некоторых – и в ядре, и в цитоплазме.

Типы взаимодействия клеток и вирусов

Взаимодействие клеток и вирусов бывает нескольких типов:

  1. Продуктивного – нуклеиновая кислота вируса индуцирует в клетке хозяина синтез собственных веществ с образованием нового поколения.
  2. Абортивного – репродукция прерывается на какой-нибудь стадии, и новое поколение не образуется.
  3. Вирогенного – нуклеиновая кислота вируса встраивается в геном клетки хозяина и не способна к репродукции.

Вирусы состоят из различных компонентов:

  • а) сердцевина генетический материал (ДНК или РНК). Генетический аппарат вируса несет информацию о нескольких типах белков, которые необходимы для образования нового вируса: ген, кодирующий обратную транскриптазу и другие.
  • б) белковая оболочка, которую называют капсидом. Оболочка часто построена из идентичных повторяющихся субъединиц - капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.
  • в) дополнительная липопротеидная оболочка. Она образована из плазматической мембраны клетки-хозяина. Она встречается только у сравнительно больших вирусов (грипп, герпес).

Полностью сформированная инфекционная частица называется вирионом.

Схематичное строение вируса: 1 - сердцевина (однонитчатая РНК); 2 - белковая оболочка (капсид); 3 - дополнительная липопротеидная оболочка; 4 - капсомеры (структурные части капсида).

Вирусы нельзя увидеть в оптический микроскоп, так как их размеры меньше длины световой волны. Разглядеть их можно лишь с помощью электронного микроскопа. Вирусы не имеют клеточного строения. Каждая вирусная частица устроена очень просто - она состоит из расположенного в центре носителя генетической информации и оболочки. Генетический материал представляет собой короткую молекулу нуклеиновой кислоты, это образует сердцевину вируса. Нуклеиновая кислота у разных вирусов может быть представлена ДНК или РНК, причем эти молекулы могут иметь необычное строение: встречается однонитчатая ДНК и двухнитчатая РНК. Оболочка называется капсид . Она образована субъединицами - капсомерами , каждый из которых состоит из одной или двух белковых молекул. Число капсомеров для каждого вируса строго постоянно (например, в капсиде вируса полиомиелита их 60 - не больше и не меньше, а у вируса табачной мозаики - 2130, причем не 2129 и не 2131). Иногда нуклеиновая кислота вместе с капсидом называется нуклеокапсидом . Если вирусная частица, кроме капсида, больше не имеет оболочки, ее называют простым вирусом, если имеется еще одна - наружная, вирус называется сложным. Наружную оболочку также называют суперкапсидом, генетически она не принадлежит вирусу, а происходит из плазматической мембраны клетки-хозяина и формируется при выходе собранной вирусной частицы из инфицированной клетки. Таким образом, вирусная частица состоит только из двух классов биополимеров: нуклеиновых кислот и белков, тогда как в любой клетке в обязательном порядке должны присутствовать еще полисахариды и липиды.

У каждого вируса капсомеры капсида располагаются в строго определенном порядке, благодаря чему возникает определенный тип симметрии. При спиральной симметрии капсид приобретает трубчатую (вирус табачной мозаики) или сферическую (РНК-содержащие вирусы животных) форму. При кубической симметрии капсид имеет форму икосаэдра (двадцатигранника), такой симметрией обладают изометрические вирусы. В случае комбинированной симметрии капсид обладает кубической формой, а расположенная внутри нуклеиновая кислота уложена спирально. Правильная геометрия капсида даже позволяет вирусным частицам совместно образовывать кристаллические структуры.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва