Утилизация дымовых газов. Использование теплоты уходящих газов в промышленных котельных работающих на газу

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Государственное образовательное учреждение высшего профессионального образования

Пермский национальный исследовательский политехнический университет

Березниковский филиал

Контрольная работа

по дисциплине "Ресурсосбережение"

на тему "Использование тепла отходящих дымовых газов"

Работу выполнила студентка

группы ЭиУ- 10з(2)

Пауэльс Ю.С.

Работу проверил преподаватель

Нечаев Н.П.

Березники 2014 г.

Введение

1. Общие сведения

3. Котлы-утилизаторы

Заключение

Введение

Газы в технике, применяются главным образом в качестве топлива; сырья для химической промышленности: химических агентов при сварке, газовой химико-термической обработке металлов, создании инертной или специальной атмосферы, в некоторых биохимических процессах и др.; теплоносителей; рабочего тела для выполнения механической работы (огнестрельное оружие, реактивные двигатели и снаряды, газовые турбины, парогазовые установки, пневмотранспорт и др.): физической среды для газового разряда (в газоразрядных трубках и др. приборах).

Рассмотрим ближе применение отходящих дымовых газов.

газ дымовой тепло рекуператор

1. Общие сведения

Дымовые газы -- продукты горения топлива органического происхождения, отходящие из рабочего пространства отапливаемых металлургических агрегатов.

Отходящие газы (вторичные энергетические ресурсы) -- газы, образующиеся в результате сжигания топлива, а также технологических процессов, покидающие печь или агрегат.

Использование физического тепла отходящими газами определяется их количеством, составом, теплоемкостью и температурой. Наиболее высокая температура отходящих газов кислородных конвертеров (1600-1800 °С), наиболее низкая - температура отходящих газов воздухонагревателей доменных печей (250-400 °С). Использование тепла отходящих газов организуется разными способами. При регенеративном или замкнутом охлаждении тепло отходящих газов используется для непосредственного повышения экономичности технологического процесса (нагрев регенераторов или рекуператоров, шихты или технологического продукта и т. п.). Если в результате регенеративного охлаждения используется не все тепло отходящих газов, то применяют котлы-утилизаторы. Физическое тепло отходящие газы используют также для выработки электроэнергии во встроенных газотурбинных установках. Содержащиеся в отходящие газы колошниковая пыль доменного газа, оксиды железа в газах мартеновских печей и кислородных конвертеров улавливаются на установках газоочистки и в качестве оборотного продукта возвращаются в технологический процесс.

2. Регенераторы и рекуператоры для нагрева воздуха и газа

Как было указано выше, подогрев воздуха и газа осуществляется в регенераторах или рекуператорах путем использования тепла дымовых газов, уходящих из рабочих камер печей. Регенераторы применяются в мартеновских сталеплавильных печах, в которых подогрев воздуха и газа доходит до 1000 - 1200°. Принцип работы регенераторов заключается в попеременном нагреве двух теплоемких кирпичных насадок (решеток) газами, выходящими из рабочей камеры печи, с последующим пропуском через нагретую насадку подогреваемого газа или воздуха. Подогрев газа или воздуха в регенераторах связан с переключением последних то на нагрев, то на охлаждение. Это требует периодических перемен направления движения пламени в рабочей камере печи, что вызывает необходимость переключения топочных устройств; таким образом, весь процесс работы печи становится реверсивным. Это усложняет конструкцию печи и удорожает ее эксплуатацию, но способствует равномерному распределению температур в рабочем пространстве печи.

Принцип работы рекуператора представляющего собой поверхностный теплообменник, состоит в непрерывной передаче тепла, дымовых газов, уходящих из рабочей камеры печи, нагреваемому воздуху или газообразному топливу.

Рекуператор характеризуется непрерывным движением газов в одном направлении, что сильно упрощает конструкцию печей и удешевляет строительство и эксплуатацию.

На рис. 1 показан распространенный керамический рекуператор, в котором трубы составляются из восьмигранных керамических элементов, а пространство между трубами перекрыто фасонными плитками. Внутри труб движутся дымовые газы, а снаружи (в поперечном направлении) - нагреваемый воздух. Толщина стенок труб составляет 13 - 16 мм и представляет значительное термическое сопротивление. Коэффициент теплопередачи (отнесенный к воздушной поверхности) составляет 6 - 8 вт/(м 2 град). Элементы керамических рекуператоров изготовляются из шамотной или из какой-либо другой более теплопроводной огнеупорной массы с последующим обжигом. Преимуществами керамических рекуператоров являются их высокая огнеупорность и хорошая термическая стойкость - материал не портится при пропуске через рекуператор дымовых газов с очень высокой температурой.

Рис. 1. Трубчатый керамический рекуператор.

1 - нагретый воздух; 2 - дымовые газы; 3 - холодный воздух; 4 - керамические трубы; 5 - перегородки.

К недостаткам керамических рекуператоров относятся их малая плотность, большая теплоемкость, плохая теплопередача от дымовых газов к воздуху и расстройство соединений элементов от сотрясений и перекосов. Эти недостатки сильно ограничивают распространение керамических рекуператоров, и они применяются лишь в непрерывно действующих печах, установленных в цехах, где нет механизмов ударного действия (например, паровых молотов).

Наибольшее распространение получили металлические рекуператоры, имеющие наиболее благоприятные перспективы развития. Экономическая целесообразность установки таких рекуператоров подтверждается быстрой окупаемостью затрат на сооружение (0,25 - 0,35 лет).

Металлические рекуператоры отличаются эффективной теплопередачей, малой теплоемкостью, а, следовательно, быстрой готовностью к нормальной работе и большой плотностью. Элементы металлических рекуператоров изготовляются из различных металлов в зависимости от рабочей температуры материала и состава дымовых газов, проходящих через рекуператор. Простые черные металлы - углеродистая сталь и литейный серый чугун - начинают интенсивно окисляться при невысоких температурах (500 °С), и поэтому для изготовления рекуператоров применяются жаростойкие чугун и сталь, в состав которых входят в качестве легирующих добавок никель, хром, кремний, алюминий, титан и др., которые повышают сопротивляемость металла окалинообразованию.

Конструктивное решение низкотемпературного рекуператора с подогревом воздуха до 300 -- 400 ?С относительно просто. Создание же высокотемпературного рекуператора для подогрева воздуха и газообразного топлива до 700 - 900 °С представляет серьезную техническую задачу, пока еще полностью не решенную. Сложность ее заключается в обеспечении надежной работы рекуператоров в течение длительной эксплуатации при использовании дымовых газов с высокой температурой, несущих взвешенные твердые частицы золы, сажистого углерода, шихты и т. д., что вызывает абразивный износ. При выпадении этих частиц из потока поверхность нагрева рекуператора со стороны газов загрязняется. При запыленном воздухе поверхность нагрева загрязняется и со стороны воздуха. Отдельные трубки трубных пучков рекуператоров, заделанные в трубные доски, работают по ходу газов в разных температурных условиях, по-разному нагреваются и расширяются.

Это различие в расширении труб требует различной их компенсации, что трудно осуществить. На рис. 2 показана удачная конструкция трубчатого рекуператора, поверхность нагрева которого состоит из свободно висящих петель, вваренных в коллекторы (коробки). Рекуператор состоит из двух секций, через которые проходит последовательно воздух навстречу дымовым газам, движущимся поперек трубных пучков. Петлеобразный рекуператор имеет хорошую компенсацию тепловых расширений, что является очень важным условием надежной работы.

Рис. 2. Трубчатый петлеобразный рекуператор для установки на борове (может быть установлен и на своде печи).

На рис. 3 изображена принципиальная схема высокотемпературного радиационного щелевого рекуператора, состоящего из двух стальных цилиндров, образующих концентрический зазор, по которому прогоняется с большой скоростью нагреваемый воздух. Внутри цилиндра движутся раскаленные дымовые газы, лучеиспускающие на поверхность внутреннего цилиндра. Трубчатый рекуператор более надежен в работе, чем щелевой. Преимуществами радиационных рекуператоров являются: меньший расход жаростойкой стали за счет интенсивного лучистого теплообмена в условиях высоких температур газов (800 - 1200 °С) и меньшая чувствительность поверхности нагрева к загрязнениям. После радиационного рекуператора должен быть установлен конвективный рекуператор, так как температура газов после радиационного рекуператора еще очень высока.

Рис. 3. Схемы радиационных стальных рекуператоров.

а - кольцевой (щелевой); б - трубчатый с однорядным экраном.

На рис. 4 показан рекуператор с трубами двойной циркуляции. Холодный воздух сначала проходит через внутренние трубы, а затем через концентрическое пространство труб поступает в коллектор горячего воздуха. Внутренние трубы играют роль косвенной поверхности нагрева.

Трубчатые рекуператоры отличаются большой плотностью и поэтому могут применяться также для подогрева газообразного топлива. Коэффициент теплопередачи может достигать 25 - 40 вт/(м 2 град). Пластинчатые рекуператоры сложнее в изготовлении, менее плотны и долговечны и применяются редко. Рекуператоры, установленные отдельно от печи, занимают некоторое дополнительное место в помещении цеха, во многих случаях это препятствует их применению, однако часто удается удачно расположить рекуператоры на печи или под печью.

Рис. 4. Стальной трубчатый рекуператор с двойной циркуляцией.

3. Котлы-утилизаторы

Тепло дымовых газов, уходящих из печей, кроме подогрева воздуха и газообразного топлива, может быть использовано в котлах-утилизаторах для выработки водяного пара. В то время как подогретые газ и воздух используются в самом печном агрегате, пар направляется внешним потребителям (для производственных и энергетических нужд).

Во всех случаях следует стремиться к наибольшей регенерации тепла, т. е. к возвращению его в рабочее пространство печи в виде тепла нагретых компонентов горения (газообразного топлива и воздуха). В самом деле, увеличение регенерации тепла ведет к сокращению расхода топлива и к интенсификации и улучшению технологического процесса. Однако наличие рекуператоров или регенераторов не всегда исключает возможность установки котлов-утилизаторов. В первую же очередь котлы-утилизаторы нашли применение в крупных печах с относительно высокой температурой отходящих дымовых газов: в мартеновских сталеплавильных печах, в медеплавильных отражательных печах, во вращающихся печах для обжига цементного клинкера, при сухом способе производства цемента и т. д.

Рис. 5. Газотрубный котел-утилизатор ТКЗ типа КУ-40.

1 - пароперегреватель; 2 - трубная поверхность; 3 - дымосос.

Тепло дымовых газов, отходящих от регенераторов мартеновских печей с температурой 500 -- 650 °С, используется в газотрубных котлах-утилизаторах с естественной циркуляцией рабочего тела. Поверхность нагрева газотрубных котлов состоит из дымогарных труб, внутри которых проходят дымовые газы со скоростью примерно 20 м/сек. Тепло от газов к поверхности нагрева передается путем конвекции, а потому увеличение скорости повышает теплопередачу. Газотрубные котлы просты в эксплуатации, при монтаже не требуют обмуровки и каркасов и обладают высокой газоплотностью.

На рис. 5 показан газотрубный котел Таганрогского завода средней производительности D ср = 5,2 т/ч с расчетом на пропуск дымовых газов до 40000 м 3 /ч. Давление пара, вырабатываемого котлом, равно 0,8 Мн/м 2 ; температура 250 °С. Температура газов до котла 600 °С, за котлом 200 - 250 °С.

В котлах с принудительной циркуляцией поверхность нагрева составляется из змеевиков, расположение которых не ограничивается условиями естественной циркуляции, и поэтому такие котлы компактны. Змеевиковые поверхности изготовляются из труб малого диаметра, например d = 32Ч3 мм, что облегчает вес котла. При многократной циркуляции, когда кратность циркуляции составляет 5 - 18, скорость воды в трубках значительна, не менее 1 м/сек, вследствие чего в змеевиках уменьшается выпадение из воды растворенных солей, а кристаллическая накипь смывается. Тем не менее котлы должны питаться водой, химически очищенной при помощи катионитовых фильтров и других способов водоподготовки, соответствующей нормам питательной воды для обычных паровых котлов.

Рис. 6. Схема котла-утилизатора с многократной принудительной циркуляцией.

1 - экономайзерная поверхность; 2 - испарительная поверхность; 3 - пароперегреватель; 4 - барабан-коллектор; 5 - циркуляционный насос; 6 - шламоуловитель; 7 -- дымосос.

На рис. 6 дана схема размещения змеевиковых поверхностей нагрева в вертикальных дымоходах. Движение пароводяной смеси осуществляется циркуляционным насосом. Конструкции котлов подобного типа разработаны Центроэнергочерметом и Гипромезом и изготовляются на расходы дымовых газов до 50 - 125 тыс. м 3 /ч со средней паропроизводительностью от 5 до 18 т/ч.

Стоимость пара составляет 0,4 - 0,5 руб/т вместо 1,2 - 2 руб/т у пара, отобранного из паровых турбин ТЭЦ и 2 - 3 руб/т у пара от промышленных котельных. Стоимость пара составляется из затрат на энергию для привода дымососов, расходов на приготовление воды, амортизацию, ремонт и обслуживание. Скорость газов в котле составляет от 5 до 10 м/сек, что обеспечивает хорошую теплопередачу. Аэродинамическое сопротивление газового тракта составляет 0,5 - 1,5 кн/м 2 , поэтому агрегат должен иметь искусственную тягу от дымососа. Усиление тяги, которым сопровождается установка котлов-утилизаторов, как правило, улучшает работу мартеновских печей. Подобные котлы получили распространение на заводах, но для их хорошей работы требуется защита поверхностей нагрева от заноса пылью и частицами шлака и систематическая очистка поверхностей нагрева от уноса посредством обдувки перегретым паром, промывки водой (при остановках котла), вибрационным путем и др.

Рис. 7. Поперечный разрез котла-утилизатора КУ-80. 1 - испарительная поверхность; 2 - пароперегреватель; 3 - барабан; 4 - циркуляционный насос.

Для использования тепла дымовых газов, отходящих от медеплавильных отражательных печей, устанавливаются водотрубные котлы с естественной циркуляцией (рис. 7). Дымовые газы в этом случае имеют очень высокую температуру (1100 - 1250 °С) и загрязнены пылью в количестве до 100 - 200 г/м 3 , причем часть пыли имеет высокие абразивные (истирающие) свойства, другая часть находится в размягченном состоянии и может шлаковать поверхность нагрева котла. Именно большая запыленность газов и заставляет пока отказываться от регенерации тепла в этих печах и ограничиваться использованием дымовых газов в котлах-утилизаторах.

Передача тепла от газов к экранным испарительным поверхностям протекает очень интенсивно, благодаря чему обеспечивается интенсивное парообразование частицы шлака, охлаждаясь, гранулируются и выпадают в шлаковую воронку, чем исключается шлакование конвективной поверхности нагрева котла. Установка подобных котлов для использования газов с относительно невысокой температурой (500 -- 700 °С) нецелесообразна из-за слабой теплопередачи лучеиспусканием.

В случае оборудования высокотемпературных печей металлическими рекуператорами котлы-утилизаторы целесообразно устанавливать непосредственно за рабочими камерами печей. В этом случае в котле температура дымовых газов понижается до 1000 - 1100 °С. С такой температурой они уже могут быть направлены в жароупорную секцию рекуператора. Если газы несут много пыли, то котел-утилизатор устраивается в виде экранного котла-шлакогранулятора, что обеспечивает сепарацию уноса из газов и облегчает работу рекуператора.

Заключение

По мере увеличения затрат на добычу топлива и производства энергии возрастает необходимость в более полном использовании их при преобразовании в виде горючих газов, тепла нагретого воздуха и воды. Хотя утилизация вторичных энергетических ресурсов нередко связана с дополнительными капитальными вложениями и увеличением численности обслуживающего персонала, опыт передовых предприятий подтверждает, что использование вторичных энергетических ресурсов экономически весьма выгодно.

Список использованной литературы

1. Розенгарт Ю.И. Вторичные энергетические ресурсы черной металлургии и их использование. - К.: " Высшая школа", 2008г. - 328с.

2. Щукин А. А. Промышленные печи и газовое хозяйство заводов. Учебник для вузов. Изд. 2-е, перераб. М., "Энергия", 1973. 224 с. с ил.

3. Хараз Д. И. Пути использования вторичных энергоресурсов в химических производствах / Д. И. Хараз, Б. И. Псахис. - М.: Химия, 1984. - 224 с.

Размещено на Allbest.ru

Подобные документы

    Описание процесса подготовки твердого топлива для камерного сжигания. Создание технологической схемы производства энергии и тепла. Проведение расчетов материального и теплового баланса котлоагрегата. Методы очистки дымовых газов от оксидов серы и азота.

    курсовая работа , добавлен 16.04.2014

    Проектирование рекуператора. Расчёт сопротивлений на пути движения воздуха, суммарные потери. Подбор вентилятора. Расчет потерь напора на пути движения дымовых газов. Проектирование борова. Определение количества дымовых газов. Расчет дымовой трубы.

    курсовая работа , добавлен 17.07.2010

    Теоретические основы абсорбции. Растворы газов в жидкостях. Обзор и характеристика абсорбционных методов очистки отходящих газов от примесей кислого характера, оценка их преимуществ и недостатков. Технологический расчет аппаратов по очистке газов.

    курсовая работа , добавлен 02.04.2015

    Расчет установки для утилизации тепла отходящих газов от клинкерной печи цементного завода. Скрубберы комплексной обработки уходящих газов. Параметры теплоутилизаторов первой и второй ступеней. Определение экономических параметров проектируемой системы.

    курсовая работа , добавлен 15.06.2011

    Характеристика дымовых газов. Разработка контура регулирования. Газоанализатор: назначение и область применения, условия эксплуатации, функциональные возможности. Электропневматический преобразователь серии 8007. Регулирующий клапан с пневмоприводом.

    курсовая работа , добавлен 22.07.2011

    Виды и состав газов, образующихся при разложении углеводородов нефти в процессах ее переработки. Использование установок для разделения предельных и непредельных газов и мобильных газобензиновых заводов. Промышленное применение газов переработки.

    реферат , добавлен 11.02.2014

    Система менеджмента качества Новокузнецкого алюминиевого завода. Образование газов при электролитическом производстве алюминия. Особенности технологии сухой очистки отходящих газов, типы реакторов, устройства для улавливания фторированного глинозема.

    отчет по практике , добавлен 19.07.2015

    Выполнение расчета горения топлива с целью определения количества необходимого для горения воздуха. Процентный состав продуктов сгорания. Определение размеров рабочего пространства печи. Выбор огнеупорной футеровки и способа утилизации дымовых газов.

    курсовая работа , добавлен 03.05.2009

    Описание технологической схемы установки утилизации теплоты отходящих газов технологической печи. Расчет процесса горения, состав топлива и средние удельные теплоемкости газов. Расчет теплового баланса печи и ее КПД. Оборудование котла-утилизатора.

    курсовая работа , добавлен 07.10.2010

    Расчет горения смеси коксового и природного газов по заданным составам. Теплота сгорания топлива. Процесс нагрева металла в печах, размеры рабочего пространства. Коэффициент излучения от продуктов сгорания на металл с учетом тепла, отраженного от кладки.

В. В. Гетман, Н. В. Лежнева МЕТОДЫ УТИЛИЗАЦИИ ТЕПЛОТЫ УХОДЯЩИХ ГАЗОВ ОТ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Ключевые слова: газотурбинные установки, парогазовые установки

В работе рассмотрены различные методы утилизации теплоты уходящих газов от энергетических установок с целью повышения их эффективности, экономии органического топлива и наращивания энергетических мощностей.

Keywords: gas-turbine installations, steam-gas installations

In work various methods of utilization of warmth of leaving gases from power installations for the purpose of increase of their efficiency, economy of organic fuel and accumulation of power capacities are considered.

С началом экономических и политических реформ в России, в первую очередь необходимо произвести ряд принципиальных изменений в электроэнергетике страны. Новая энергетическая политика должна решить ряд задач, в числе которых освоение современных высокоэффективных технологий производства электрической и тепловой энергии.

Одной из таких задач является повышение эффективности энергетических установок с целью экономии органического топлива и наращивания энергетических мощностей. Наиболее

перспективными в этом отношении являются газотурбинные установки, с уходящими газами которых выбрасывается до 20% тепла .

Существуют несколько путей повышения к. п. д. газотурбинных двигателей , в числе которых:

Повышение температуры газа перед турбиной для ГТУ простого термодинамического цикла,

Применение регенерации тепла,

Использование тепла уходящих газов в бинарных циклах,

Создание ГТУ по сложной термодинамической схеме и т. д.

Наиболее перспективным направлением считается совместное использование газотурбинных и паротурбинных установок (ГТУ и ПТУ) с целью повышения их экономических и экологических характеристик.

Газотурбинные и созданные с их использованием комбинированные установки при технически достижимых в настоящее время параметрах обеспечивают существенное повышение эффективности производства тепловой и электроэнергии.

Широкое применение бинарных ПГУ, а также различных комбинированных схем при техническом перевооружении ТЭС позволит экономить до 20% топлива по сравнению с традиционными паротурбинными блоками.

По оценкам специалистов экономичность комбинированного парогазового цикла возрастает при повышении начальной температуры газов перед ГТУ и увеличении доли газотурбинной мощности. Немаловажное значение

имеет также то обстоятельство, что помимо выигрыша в экономичности такие системы требуют значительно меньших капитальных затрат, их удельная стоимость в 1.5 - 2 раза меньше, чем стоимость газо-мазутных паротурбинных блоков и ПГУ с минимальной газотурбинной мощностью .

По данным можно выделить три основных направления использования ГТУ и ПГУ в энергетике.

Первое, широко используемое в промышленно развитых странах, - применение ПГУ на крупных конденсационных ТЭС, работающих на газе. В этом случае наиболее эффективно использовать ПГУ утилизационного типа с большой долей газотурбинной мощности (рис. 1).

Применение ПГУ позволяет повысить на ТЭС эффективность сжигания топлива на ~ 11-15 % (ПГУ со сбросом газов в котёл), на ~ 25-30 % (бинарные ПГУ).

До недавнего времени широких работ по внедрению ПГУ в России не проводилось. Тем не менее, единичные образцы таких установок достаточно давно и успешно используются, например ПГУ с высоконапорным парогенератором (ВПГ) типа ВПГ-50 головного энергоблока ПГУ-120 и 3-х модернизированных энергоблоков с ВПГ-120 на филиале «ТЭЦ-2» ОАО «ТГК-1» ; ПГУ-200 (150) с ВПГ-450 на филиале «Невинномысская ГРЭС». На Краснодарской ГРЭС установлено три парогазовых энергоблока мощностью по 450 МВт. В состав энергоблока входят две газовые турбины мощностью по 150 МВт, два котла-утилизатора и паровая турбина, мощностью 170 МВт, к. п. д. такой установки составляет 52.5% . Дальнейшее

повышение к. п. д. ПГУ утилизационного типа возможно путем усовершенствования

газотурбинной установки и усложнения схемы парового процесса.

Рис. 1 - Схема ПГУ с котлом-утилизатором

Парогазовая установка с котлом-

утилизатором (рис. 1) включает в себя: 1-

компрессор; 2 - камеру сгорания; 3 - газовую

турбину; 4 - электрогенератор; 5 - котел-

утилизатор; 6 - паровую турбину; 7 - конденсатор; 8

Насос и 9 - деаэратор. В котле-утилизаторе топливо не дожигается, а вырабатываемый перегретый пар используется в паротурбинной установке.

Второе направление - использование газовых турбин для создания ПГУ - ТЭЦ и ГТУ -ТЭЦ. За последние годы было предложено множество вариантов технологических схем ПГУ -ТЭЦ. На ТЭЦ, работающих на газе целесообразно использовать теплофикационные ПГУ

утилизационного типа. Характерным примером

крупной ПГУ - ТЭЦ такого типа является Северо -Западная ТЭЦ в г. Санкт - Петербурге. Один блок ПГУ на этой ТЭЦ включает: две газовые турбины, мощностью по 150 МВт, два котла - утилизатора, паровую турбину. Основные показатели блока: электрическая мощность - 450 МВт, тепловая мощность - 407 МВт, удельный расход условного топлива на отпуск электроэнергии - 154.5 г у. т./(кВт. ч), удельный расход условного топлива на отпуск тепла - 40.6 кг у. т./ГДж, к. п. д. ТЭЦ по отпуску электрической энергии - 79.6%, тепловой энергии - 84.1%.

Третье направление - использование газовых турбин для создания ПГУ - ТЭЦ и ГТУ -ТЭЦ малой и средней мощности на базе котельных. ПГУ - ТЭЦ и ГТУ - ТЭЦ наилучших вариантов, создаваемые на базе котельных, обеспечивают к. п. д. по отпуску электрической энергии в теплофикационном режиме на уровне 76 - 79%.

Типовая парогазовая установка состоит из двух ГТУ, каждая со своим котлом-утилизатором, подающим вырабатываемый пар в одну общую паровую турбину.

Установка такого типа была разработана для Щекинской ГРЭС . ПГУ-490 была предназначена для выработки электрической энергии в базовом и на частичных режимах работы электростанции с отпуском тепла стороннему потребителю до 90 МВт при зимнем температурном графике. Принципиальная схема блока ПГУ-490 вынужденно ориентировалась на недостаток места при размещении котла-утилизатора и

паротурбинной установки в корпусах электростанции, что создавало определенные трудности для достижения оптимальных режимов комбинированной выработки тепла и электроэнергии.

При отсутствии ограничений по размещению установки, а также при использовании усовершенствованной ГТУ можно существенно повысить экономичность блока. В качестве такой усовершенствованной ПГУ в предлагается одновальная ПГУ-320 мощностью 300 МВт. Комплектной ГТУ для ПГУ-320 является одновальная ГТЭ-200, создание которой предполагается осуществить переходом на

двухопорный ротор, модернизацией системы охлаждения и других узлов ГТУ с целью повышения начальной температуры газа. Кроме ГТЭ-200 моноблок ПГУ-320 содержит ПТУ К-120-13 с трехцилиндровой турбиной, конденсатный насос, конденсатор пара уплотнений, подогреватель, питаемый греющим паром, подаваемым из отбора перед последней ступенью ПТ, а также котел-утилизатор двух давлений, содержащий восемь участков теплообмена, включая промежуточный перегреватель пара.

Для оценки эффективности установки был проведен термодинамический расчет, в результате которого был сделан вывод о том, что при работе в конденсационном режиме ПГУ-490 ЩГРЭС ее электрический к. п. д. может быть повышен на 2.5% и доведен до 50.1%.

Исследования теплофикационных

парогазовых установок показали, что экономические показатели ПГУ существенно зависят от структуры их тепловой схемы, выбор которой осуществляется в пользу установки, обеспечивающей минимальную температуру уходящих газов. Это объясняется тем, что уходящие газы являются основным источником потерь энергии, и для увеличения эффективности схемы их температуру необходимо уменьшать.

Модель одноконтурной теплофикационной ПГУ, представленная на рис. 2, включает в себя котел - утилизатор барабанного типа с естественной циркуляцией среды в испарительном контуре . По ходу газов в котле снизу вверх последовательно расположены поверхности нагрева:

пароперегреватель ПП, испаритель И, экономайзер Э и газовый перегреватель сетевой воды ГСП.

Рис. 2 - Тепловая схема одноконтурной ПГУ

Расчеты системы показали, что при изменении параметров свежего пара происходит перераспределение мощности, вырабатываемой ПГУ, между тепловой и электрической нагрузками. При росте параметров пара увеличивается выработка электрической и уменьшается выработка тепловой энергии. Это объясняется тем, что при увеличении параметров свежего пара уменьшается его выработка. При этом из-за снижения расхода пара при малом изменении его параметров в отборах уменьшается тепловая нагрузка подогревателя сетевой воды.

Двухконтурная ПГУ, также как и одноконтурная, состоит из двух газовых турбин, двух котлов-утилизаторов и одной паровой турбины (рис.3). Подогрев сетевой воды осуществляется в двух подогревателях ПГС и (при необходимости) в пиковом сетевом подогревателе.

По ходу газов в котле-утилизаторе

последовательно расположены следующие

поверхности нагрева: пароперегреватель высокого давления ППВД, испаритель высокого давления ИВД, экономайзер высокого давления ЭВД, пароперегреватель низкого давления ППНД,

испаритель низкого давления ИНД, газовый подогреватель низкого давления ГПНД, газовый подогреватель сетевой воды ГСП.

Рис. 3 - Принципиальная тепловая схема

двухконтурной ПГУ

Рис. 4 - Схема утилизации теплоты уходящих газов ГТУ

Кроме котла-утилизатора тепловая схема включает в себя паровую турбину, имеющую три цилиндра, два подогревателя сетевой воды ПСГ1 и ПСГ2, деаэратор Д и питательные насосы ПЭН. Отработавший пар турбины направлялся в ПСГ1. В подогреватель ПСГ2 подается пар из отбора турбины. Вся сетевая вода проходит через ПСГ1, затем часть воды направляется в ПСГ2, а другая часть после первой ступени подогрева - в ГСП, расположенный в конце газового тракта котла-утилизатора. Конденсат греющего пара ПСГ2 сливается в ПСГ1, а затем поступает в ГПНД и далее в деаэратор. Питательная вода после деаэратора частично поступает в экономайзер контура высокого давления, а частично - в барабан Б контура низкого давления. Пар из перегревателя контура низкого давления смешивается с основным потоком пара после цилиндра высокого давления (ЦВД) турбины.

Как показал сравнительный анализ, при использовании газа в качестве основного топлива применение утилизационных схем целесообразно, если соотношение тепловой и электрической энергии составляет 0.5 - 1.0, при соотношениях 1.5 и более, предпочтение отдается ПГУ по «сбросной» схеме.

Кроме подстройки паротурбинного цикла к циклу ГТУ, утилизация теплоты уходящих газов

ГТУ может осуществляться подачей в камеру сгорания ГТУ пара, вырабатываемого котлом-утилизатором, а также путем реализации регенеративного цикла .

Реализация регенеративного цикла (рис. 4) обеспечивает существенное повышение к. п. д. установки, в 1.33 раза, в том случае, если при создании ГТУ степень повышения давления выбрана в соответствии с намечаемой степенью регенерации. Такая схема включает в себя К -компрессор; Р - регенератор; КС - камера сгорания; ТК - турбина компрессора; СТ - силовая турбина; ЦК - центробежный компрессор. Если ГТУ выполнена без регенерации, а степень повышения давления л близка к оптимальному значению, то оснащение такой ГТУ регенератором не приводит к повышению ее к. п. д.

К. п. д. установки, осуществляющей подачу пара в камеру сгорания, повышается в 1.18 раз по сравнению с ГТУ, что позволяет снизить расход топливного газа, потребляемого газотурбинной установкой.

Сравнительный анализ показал, что наибольшая экономия топлива возможна при осуществлении регенеративного цикла ГТУ с высокой степенью регенерации, относительно невысоким значением степени повышения давления в компрессоре л = 3 и с небольшими потерями продуктов сгорания. Однако в большинстве отечественных ТКА в качестве привода использованы авиационные и судовые газотурбинные двигатели с высокой степенью повышения давления, и в этом случае утилизация теплоты уходящих газов эффективнее в паротурбинном блоке. Установка с подачей пара в камеру сгорания конструктивно наиболее проста, но менее эффективна.

Одним из способов достижения экономии газа и решения экологических проблем является применение на КС парогазовых установок. В исследовательских разработках рассматриваются два альтернативных варианта использования пара, полученного при утилизации теплоты выхлопных газов ГТУ: ПГУ с приводом от паровой турбины нагнетателя природного газа и от паровой турбины электрогенератора. Принципиальное различие этих вариантов заключается в том, что в случае ПГУ с нагнетателем не только утилизируется теплота выхлопных газов ГПА, но и один ГПА заменяется на паротурбинный перекачивающий агрегат, а при ПГУ с электрогенератором число ГПА сохраняется, а за счет утилизируемой теплоты вырабатывается электроэнергия специальным паротурбинным агрегатом . Выполненный анализ показал, что ПГУ с приводом нагнетателя природного газа обеспечивали лучшие технико-экономические показатели.

В случае создания на базе КС парогазовой установки с котлом утилизатором , ГТУ используется для привода нагнетателя, а паросиловая установка (ПСУ) - для выработки электроэнергии, при этом температура отходящих газов за котлом - утилизатором составляет 1400С.

С целью повышения эффективности использования органического топлива в децентрализованных системах теплоснабжения возможна реконструкция отопительных котельных с размещением в них газотурбинных установок (ГТУ) небольшой мощности и утилизацией продуктов сгорания в топках существующих котлов . При этом электрическая мощность ГТУ зависит от режимов работы по тепловому или электрическому графикам нагрузок, а также от экономических факторов.

Оценить эффективность реконструкции котельной можно при сравнении двух вариантов : 1 - исходный (существующая котельная), 2 -альтернативный, с использованием ГТУ. Наибольший эффект был получен при электрической мощности ГТУ, равной

максимальной нагрузке района потребления.

Сравнительный анализ ГТУ с КУ, вырабатывающим пар в количестве 0.144 кг/кг с. г., конденсационным ТУ и ГТУ без КУ и с ТУ сухого теплообмена показал следующее: полезная

электрическая мощность - 1.29, расход природного газа - 1.27, отпуск тепла - 1.29 (соответственно 12650 и 9780 кДж/м3 природного газа). Таким образом, относительный прирост мощности ГТУ при вводе пара от КУ составил 29%, а расход дополнительного природного газа - 27%.

Согласно данным эксплуатационных испытаний температура уходящих газов в водогрейных котлах составляет 180 - 2300С, что создает благоприятные условия для утилизации теплоты газов с помощью конденсационных теплоутилизаторов (ТУ) . В ТУ, которые

используются для предварительного подогрева сетевой воды перед водогрейными котлами , осуществляется теплообмен с конденсацией водяных паров, содержащихся в уходящих газах, а нагрев воды собственно в котле происходит уже в режиме “сухого” теплообмена.

По данным наряду с экономией топлива использование ТУ обеспечивает также экономию электроэнергии. Объясняется это тем, что при вводе в котел дополнительного потока циркуляционной воды для сохранения расчетного расхода через котел необходимо часть обратной воды теплосети в количестве, равном рециркуляционному расходу, перепускать из обратной трубы в подающую.

При комплектовании электростанций из отдельных энергоблоков с газотурбинным приводом

электрогенераторов существует несколько вариантов утилизации теплоты выхлопных газов, например, с помощью утилизационного

теплообменника (УТО) для нагрева воды, или с использованием котла-утилизатора и

паротурбогенератора для увеличения выработки электроэнергии . Анализ работы станции с учетом утилизации теплоты с помощью УТО показал существенное увеличение коэффициента использования теплоты, в некоторых случаях в 2 раза и более, а экспериментальные исследования энергоблока ЭМ-25/11 с двигателем НК-37 позволили сделать следующий вывод. В зависимости от конкретных условий годовой отпуск утилизируемой теплоты может колебаться в пределах от 210 до 480 тыс. ГДж, а реальная экономия газа составила от 7 до 17 тыс. м3.

Литература

1. В.М. Масленников, Теплоэнергетика, 3, 39-41 (2000).

2. В.И. Романов, В.А. Кривуца, Теплоэнергетика, 4, 27-30 (1996).

3. Л.В. Арсеньев, В.Г. Тырышкин, Комбинированные установки с газовыми турбинами. Л.: Машиностроение, 1982, 407 с.

4. В.И. Длугосельский, А.С. Земцов, Теплоэнергетика, 12, 3-7 (2000).

5. Б.М. Трояновский, А.Д. Трухний, В.Г. Грибин, Теплоэнергетика, 8, 9-13 (1998).

6. А. Д. Цой, Промышленная энергетика, 4, 50-52 (2000).

7. А.Д. Цой, А.В. Клевцов, А.В. Корягин, Промышленная энергетика, 12, 25-32 (1997).

8. В.И. Евено, Теплоэнергетика, 12, 48-50 (1998).

9. Н.И. Серебрянников, Э.И. Тапелев, А.К. Маханьков, Энергосбережение и водоподготовка, 2, 3-11 (1998).

10. Г.Д. Баринберг, В.И. Длугосельский, Теплоэнергетика, 1, 16-20 (1998)

11. А.П. Берсенев, Теплоэнергетика, 5, 51-53 (1998).

12. Е.Н. Бухаркин, Промышленная энергетика, 7, 34-37 (1998).

13. В.И. Доброхотов, Теплоэнергетика, 1, 2-8 (2000).

14. А.С. Попов, Е.Е. Новгородский, Б.А. Пермяков, Промышленная энергетика, 1, 34-35 (1997).

15. И.В. Белоусенко, Промышленная энергетика, 5, 53-55 (2000).

16. В.В. Гетман, Н.В. Лежнева, Вестник Казан. технол. Ун-та, 18, 174-179 (2011).

17. Н.В. Лежнева, В.И. Елизаров, В.В. Гетман, Вестник Казан. технол. Ун-та, 17, 162-167 (2012).

© В. В. Гетман - канд. техн. наук, доц. каф. автоматизации технологических процессов и производств ФГБОУ ВПО «КНИТУ», 1ега151@уаМех; Н. В. Лежнева - канд. техн. наук, доц. каф. автоматизации технологических процессов и производств ФГБОУ ВПО «КНИТУ», [email protected].



Владельцы патента RU 2436011:

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе. Задачей изобретения является повышение эффективности использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах. Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, в котором охлаждаются исходные дымовые газы, нагревая противотоком осушенные дымовые газы. Охлажденные влажные дымовые газы подаются в газовоздушный поверхностный пластинчатый теплообменник-конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения газа в котле. Конденсат после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Осушенные дымовые газы подаются дополнительным дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. 2 н.п. ф-лы, 1 ил.

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известна котельная установка, содержащая контактный водонагреватель, подключенный на входе к отводящему газоходу котла, а на выходе через газоотводящий канал, снабженный дымососом к дымовой трубе, и воздухоподогреватель с греющим и воздушным трактами (Авторское свидетельство СССР №1086296, F22B 1/18 от 15.04.1984).

Установка работает следующим образом. Основная часть газов из котла поступает в отводящий газоход, а остальное количество газов - в греющий тракт. Из отводящего газохода газы направляются в контактный водонагреватель, где происходит конденсация водяных паров, содержащихся в дымовых газах. Затем газы проходят через каплеулавливатель и поступают в газоотводящий канал. Наружный воздух поступает в воздухоподогреватель, где нагревается газами, идущими по греющему тракту, и направляется в газоотводящий канал, где смешивается с охлажденными газами и уменьшает влагосодержание последних.

Недостатки. Неприемлемое качество подогретой воды для ее использования в системе отопления. Использование подогретого воздуха только для подачи в дымовую трубу с целью предотвращения конденсации водяных паров. Низкая степень утилизации тепла уходящих газов, так как ставилась основная задача - осушение дымовых газов и снижение температуры точки росы.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. - Ульяновск: УлГТУ, 2000. - 139, стр.33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй - по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Недостатки. Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известна установка для утилизации тепла дымовых газов (патент РФ №2193727, F22B 1/18, F24H 1/10 от 20.04.2001), содержащая установленные в газоходе ороситель с раздающими соплами, утилизационный теплообменник и теплообменник промежуточного теплоносителя, нагреваемый тракт которого на входе подключен к влагосборнику. Ороситель расположен перед указанными теплообменниками, установленными один напротив другого на одинаковом расстоянии от оросителя, сопла которого направлены в противоположную по отношению к теплообменникам сторону. Установка дополнительно снабжена установленным в газоходе и расположенным над оросителем теплообменником догрева орошающей воды, нагреваемый тракт которого на входе подключен к теплообменнику промежуточного теплоносителя, а на выходе - к оросителю. Все теплообменники являются поверхностными, трубчатыми. Трубки могут быть оребренными, для увеличения поверхности нагрева.

Известен способ работы этой установки (патент РФ №2193728, F22B 1/18, F24H 1/10 от 20.04.2001), по которому проходящие по газоходу дымовые газы охлаждают ниже точки росы и удаляют из установки. В установке нагревают воду в утилизационном теплообменнике и отводят потребителю. Наружную поверхность утилизационного теплообменника орошают промежуточным теплоносителем - водой из оросителя с раздающими соплами, направленными навстречу потоку газов. При этом промежуточный теплоноситель предварительно подогревают в теплообменнике, установленном в газоходе напротив утилизационного теплообменника и на таком же расстоянии от оросителя, что и утилизационный теплообменник. Затем промежуточный теплоноситель подают в установленный в газоходе и расположенный над оросителем теплообменник догрева орошающей воды, догревают до необходимой температуры и направляют в ороситель.

В установке протекают два независимых дуг от друга потока воды: чистой, подогреваемой через теплопередающую поверхность, и орошающей, нагреваемой в результате непосредственного контакта с уходящими газами. Чистый поток воды протекает внутри трубок и отделен стенками от загрязненного потока орошающей воды. Пучок трубок выполняет функцию насадки, предназначенной для создания развитой поверхности контакта орошающей воды и уходящих газов. Наружная поверхность насадки омывается газами и орошающей водой, что интенсифицирует теплообмен в аппарате. Теплота уходящих газов передается воде, протекающей внутри трубок активной насадки, двумя путями: 1) за счет непосредственной передачи теплоты газов и орошающей воды; 2) за счет конденсации на поверхности насадки части водяных паров, содержащихся в газах.

Недостатки. Конечная температура нагреваемой воды на выходе из насадки ограничена температурой мокрого термометра газов. При сжигании природного газа с коэффициентом избытка воздуха 1,0-1,5 температура мокрого термометра уходящих газов составляет 55-65°С. Такая температура не достаточна для использования этой воды в системе отопления.

Из аппарата дымовые газы выходят с относительной влажностью 95-100%, что не исключает возможности конденсации водяных паров из газов в газоотводящем тракте после нее.

Наиболее близким к заявляемому изобретению по использованию, технической сущности и достигаемому техническому результату является теплоутилизатор (патент РФ №2323384, F22B 1/18 от 30.08.2006), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Способ работы теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Недостатками данного прототипа являются.

Необходимость системы регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Поставлена задача - упрощение технологии утилизации тепла и повышение эффективности использования низкопотенциального тепла конденсации водяных паров, содержащихся в дымовых газах.

Эта задача решена следующим способом.

Предложено устройство утилизации тепла дымовых газов, содержащее газо-газовый теплообменник, конденсатор, инерционный каплеуловитель газоходы, воздуховоды, вентиляторы и трубопровод, отличающееся тем, что газо-газовый поверхностный пластинчатый теплообменник выполнен по схеме противотока, в качестве конденсатора установлен поверхностный газовоздушный пластинчатый теплообменник, в газоходе холодных осушенных дымовых газов установлен дополнительный дымосос, перед дополнительным дымососом врезан газоход подмеса части подогретых осушенных дымовых газов.

Предложен также способ работы устройства утилизации тепла дымовых газов, по которому дымовые газы охлаждают в газо-газовом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревают часть дутьевого воздуха, отличающийся тем, что в газо-газовом теплообменнике нагревают осушенные дымовые газы за счет охлаждения исходных дымовых газов по схеме противотока без регулирования расхода газов, конденсируют водяные пары в поверхностном газовоздушном пластинчатом теплообменнике-конденсаторе, нагревая воздух и используют нагретый воздух для отопления и покрытия потребности процесса горения, а конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле, в газоходе холодных осушенных дымовых газов компенсируют аэродинамическое сопротивление газового тракта дополнительным дымососом, перед которым подмешивают часть подогретых осушенных дымовых газов, исключая конденсацию остаточных водяных паров, уносимых потоком из конденсатора, регулирование температуры нагретого воздуха осуществляют при помощи изменения числа оборотов дымососа в зависимости от температуры наружного воздуха.

Исходные дымовые газы охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы.

Отличием является применение поверхностного пластинчатого теплообменника без каких-либо органов регулирования расхода газов, где греющая среда (весь объем влажных дымовых газов) и нагреваемая среда (весь объем осушенных дымовых газов) движутся противотоком. При этом происходит более глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров.

Далее конденсируют содержащиеся в дымовых газах водяные пары в газовоздушном поверхностном пластинчатом теплообменнике-конденсаторе, нагревая воздух. Нагретый воздух используют для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле.

Отличием предлагаемого способа является то, что нагреваемой средой является холодный воздух, подаваемый вентиляторами из окружающей среды. Воздух нагревается на 30-50°С, например от -15 до 33°С. Использование воздуха с отрицательной температурой в качестве охлаждающей среды позволяет существенно увеличить температурный напор в конденсаторе при использовании противотока. Воздух, нагретый до 28-33°С, пригоден для целей отопления помещений и подачи в котел для обеспечения процесса горения природного газа. Тепловой расчет схемы показывает, что расход подогретого воздуха в 6-7 раз превосходит расход исходных дымовых газов, что позволяет полностью покрыть потребность котла, отапливать цех и другие помещения предприятия, а также подать часть воздуха в дымовую трубу для снижения температуры точки росы или стороннему потребителю.

Аэродинамическое сопротивление газового тракта в газоходе холодных осушенных дымовых газов компенсируют дополнительным дымососом. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивают часть подогретых осушенных дымовых газов (до 10%). Регулирование температуры нагреваемого воздуха осуществляют изменением расхода осушаемых дымовых газов, при помощи регулирования числа оборотов дымососа в зависимости от температуры наружного воздуха.

Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Устройство утилизации тепла дымовых газов, изображенное на чертеже, содержит газоход 1, соединенный с теплообменником 2, который через газоход 3 соединен с конденсатором 4. Конденсатор 4 имеет инерционный каплеуловитель 5 и соединен с трубопроводом отвода конденсата 6. Вентилятор 7 соединен воздуховодом холодного воздуха 8 с конденсатором 4. Конденсатор 4 соединен воздуховодом 9 с потребителем тепла. Газоход осушенных дымовых газов 10 через дымосос 11 соединен с теплообменником 2. Газоход сухих подогретых дымовых газов 12 соединен с теплообменником 2 и направлен в дымовую трубу. Газоход 12 соединен с газоходом 10 дополнительным газоходом 13, который содержит заслонку 14.

Теплообменник 2 и конденсатор 4 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Блок 7 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха. Конденсатор 4 на выходе осушенных дымовых газов имеет инерционный каплеуловитель 5, выполненный в виде вертикальных жалюзей, за которым врезан газоход 10. На газоходе 13 установлена заслонка 14 для первоначальной настройки температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымососе 11.

Способ работы устройства утилизации тепла дымовых газов.

Влажные дымовые газы по газоходу 1 поступают в теплообменник 2, где их температура снижается до температуры, близкой к точке росы. Охлажденные дымовые газы по газоходу 3 попадают в конденсатор 4, где конденсируются содержащиеся в них водяные пары. Конденсат отводится по трубопроводу 6 и после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Теплота конденсации используется для подогрева холодного воздуха, который подается вентиляторами 7 из окружающей среды. Нагретый воздух 9 направляется в производственное помещение котельной, для его вентиляции и отопления. Из этого помещения воздух подается в котел, для обеспечения процесса горения. Осушенные дымовые газы 10 проходят через инерционный каплеуловитель 5, дымососом 11 подаются в теплообменник 2, где нагреваются и направляются в дымовую трубу 12. Нагрев осушенных дымовых газов необходим для предотвращения конденсации остаточных водяных паров в газоходах и дымовой трубе. Для предотвращения выпадения капель влаги в дымососе 11, уносимых осушенным потоком дымовых газов из конденсатора, часть нагретых сухих дымовых газов (до одной десятой части) из газохода 12 по газоходу 13 подается в газоход 10, где происходит испарение уносимой влаги.

Регулирование температуры нагретого воздуха осуществляют изменением расхода осушаемых дымовых газов при помощи изменения числа оборотов дымососа 11 в зависимости от температуры наружного воздуха. При снижении расхода влажных дымовых газов уменьшается аэродинамическое сопротивление газового тракта устройства, что компенсируется снижением числа оборотов дымососа 11. Дымосос 11 обеспечивает разницу давлений дымовых газов и воздуха в конденсаторе с целью предотвращения попадания дымовых газов в подогреваемый воздух.

Поверочный расчет показывает, что для котла на природном газе мощностью 6 МВт, при расходе влажных дымовых газов 1 м 3 /с с температурой 130°С, воздух нагревается от -15 до 30°С, при его расходе 7 м 3 /с. Расход конденсата 0,13 кг/с, температура осушенных дымовых газов на выходе из подогревателя 86°С. Тепловая мощность такого устройства 400 кВт. Общая площадь поверхности теплообмена 310 м 2 . Температура точки росы водяных паров в дымовых газах снижается с 55 до 10°С. КПД котла увеличивается на 1% только за счет подогрева холодного воздуха в количестве 0,9 м 3 /с, требуемого для горения природного газа. При этом, на подогрев этого воздуха приходится 51 кВт мощности устройства, а остальное тепло используется для воздушного отопления помещений. Результаты расчетов работы такого устройства при различных температурах наружного воздуха приведены в таблице 1.

В таблице 2 приведены результаты расчета вариантов исполнения устройства на другие расходы осушаемых дымовых газов, при температуре наружного воздуха -15°С.

Таблица 1
УСТРОЙСТВО УТИЛИЗАЦИИ ТЕПЛА ДЫМОВЫХ ГАЗОВ И СПОСОБ ЕГО РАБОТЫ
Расход дымовых газов Расход воздуха Температура воздуха Тепловая мощность устройства
до после
м 3 /c м 3 /c °С °С кВт кг/с °C °С
0,7 5,4 0 37,0 262 0,09 90,7 19/8
0,8 6/2 -5 33,2 316 0,10 89,0 16,2
1 7,0 -10 33,2 388 0,13 87/4 15,1
1 7,0 -15 29,6 401 0,13 86,0 10,0
1 6,2 -20 30,2 402 0,13 86,3 10,8
1 6,2 -25 26,6 413 0,13 84,8 5,5
Таблица 2
Расход дымовых газов Расход воздуха Температура нагретого воздуха Тепловая мощность устройства Расход полученного конденсата Общая площадь поверхности теплообмена Температура осушенных дымовых газов Температура точки росы водяных паров в осушенных газах
м 3 /c м 3 /c °С кВт кг/с м 2 °C °С
2 13,2 31,5 791 0,26 620 86,8 12,8
5 35,0 29,6 2007 0,65 1552 86,0 10,0
10 62,1 35,6 4047 1,30 3444 83,8 9,2
25 155,3 32,9 9582 3,08 8265 86,3 18,6
50 310,8 32,5 19009 6,08 13775 85,6 20,0

1. Устройство утилизации тепла дымовых газов, содержащее газо-газовый теплообменник, конденсатор, инерционный каплеуловитель, газоходы, воздуховоды, вентиляторы и трубопровод, отличающееся тем, что газо-газовый поверхностный пластинчатый теплообменник выполнен по схеме противотока, в качестве конденсатора установлен поверхностный газо-воздушный пластинчатый теплообменник, в газоходе холодных осушенных дымовых газов установлен дополнительный дымосос, перед дополнительным дымососом врезан газоход подмеса части подогретых осушенных дымовых газов.

2. Способ работы устройства утилизации тепла дымовых газов, по которому дымовые газы охлаждают в газо-газовом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревают часть дутьевого воздуха, отличающийся тем, что в газо-газовом теплообменнике нагревают осушенные дымовые газы за счет охлаждения исходных дымовых газов по схеме противотока без регулирования расхода газов, конденсируют водяные пары в поверхностном газовоздушном пластинчатом теплообменнике-конденсаторе, нагревая воздух и используют нагретый воздух для отопления и покрытия потребности процесса горения, а конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле, в газоходе холодных осушенных дымовых газов компенсируют аэродинамическое сопротивление газового тракта дополнительным дымососом, перед которым подмешивают часть подогретых осушенных дымовых газов, исключая конденсацию остаточных водяных паров, уносимых потоком из конденсатора, регулирование температуры нагретого воздуха осуществляют при помощи изменения числа оборотов дымососа в зависимости от температуры наружного воздуха.

Похожие патенты:

Изобретение относится к теплообменнику отработавшего газа, в частности охладителю отработавшего газа, для рециркуляции отработавших газов на автомобилях согласно ограничительной части пункта 1 формулы изобретения.

Изобретение относится к парогенератору, в котором в канале топочного газа, протекаемом топочным газом приблизительно в горизонтальном направлении, расположена испарительная прямоточная поверхность нагрева, которая содержит множество включенных параллельно для протекания текучей среды парогенераторных труб с множеством подключенных после некоторых парогенераторных труб на стороне текучей среды выходных коллекторов.

Изобретение относится к теплоэнергетике и может быть использовано в котлах-утилизаторах когенерационных энергетических установок и предназначено для утилизации уходящих газов газотурбинной установки, используемой в системах теплоснабжения отопления жилых домов, промышленных объектов, а также для других хозяйственных и технических нужд.

Изобретение относится к прямоточному парогенератору, в котором в канале топочного газа, протекаемом топочным газом приблизительно в горизонтальном направлении, расположена испарительная прямоточная поверхность нагрева, которая содержит множество включенных параллельно для протекания текучей среды парогенераторных труб.

Изобретение относится к прямоточному парогенератору, в котором в проточном газоходе для протекающего приблизительно в вертикальном направлении топочного газа расположена испарительная поверхность нагрева, которая содержит множество параллельно включенных для протекания текучей среды парогенераторных труб.

Изобретение относится к прямоточному парогенератору горизонтального типа конструкции, в котором в канале протекаемого приблизительно в горизонтальном направлении топочного газа расположены испарительная прямоточная поверхность нагрева, которая содержит множество включенных параллельно для протекания текучей среды парогенераторных труб, и включенная после испарительной прямоточной поверхности нагрева перегревательная поверхность нагрева, которая содержит множество включенных параллельно для протекания испаренной текучей среды перегревательных труб.

Изобретение относится к котлу-утилизатору, характеризующемуся наличием реактора, к нижней части которого примыкают две горелки, а к боковой поверхности реактора примыкает боров подвода дымовых газов, при этом дымовые газы, которые отходят из борова подвода дымовых газов, поступают в зону активного горения реактора, которая расположена в нижней его части, системы утилизации тепла дымовых газов, которые поступают в реактор котла-утилизатора, патрубка отвода дымовых газов из реактора, который содержит дополнительную систему утилизации тепла дымовых газов и, по меньшей мере, один дымосос

Изобретение относится к области судового котлостроения и может быть использовано в стационарных утилизационных котлах, работающих вместе с дизелями или газовыми турбинами. Техническая задача, решаемая изобретением, заключается в создании утилизационной установки с улучшенными эксплуатационными показателями, поверхности нагрева парового котла которой можно было бы очищать без остановки главного двигателя, снизить расход пресной воды и улучшить экологические показатели и эффективность теплообмена. Поставленная задача достигается тем, что утилизационная установка с паровым котлом включает в себя паровой котел с принудительной циркуляцией, который выполнен в виде корпуса, в котором расположены поверхности нагрева в виде пакетов труб, и устройство очистки поверхностей нагрева, выполненное из отдельных элементов очистки, а также подводящий и отводящий газоходы с шиберами. При этом подводящий газоход с шибером подсоединен к верхней части корпуса, а отводящий газоход с шибером подсоединен к нижней части корпуса, установка дополнительно содержит камеру мокрой очистки газов и танк, между поверхностями нагрева размещены элементы очистки поверхностей нагрева, которые соединены с танком трубопроводом с насосом, камера мокрой очистки газов расположена в корпусе и соединена с танком с помощью сливного трубопровода с шибером. 2 з.п. ф-лы, 1 ил.

Изобретение относится к энергетике и может быть использовано в теплообменниках отработавшего газа, в частности охладителях отработавшего газа для рециркуляции отработавших газов в автомобилях, с приспособленными для протекания отработавшего газа и обтекаемыми охлаждающим средством каналами теплообменника, которые оканчиваются в распределительной и/или собирающей камере, с расположенным в распределительной и/или собирающей камере устройством с направляющими каналами, причем устройство с направляющими каналами имеет входную область для отработавшего газа, выходную область для отработавшего газа и множество проходящих от входной области для отработавшего газа до выходной области для отработавшего газа проточных каналов, которые наклонены друг относительно друга. Концентрация проточных каналов в поперечном сечении составляет 100-600 единиц/кв.дюйм, а длина проточных каналов составляет 15 - 100 мм. При таком выполнении оказывается воздействие на поток отработавшего газа в направлении пока, на скорость потока, на площадь поперечного сечения, на распределение потока и на другие параметры потока. 14 з.п. ф-лы, 7 ил.

Изобретение относится к энергетике и может быть использовано в прямоточных парогенераторах. Парогенератор содержит теплообменник, жидкостный и паровой коллекторы. Теплообменник содержит несколько теплообменных блоков одинаковой конструкции. Теплообменный блок содержит пучок спиральных теплопередающих труб, центральный цилиндр и рукава. Спиральные теплопередающие трубы, имеющие разный радиус закругления, размещены по концентрической спирали в межтрубном пространстве между центральным цилиндром и рукавом, образуя одну или несколько теплообменных колонн. Один выход жидкостного коллектора соединен с основным трубопроводом для подачи воды, а второй выход жидкостного коллектора соединен с пучком спиральных теплопередающих труб. Один выход парового коллектора соединен с основным паровым трубопроводом, а второй выход парового коллектора соединен с пучком спиральных теплопередающих труб. Внутри части соединения с жидкостным коллектором каждая спиральная теплопередающая труба снабжена фиксированной и съемной диафрагмой. 6 з.п. ф-лы., 6 ил.

Изобретение относится к теплоэнергетике и может быть использовано для утилизации тепла дымовых газов котельных агрегатов, промышленных печей, вентиляционных выбросов при нагревании воздуха с одновременным получением электричества. Комплексный утилизатор тепла сбросных газов содержит корпус, снабженный газовыми и воздушными патрубками, внутри которого помещен пакет, состоящий из перфорированных пластин, образующих между собой газовые и воздушные каналы, причем перфорация пластин выполнена в виде горизонтальных щелей, размещенных в шахматном порядке относительно друг друга, в которых помещены термоэлектрические звенья, состоящие из овальных вставок, выполненных из упругого диэлектрического коррозионностойкого материала, внутри которых помещены зигзагообразные ряды, состоящие из термоэмиссионных преобразователей, каждый из которых представляет собой пару оголенных проволочных отрезков, выполненных из разных металлов M1 и М2, спаянных на концах между собой, причем сами зигзагообразные ряды соединены между собой последовательно соединительными проводами, образуя термоэлектрические секции, соединенные с коллекторами электрических зарядов и клеммами. Такое выполнение утилизатора повышает его надежность и эффективность. 5 ил. .

Настоящее изобретение относится к теплообменнику для охлаждения горячих газов посредством охлаждающей текучей среды, причем указанный теплообменник содержит: по меньшей мере, одну вертикально ориентированную емкость, содержащую ванну охлаждающей текучей среды и имеющую пространство для сбора паровой фазы, генерированной над указанной ванной охлаждающей текучей среды, один вертикальный трубчатый элемент, вставленный внутрь указанной емкости, открытый на концах и коаксиальный с указанной емкостью, один спиральный канал, который оборачивается вокруг оси емкости, вставленный в указанный коаксиальный трубчатый элемент, один выпуск для паровой фазы, генерированной в верхней части указанной емкости, причем, по меньшей мере, одна транспортная линия вставлена в нижнюю часть вертикальной емкости, открыта с двух концов, из которых один соединен с вертикальной емкостью и другой является свободным и находится снаружи указанной емкости, причем указанная транспортная линия является трубчатой и выступает вбок снаружи указанного теплообменника, содержит, по меньшей мере, один центральный внутренний канал, который находится в сообщении по текучей среде со спиральным каналом и проходит вертикально вдоль трубчатого элемента, вставленного в вертикальную емкость, при этом канал имеет наружную рубашку, в которой циркулирует охлаждающая текучая среда. Технический результат - повышение безопасности и работоспособности теплообменной системы. 3 н. и 17 з.п. ф-лы, 1 ил.

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе


Владельцы патента RU 2606296:

Изобретение относится к теплоэнергетике и может найти применение на любом предприятии, эксплуатирующем котлы на углеводородном топливе.

Известны серийно выпускаемые Костромским калориферным заводом калориферы типа КСк (Кудинов А.А. Энергосбережение в теплогенерирующих установках. - Ульяновск: УлГТУ, 2000. - 139, стр. 33), состоящие из газоводяного поверхностного теплоутилизатора, поверхность теплообмена которого выполнена из оребренных биметаллических трубок, сетчатого фильтра, распределительного клапана, каплеуловителя и гидропневматического обдувочного устройства.

Калориферы типа КСк работают следующим образом. Дымовые газы попадают на распределительный клапан, который делит их на два потока, основной поток газа направляется через сетчатый фильтр в теплоутилизатор, второй - по обводной линии газохода. В теплоутилизаторе водяные пары, содержащиеся в дымовых газах, конденсируются на оребренных трубках, нагревая текущую в них воду. Образующийся конденсат собирается в поддоне и подается насосами в схему подпитки теплосети. Нагретая в теплоутилизаторе вода подается потребителю. На выходе из теплоутилизатора осушенные дымовые газы смешиваются с исходными дымовыми газами из обводной линии газохода и направляются через дымосос в дымовую трубу.

Для работы теплоутилизатора в режиме конденсации всей его конвективной части требуется, чтобы температура нагрева воды в конвективном пакете не превышала 50°С. Для использования такой воды в системах отопления ее нужно дополнительно догревать.

Для предотвращения конденсации остаточных водяных паров дымовых газов в газоходах и дымовой трубе, часть исходных газов через обводной канал подмешиваются к осушенным дымовым газам, повышая их температуру. При таком подмесе увеличивается и содержание водяных паров в уходящих дымовых газах, снижая эффективность утилизации тепла.

Известен теплоутилизатор (RU 2323384 С1, МПК F22B 1/18 (2006.01), опубл. 27.04.2008), содержащий контактный теплообменник, каплеуловитель, газо-газовый теплообменник, включенный по схеме прямотока, газоходы, трубопроводы, насос, датчики температуры, клапаны-регуляторы. По ходу оборотной воды контактного теплообменника последовательно расположены водо-водяной теплообменник и водовоздушный теплообменник с обводным каналом по ходу воздуха.

Известен способ работы этого теплоутилизатора. Уходящие газы по газоходу поступают на вход газо-газового теплообменника, последовательно проходя три его секции, затем на вход контактного теплообменника, где, проходя через насадку, омываемую оборотной водой, охлаждаются ниже точки росы, отдавая явное и скрытое тепло оборотной воде. Далее охлажденные и влажные газы освобождаются от большей части унесенной потоком жидкой воды в каплеуловителе, нагреваются и подсушиваются, по меньшей мере, в одной секции газо-газового теплообменника, дымососом направляются в трубу и выбрасываются в атмосферу. Одновременно нагретая оборотная вода из поддона контактного теплообменника насосом подается в водо-водяной теплообменник, где нагревает холодную воду из трубопровода. Нагретая в теплообменнике вода поступает на нужды технологического и бытового горячего водоснабжения или в низкотемпературный отопительный контур.

Далее оборотная вода поступает в водовоздушный теплообменник, нагревает, по меньшей мере, часть дутьевого воздуха, поступающего из-за пределов помещения по воздуховоду, охлаждаясь до минимально возможной температуры, и поступает в контактный теплообменник через водораспределитель, где отбирает тепло от газов, попутно промывая их от взвешенных частиц, и поглощает часть оксидов азота и серы. Нагретый воздух из теплообменника дутьевым вентилятором подается в штатный воздухоподогреватель или непосредственно в топку. Оборотная вода по необходимости фильтруется и обрабатывается известными способами.

Для осуществления такого способа необходима система регулирования вследствие использования утилизируемого тепла для целей горячего водоснабжения из-за непостоянства суточного графика потребления горячей воды.

Нагретая в теплообменнике вода, поступающая на нужды горячего водоснабжения или в низкотемпературный отопительный контур, требует ее доведения до необходимой температуры, так как не может быть нагрета в теплообменнике выше температуры воды оборотного контура, которая определяется температурой насыщения водяных паров в дымовых газах. Низкий нагрев воздуха в водовоздушном теплообменнике не позволяет использовать этот воздух для отопления помещений.

Наиболее близкими к заявляемому изобретению являются устройство и способ утилизации тепла дымовых газов (RU 2436011 С1, МПК F22B 1/18 (2006.01), опубл. 10.12.2011).

Устройство утилизации тепла дымовых газов содержит газо-газовый поверхностный пластинчатый теплообменник, выполненный по схеме противотока, поверхностный газовоздушный пластинчатый конденсатор, инерционный каплеуловитель, газоходы, дымосос, воздуховоды, вентиляторы и трубопровод.

Исходные дымовые газы охлаждаются в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы. Греющая и нагреваемая среда движутся противотоком. При этом происходит глубокое охлаждение влажных дымовых газов до температуры, близкой к точке росы водяных паров. Далее содержащиеся в дымовых газах водяные пары конденсируются в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе, нагревая воздух. Нагретый воздух используется для отопления помещений и покрытия потребности процесса горения. Конденсат после дополнительной обработки используют для восполнения потерь в теплосети или паротурбинном цикле. Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дополнительным дымососом подмешивается часть подогретых осушенных дымовых газов. Осушенные дымовые газы подаются дымососом в описанный выше подогреватель, где нагреваются для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу.

Недостатками этого способа является то, что утилизируется преимущественно скрытая теплота конденсации водяных паров, содержащихся в дымовых газах. Если рекуперативный теплообменник охлаждает исходные дымовые газы до температуры, близкой к точке росы водяных паров, то нагрев уходящих осушенных дымовых газов будет избыточным, что снижает эффективность утилизации. Недостатком является и использование для нагрева только одной среды - воздуха.

Задачей изобретения является повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов.

В предложенном способе глубокой утилизации тепла дымовых газов, также как в прототипе, дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух.

Согласно изобретению между теплообменником и конденсатором дымовые газы доохлаждают до температуры, близкой к точке росы водяных паров, нагревая воду.

Газовые котлы имеют высокую температуру уходящих дымовых газов (130°С для больших энергетических котлов, 150°С-170°С для малых котлов). Для охлаждения дымовых газов перед конденсацией используют два устройства: рекуперативный газо-газовый теплообменник и утилизационный водоподогреватель.

Исходные дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы на 30-40°С выше, чем температура насыщения содержащихся в них водяных паров, для создания запаса по температуре при возможном охлаждении дымовых газов в трубе. Это позволяет уменьшить площадь теплообмена рекуперативного теплообменника по сравнению с прототипом и полезно использовать оставшееся тепло дымовых газов.

Существенным отличием является использование контактного газоводяного водоподогревателя для окончательного охлаждения влажных дымовых газов до температуры, близкой к точке росы водяных паров. На входе в водоподогреватель дымовые газы имеют достаточно высокую температуру (130°С-90°С), что позволяет нагревать воду до 50°С-65°С с частичным ее испарением. На выходе из контактного газоводяного водоподогревателя дымовые газы имеют температуру близкую к точке росы содержащихся в них водяных паров, что повышает эффективность использования поверхности теплообмена в конденсаторе, исключает образование сухих зон конденсатора и повышает коэффициент теплопередачи.

Способ утилизации тепла дымовых газов изображен на фиг.1.

В таблице 1 приведены результаты проверочного расчета варианта установки для котла на природном газе мощностью 11 МВт.

Способ глубокой утилизации тепла дымовых газов осуществляют следующим образом. Исходные дымовые газы 1 предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике 2, нагревая осушенные дымовые газы. Далее дымовые газы 3 окончательно охлаждают в контактном газоводяном водоподогревателе 4 до температуры, близкой к точке росы водяных паров, разбрызгивая воду, в качестве которой целесообразно использовать полученный в конденсаторе конденсат. При этом часть воды испаряется, повышая влагосодержание дымовых газов, а остальная нагревается до этой же температуры. Содержащиеся в дымовых газах 5 водяные пары конденсируют в газовоздушном поверхностном пластинчатом теплообменнике - конденсаторе 6 с каплеуловителем 7, нагревая воздух. Конденсат 8 подается для подогрева в контактный газоводяной водоподогреватель 4. Теплота конденсации используется для подогрева холодного воздуха, который подают вентиляторами 9 из окружающей среды по воздуховоду 10. Нагретый воздух 11 направляют в производственное помещение котельного цеха для его вентиляции и отопления. Из этого помещения воздух подают в котел для обеспечения процесса горения. Осушенные дымовые газы 12 дымососом 13 подают в газо-газовый поверхностный пластинчатый теплообменник 2 для подогрева и направляют в дымовую трубу 14.

Для исключения конденсации остаточных водяных паров, уносимых потоком из конденсатора, перед дымососом 13 подмешивают часть подогретых осушенных дымовых газов 15 (до 10%), величина которой первоначально настраивается заслонкой 16.

Регулирование температуры нагреваемого воздуха 11 осуществляют изменением расхода осушаемых дымовых газов 1 или изменением расхода воздуха, при помощи регулирования числа оборотов дымососа 13 или вентиляторов 9 в зависимости от температуры наружного воздуха.

Теплообменник 2 и конденсатор 6 представляют собой поверхностные пластинчатые теплообменники, выполненные из унифицированных модульных пакетов, которые скомпонованы таким образом, чтобы движение теплоносителей осуществлялось противотоком. В зависимости от объема осушаемых дымовых газов, подогреватель и конденсатор формируются из рассчитываемого количества пакетов. Водоподогреватель 4 представляет собой контактный газоводяной теплообменник, обеспечивающий дополнительное охлаждение дымовых газов и нагрев воды. Нагретая вода 17 после дополнительной обработки используется для восполнения потерь в теплосети или паротурбинном цикле. Блок 9 формируется из нескольких вентиляторов для изменения расхода подогреваемого воздуха.

В таблице 1 приведены результаты поверочного расчета варианта исполнения установки для котла на природном газе мощностью 11 МВт. Расчеты проводились для температуры наружного воздуха -20°С. Расчет показывает, что использование контактного газоводяного водоподогревателя 4 приводит к исчезновению сухой зоны в конденсаторе 6, интенсифицирует теплообмен и увеличивает мощность установки. Процент утилизированного тепла увеличивается с 14,52 до 15,4%, при этом температура точки росы водяных паров в осушенных дымовых газах снижается до 17°С. Примерно 2% тепловой мощности не утилизируется, а используется для рекуперации - нагрева осушенных дымовых газов до температуры 70°С.

Способ глубокой утилизации тепла дымовых газов, по которому дымовые газы предварительно охлаждают в газо-газовом поверхностном пластинчатом теплообменнике, нагревая осушенные дымовые газы, доохлаждают в водоподогревателе до температуры, близкой к точке росы водяных паров, нагревая воду, конденсируют водяные пары, содержащиеся в дымовых газах в конденсаторе, нагревая воздух, отличающийся тем, что между теплообменником и конденсатором установлен поверхностный трубчатый газоводяной водоподогреватель для охлаждения влажных дымовых газов и нагрева воды, при этом основная утилизация тепла происходит в конденсаторе при нагреве воздуха, а дополнительная - в водоподогревателе.

Похожие патенты:

Изобретение относится к нефтехимическому машиностроению и может быть использовано для крекинга мазута, а также для нагрева технологических сред (например, нефти, нефтяной эмульсии, газа, их смесей) и для других технологических процессов, требующих интенсивного подвода тепла.

Изобретение относится к области теплоэнергетики и может быть использовано в системах подогрева и кондиционирования воздуха. Изобретение заключается в том, что соединение теплообменных оребренных трубок в ряду и рядов между собой выполнено последовательно по одной трубке в ходу в одну ветвь, причем смежные теплообменные трубки в ряду соединены между собой последовательно межтрубными переходами в форме крутозагнутых отводов и снабжены легкосъемными ремонтно-защитными пробками, количество последовательно подключенных трубок в ряду и общее количество ходов во всех рядах выбрано в зависимости от фактических параметров существующей тепловой сети и определено гидравлической характеристикой водяного калорифера.

Электрический радиатор, использующий вычислительные процессоры в качестве источника тепла. Этот радиатор для бытовых и производственных помещений, использующий вычислительные процессоры в качестве источников тепла, содержит нагреваемый корпус, который осуществляет теплопередачу между источником тепла и окружающим воздухом, количество Q процессоров, распределенных на количестве Р печатных плат, образующих источник тепла радиатора и мощное средство, выполняющее вычисления посредством внешних информационных систем, интерфейс человек-машина, позволяющий контролировать вычислительную и тепловую мощность, выдаваемую радиатором, стабилизированный источник питания для различных электронных компонентов, сетевой интерфейс, позволяющий соединять радиатор с внешними сетями.

Изобретение предназначено для осуществления реакций парового риформинга и может быть использовано в химической промышленности. Теплообменный реактор содержит множество байонетных труб (4), подвешенных к верхнему своду (2), простирающихся до уровня нижнего дна (3) и заключенных в кожух (1), содержащий впускной (Е) и выпускной (S) патрубки для дымовых газов.

Изобретение предлагает систему и способ парогазовой конверсии. Способ парогазовой когенерации на основе газификации и метанирования биомассы включает: 1) газификацию биомассы путем смешивания кислорода и водяного пара, полученных из воздухоразделительной установки, с биомассой, транспортировку образующейся в результате смеси через сопло в газификатор, газификацию биомассы при температуре 1500-1800°С и давлении 1-3 МПа с получением неочищенного газифицированного газа и транспортировку перегретого пара, имеющего давление 5-6 МПа, полученного в результате целесообразной утилизации тепла, к паровой турбине; 2) конверсию и очистку: в соответствии с требованиями реакции метанирования корректировку отношения водород/углерод неочищенного газифицированного газа, образованного на стадии 1), до 3:1 с использованием реакции конверсии и извлечение при низкой температуре неочищенного газифицированного газа с использованием метанола для десульфуризации и декарбонизации, в результате чего получают очищенный сингаз; 3) проведение метанирования: введение очищенного сингаза стадии 2) в секцию метанирования, состоящую из секции первичного метанирования и секции вторичного метанирования, причем секция первичного метанирования содержит первый реактор первичного метанирования и второй реактор первичного метанирования, соединенные последовательно; предоставление возможности части технологического газа из второго реактора первичного метанирования вернуться к входу первого реактора первичного метанирования для смешивания со свежим подаваемым газом и далее возможности войти в первый реактор первичного метанирования, так что концентрация реагентов на входе первого реактора первичного метанирования уменьшается и температура слоя катализатора регулируется технологическим газом; введение сингаза после первичного метанирования в секцию вторичного метанирования, содержащую первый реактор вторичного метанирования и второй реактор вторичного метанирования, соединенные последовательно, где небольшое количество непрореагировавшего СО и большое количество CO2 превращается в CH4, и транспортировку перегретого пара промежуточного давления, образованного в секции метанирования, к паровой турбине; и 4) концентрирование метана: концентрирование метана синтетического природного газа, содержащего следовые количества азота и водяного пара, полученного на стадии 3), с помощью адсорбции при переменном давлении, так что молярная концентрация метана достигает 96% и теплотворная способность синтетического природного газа достигает 8256 ккал/Nм3.

Изобретение относится к теплоэнергетике. Способ глубокой утилизации тепла дымовых газов включает предварительное охлаждение дымовых газов в газо-газовом поверхностном пластинчатом теплообменнике, нагревая противотоком осушенные дымовые газы, для создания температурного запаса, предотвращающего конденсацию остаточных водяных паров в дымовой трубе. Дальнейшее охлаждение дымовых газов до температуры, близкой к точке росы водяных паров, осуществляется в контактном газоводяном водоподогревателе, который нагревает воду. Охлажденные влажные дымовые газы подают в газовоздушный поверхностный пластинчатый теплообменник - конденсатор, где конденсируются содержащиеся в дымовых газах водяные пары, нагревая воздух. Осушенные дымовые газы подают дополнительным дымососом в газо-газовый поверхностный пластинчатый теплообменник, где нагревают для предотвращения возможной конденсации водяных паров в газоходах и дымовой трубе и направляются в дымовую трубу. Технический результат: повышение эффективности утилизации тепла дымовых газов за счет использования скрытого тепла конденсации водяных паров и повышенной температуры самих дымовых газов. 1 ил., 1 табл.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва