Расчет соуэ. Учет типа и конструктивных особенностей громкоговорителей

Доброго времени суток.

Мы уже говорили, что требования к СОУЭ (системам оповещения и управления эвакуацией) регламентируются томом СП 3.13130.2009. «Свод правил. Системы противопожарной защиты. Система оповещения и управления эвакуацией людей при пожаре. Требования пожарной безопасности».

Основное требование к звуковым системам — они должны обеспечивать минимальный уровень звукового давления на уровне 1,5 м от пола (т.е. на высоте ушей среднестатистического человека) на 15 дБ выше среднего уровня шума в помещении, но не не менее 75 дБ. При этом максимальный уровень звукового давления, создаваемый СОУЭ, не должен превышать 120 дБ: это болевой порог, дальше всё равно бесполезно — только вред можно нанести. Поэтому, если уровень шума на объекте, скажем, 110 дБ, то ваша СОУЭ должна верещать не тише и не громче 120 дБ, а повышение эффективности должно достигаться за счёт всяких световых эффектов — стробоскопов например. В спальных помещениях, гостиницах, больничных палатах и т.д. уровень звука меряется на высоте головы спящего человека.

Вариантов размещения источников звука много. Можно присобачить в углу зала рупорный громкоговоритель типа «колокол» кошмарной мощности и пусть оно орёт «на весь лес». В результате в дальнем конце помещения звук будет удовлетворять требованиям, а возле источника звука люди будут глохнуть. Так вот я забыл добавить: «Свод правил» требует ещё и равномерного распределения звука (п. 4.7. Установка громкоговорителей и других речевых оповещателей в защищаемых помещениях должна исключать концентрацию и неравномерное распределение отраженного звука.).

Поэтому в больших помещениях широко применяются потолочные динамики — они позволяют создать как раз то самое равномерное распределение звукового давления. Существует множество конструкций для монтажа в подвесные потолки, есть подвесные динамики, внешне похожие на люстры.

В коридорах и небольших помещениях вполне пригодны настенные динамики, их размещение жёстко регламентировано: не ниже 2,3 м от пола, но не менее 15 см от потолка. Есть, кстати, двунаправленные громкоговорители: в середине коридора на стенку присобачил, он туда и сюда говорит.

Надо добавить, что, во избежание больших потерь мощности на проводах, усилители выдают высоковольтный сигнал, 100-120 В. Динамики снабжены понижающими трансформаторами.

О расчёте СОУЭ с потолочными динамиками:

Количество потолочных динамиков для озвучивания помещения рассчитывается без учёта мощности — чистая геометрия. Считаем, что диаграмма направленности динамика равна 90 градусам, необходимо, чтобы они равномерно, без перекрытия озвучивали помещения на высоте 1,5 м от пола. Желающие могут порисовать, мне лень, поэтому без всяких подробностей:

берём высоту помещения минус 1, 5м, гордо называем полученное число «h» . Динамики вешаем друг от друга на расстоянии 2h, от стены — h.

Площадь, которую озвучивает один потолочный динамик примерно:

Теперь берём площадь помещения и делим на эту самую S(оп), получаем число динамиков. Например, имеем здоровенный склад 7000 кв.м, высота 6м. В таком случае h=6м-1,5м=4,5м. S(оп) получается примерно 2х4,5х2х4,5 = 81 кв. м. Количество динамиков:

N = 7000:81 = 86

Теперь о мощности. Всякий нормальный динамик (громкоговоритель) в числе технических характеристик имеет такой интересный параметр, как чувствительность, измеряемую в Вт/м. Правда потом, для удобства расчётов, это переводится в дБ, желающие могут сами поискать как переводить ватты в децибелы, это уже теория, не хочется заглубляться в подробности. Короче, чувствительность — это звуковое давление, которое создаёт динамик на расстоянии 1 м при рассеиваемой на нём мощности 1 Вт.

Мы должны создать звуковое давление большее на 15 дБ, чем уровень шума в помещении. Чтобы не бегать с шумомером, воспользуемся табличкой типовых уровней шумов в помещениях:

Поскольку у нас склад, берем уровень шума 70 дБ. Возьмём динамик LPA-6 от фирмы Луис-Плюс, он имеет чувствительность 94 дБ, т.е. при мощности 1 Вт на расстоянии 1 м от него он создаёт звуковое давление =94 дБ. Нам нужно на расстоянии 4,5 м (наше расстояние «h») получить звуковое давление

70дБ+15дБ = 85дБ

Воспользуемся графиком затуханий звукового давления с в зависимости от удаления от динамика, предоставленным той же фирмой Луис-Плюс:

На расстоянии 1 м затухание = 0, а на нужных нам 4,5 м оно составляет около 13 дБ. Т.е. из исходных 94 дБ (чувствительность динамика или звуковое давление на расстоянии 1 м) нам надо вычесть 13 дБ. Получаем, что при мощности 1 Вт наш динамик раскачает нам на уровне 1,5 м от пола давление 81 дБ. А надо 85 дБ.

Давайте глянем характеристики нашего динамика:

Смотрите, в графе «Мощность включения» Стоит 3 варианта подключения:6 Вт, 3 Вт и 1,5 Вт. Т.е. на его согласующем трансформаторе несколько отводов, позволяющих, при напряжении на трансформаторе 100 В, развивать мощность 6 Вт, 3 Вт или 1,5 Вт.

И, для полного счастия, ещё одна табличка — усиление в дБ в зависимости от рассеиваемой на динамике мощности:

Нам надо раскачать 85 дБ на расстоянии «h» от динамика. Мы получили расчётное 81 дБ, т.е. надо добавить 4 дБ. Смотрим — при мощности 3 Вт усиление звукового давления будет 4,8 дБ, ну значит и подключаем динамик на мощности 3 Вт, будем иметь 85дБ с некоторым запасом.

Множим мощность динамика на их количество и получаем минимально достаточную мощность усилителя. В нашем случае это 3Вт х 86 = 258 Вт.

В общем, довольно путано сначала, но давайте вкратце повторим.

  1. Не привязываясь ни к каким мощностям, тупо исходя из геометрии, считаем площадь, которую должен озвучить один динамик при заданной высоте помещения. Затем, исходя из площади помещения, считаем число динамиков.
  2. Выбираем динамик и, исходя из его чувствительности, считаем, какое звуковое давление он может создать на высоте 1, 5м от пола при мощности 1 Вт
  3. Ну и, наконец, считаем, какую мощность надо развить на динамике, чтобы получить нужное нам звуковое давление на той самой волшебной высоте 1,5 м. Естественно, если мощность эта будет выше предельной мощности динамика, придётся подобрать другую модель.

Ну вот, в общем-то и все ужасы. Со второго подхода уже не так страшно.

А вот самую первую формулу:

рекомендую запомнить наизусть, благо несложная. Представьте, вы осматриваете объект, заказчик спрашивает, сколько будет стоить оповещение. С этой формулой вы можете на пальцах посчитать число потолочных динамиков и плюс-минус лапоть, добавив к ним стоимость усилителей и кабелей, обозначить хотя бы масштаб цен. Заказчику такая оперативность нравится.

Вопросы — в «каменты» или на почту [email protected], форма подписки на новости — внизу.


В соответствии с вступившими в силу в 2003г. новыми нормами пожарной безопасности, при проектировании требуется обеспечивать заданные уровни звука. В документе имеется ссылка на методику измерения уровня звука, но нет никаких ссылок на то, как правильно рассчитать необходимое количество и мощность громкоговорителей .

Попробуем расписать порядок расчета оповещения по шагам.

1. Необходимо определить количество громкоговорителей для обеспечения равномерного распределения звука.

  • рупорный..............................................30-45 о
  • прожекторный.......................................30-45 о
  • настенный..............................................75-90 о
  • потолочный............................................80-90 о

Также, по опыту установки, можно считать, что расставлять потолочные громкоговорители допускается через расстояние, равное высоте потолка (при этом равномерность звука получится довольно посредственная, но нормам НПБ удволетворять будет. Если требуется равномерное озвучивание, то устанавливать придется через "высота потолка - рост человека"). Настенные громкоговорители устанавливаются через расстояние, равное ширине коридора (комнаты). А рупорные и прожекторные расставляют так, чтобы места скопления людей попали в диаграмму направленности. При установке настенных и рупорных громкоговорителей требуется придерживаться правила если требуется установить несколько грмокоговорителей в на одной площади, лучше установить их в центре и направить в разные стороны, чем ставить их на стенах и направлять к центру. Разборчивость и качество в последнем случае будут значительно хуже.

2. Определить уровень шума в помещении. Для этого его можно измерить или воспользоваться таблицей с примерными уровнями, для различных типов помещений.


3. Уровень трансляции должен превышать уровень шума на:

  • для фоновой музыки..................................на 5-6дБ
  • для аварийного оповещения.....................на 7-10дБ.
  • для качественной музыки...........................на 15-20дБ

4. Для учета ослабления уровня звука от расстояния (в пределах диаграммы направленности) можно воспользоваться таблицей:


5. Для учета увеличения уровня звука в зависимости от подводимой мощности можно воспользоваться таблицей:

6. Для рассчета уровня звукового давления на требуемом расстоянии можно воспользоваться упрощенной формулой:

SPL (Дб) =SPL паспортное - SPL ослабления + SPL увеличения

SPL (Дб) - уровень на требуемом расстоянии в диаграмме направленности

SPL паспортное - уровень звукового давления по паспорту на расстоянии в 1м (дБ/Вт/м)

SPL ослабления - уровень ослабления в зависимости от расстояния (см. таблицу)

SPL увеличения - - уровень увеличения в зависимости от подводимой мощности (см. таблицу)

Из приведенной выше формулы легко можно вычислить требуемую мощность для отдельно взятого громкоговорителя. Просуммировав мощности громкоговорителей можно вычислить суммарную мощность усилителя. Мощность усилителя рекомендуется выбирать с 20% запасом по мощности. При эксплуатации системы Вы сможете убедится в этом.

Например: есть торговое помещение размерами 20х30м с высотой потолков 3м. Требуется его озвучить фоновой музыкой, но с учетом возможности аварийного оповещения.

Для равномерного озвучивания потребуется 20:3-1 = 5 рядов по 30:3-1=9 шт. итого 45 шт.

Уровень звука на расстоянии 1, 5 м от громкоговорителя (высота потолка - рост самого низкого человека) должен быть не менее 63+7=70 дБ. Следовательно, если воспользоваться громкоговорителями АРТ-01 (Inter-M) мощностью 1 Вт, (по паспорту уровень звукового давления на расстоянии 1 м у них составляет 90 дБ.), формула приобретет вид:

SPL (Уровень звукового давления) = 90-3+0 =87 дБ. Что больше чем 70. Так, что данные громкоговорители подходят для озвучивания данного помещения. И в принципе, если необходимо только аварийное оповещение, то количество может быть еще меньше.(можно пересчитать самостоятельно).

Если-же Вам совсем не хочется утруждать себя "сложными" математическими расчетами, то всегда можно воспользоваться какой-либо программой для расчета количества громкоговорителей например от компании ТОА. При использовании оборудования других производителей необходимо учитывать отличие их звукового давления от выбранного типа. Программу расчета систем оповещения Вы сможете скачать (8,2mb)

О пределение необходимой мощности и уровня звукового давления акустических устройств в системах оповещения всегда представляло значительную проблему для проектировщиков. Некоторые производители систем оповещения, стараясь облегчить их труд, приводят всевозможные графики, таблицы или программы для расчета этих параметров. Чаще всего попытка практического применения подобных рекомендаций или программ порождает больше вопросов, чем ответов, или ставит в тупик абсурдностью полученных решений.

Для самостоятельного изучения проблем акустики у большинства проектировщиков просто нет времени, поэтому имеет смысл изложить здесь базовые принципы акустических расчетов и выбора звуковоспроизводящих устройств.

Расчет акустических параметров звуковоспроизводящих устройств предполагает выбор необходимых громкоговорителей в зависимости от действующего уровня фонового шума и выбранной схемы озвучивания. Действующий уровень фонового шума зависит от назначения помещения. Полагается, что для качественного восприятия речи (диспетчерских передач) уровень звукового давления громкоговорителя должен на 10-15 дБ превышать уровень фонового шума в наиболее удаленной точке помещения.

При относительно низких фоновых шумах (менее 75 дБ) необходимо обеспечить избыточный уровень полезного сигнала 15 дБ, при высоких (более 75 дБ) — достаточно 10 дБ. То есть требуемый уровень звукового давления составляет: Lmax=La+15, дБ — для помещения с относительно низким уровнем фоновых шумов; Lmax=La+10, дБ — для помещения с высоким уровнем фоновых шумов, где — действующий уровень фонового шума в помещении.

ХАРАКТЕРИСТИКИ ГРОМКОГОВОРИТЕЛЕЙ

К основным характеристикам громкоговорителей относятся их направленность, диапазон частот и уровень звукового давления,

развиваемого на расстоянии 1 м от излучателя.

Ненаправленными громкоговорителями являются динамики, потолочные громкоговорители, а также всевозможные звуковые колонки (хотя необходимо отметить, что колонки занимают промежуточное положение между направленными и ненаправленными системами). Область распространения звука ненаправленных громкоговорителей (диаграмма направленности) достаточно широка (около 60°), а уровень звукового давления относительно невелик.

К направленным громкоговорителям в первую очередь относятся рупорные излучатели, так называемые «колокольчики». В рупорных громкоговорителях происходит концентрация акустической энергии за счет особенностей конструкции самого рупора, они отличаются узкой диаграммой направленности (около 30°) и высоким уровнем звукового давления. Работают рупорные громкоговорители в узкой полосе частот и потому плохо подходят для качественного воспроизведения музыкальных программ, хотя за счет высокого уровня звукового давления хорошо подходят для озвучивания больших площадей, в том числе открытых пространств.

Выбор громкоговорителей по диапазону частот зависит от назначения системы. Для диспетчерских передач и создания музыкального фона вполне достаточным является диапазон 200 Гц — 5 кГц, который обеспечивается практически любыми акустическими устройствами (рупорные излучатели имеют несколько меньший диапазон, но для речевых передач его вполне хватает). Для высококачественного озвучивания следует использовать громкоговорители, имеющие диапазон частот не менее 100 Гц — 10 кГц.

Необходимый уровень звукового давления является единственной характеристикой громкоговорителя, которая определяется по результатам расчетов. Сданной характеристикой возникает наибольшее количество проблем, которые чаще всего связаны с путаницей между электрической мощностью и звуковым давлением. Между этими величинами существует косвенная зависимость, поскольку громкость звучания определяется звуковым давлением, а мощность обеспечивает работу громкоговорителя. Из подводимой мощности только часть преобразуется в звук и величина этой части зависит от коэффициента полезного действия конкретного громкоговорителя. Большинство производителей акустических систем указывает в технической документации звуковое давление в Паскалях или уровень звукового давления в децибелах на расстоянии 1 м от излучателя. Если указано звуковое давление в Паскалях, в то время как необходимо получить уровень звукового давления в децибелах, перевод одной величины в другую осуществляется по следующей формуле:

Для типичного ненаправленного громкоговорителя можно принять, что 1 Вт электрической мощности соответствует уровню звукового давления примерно 95 дБ. Каждое увеличение (уменьшение) мощности вдвое приводит к увеличению (уменьшению) уровня звукового давления на 3 дБ. То есть 2 Вт — 98 дБ, 4 Вт — 101 дБ, 0,5 Вт — 92 дБ, 0,25 Вт — 89 дБ и т.д. Существуют громкоговорители, имеющие звуковое давление на 1 Вт мощности менее 95 дБ, и громкоговорители, обеспечивающие на 1 Вт 97 и даже 100 дБ, при этом громкоговоритель мощностью 1 Вт с уровнем звукового давления

100 дБ заменяет громкоговоритель мощностью 4 Вт с уровнем 95 дБ/Вт (95 дБ — 1 Вт, 98 дБ — 2 Вт, 101 дБ — 4 Вт), очевидно, что применение такого громкоговорителя более экономично. Можно добавить, что при одной и той же электрической мощности уровень звукового давления потолочных громкоговорителей на 2-3 дБ ниже, чем настенных. Это связано с тем, что настенный громкоговоритель расположен либо в отдельном корпусе, либо у хорошо отражающей задней поверхности, поэтому звук, излучаемый назад, практически полностью отражается вперед. Потолочные громкоговорители, как правило, крепятся на фальшпотолках или подвесах, поэтому звук, излучаемый назад, не отражается и не влияет на повышение фронтального звукового давления. Рупорные громкоговорители при мощности 10-30 Вт обеспечивают звуковое давление 12-16 Па (115-118 дБ) и более, имея, тем самым, наиболее высокое соотношение децибел к ваттам.

В заключение следует отметить, что при расчетах громкоговорителей необходимо обращать внимание на развиваемое ими звуковое давление, а не на электрическую мощность, и только при отсутствии этой характеристики в описании руководствоваться типовой зависимостью — 95 дБ/Вт.

РАСЧЕТ МОЩНОСТИ ГРОМКОГОВОРИТЕЛЕЙ ДЛЯ СОСРЕДОТОЧЕННЫХ СИСТЕМ

Расчет мощности громкоговорителей для сосредоточенных систем осуществляется в следующем порядке:

1) определяется необходимый уровень звука в удаленной точке озвучиваемого помещения:

где La — действующий уровень фонового шума в помещении, 10 — превышение требуемого уровня звукового давления над фоном;

где L — расстояние от громкоговорителя до крайней точки.

Если в сосредоточенной системе используется несколько громкоговорителей, то:

где n — число громкоговорителей в сосредоточенной системе;

величина 2 х 10-5, стоящая в знаменателе, соответствует уровню абсолютной тишины в Паскалях;

5) по значению Lгp или р 1 выбирается необходимый громкоговоритель или находится его необходимая типовая мощность.

При выборе типовой мощности используется соотношение 95 дБ/Вт.

Пример 1:

Необходимо рассчитать мощность громкоговорителя в сосредоточенной системе с двумя громкоговорителями.
Исходные данные:
Расстояние от громкоговорителя до удаленной точки L -15 м, уровень фонового шума в помещении — La — 75 дБ.
Требуемый уровень звука в удаленной точке —
Требуемое звуковое давление в удаленной точке:
Необходимое звуковое давление на расстоянии 1 м от громкоговорителя:

Типовой громкоговоритель мощностью 1 Вт обеспечивает уровень звукового давления примерно 95 дБ, мощностью 2 Вт —
97 дБ, 4 Вт — 101 дБ, 8 Вт — 104 дБ. Следовательно, каждый из двух громкоговорителей должен иметь мощность около 8 Вт.

Пример 2:

Рассчитать мощность громкоговорителя в сосредоточенной системе с направленным громкоговорителем.
Исходные данные:
расстояние от громкоговорителя до удаленной точки L — 80 м,
уровень фонового шума — La — 70 дБ.

Требуемый уровень звука в удаленной точке –

Требуемое звуковое давление в удаленной точке:

Необходимое звуковое давление на расстоянии 1 м от громкоговорителя:

Уровень звукового давления, которое должен развивать громкоговоритель на расстоянии 1 м:

Громкоговоритель типа 50ГРД-3 мощностью 50 Вт имеет уровень звукового давления 118 дБ, т.е. достаточный для озвучивания участка на заданном расстоянии.

РАСЧЕТ МОЩНОСТИ ГРОМКОГОВОРИТЕЛЕЙ ДЛЯ РАСПРЕДЕЛЕННЫХ СИСТЕМ

Расчет мощности громкоговорителей для одинарной и двойной настенной цепочки:

где La — действующий уровень фонового шума в помещении

2) рассчитывается звуковое давление, которое должен развивать громкоговоритель в удаленной точке:

3) определяется

— для одиночной цепочки или цепочки, расположенной в шахматном порядке:

— для двойной цепочки:

где b — ширина помещения, D — расстояние между громкоговорителями в цепочке.

Вместо D можно подставить выражение:


где L — длина помещения, N — количество громкоговорителей вдоль одной стены;

4) определяется уровень звукового давления, которое должен обеспечивать каждый громкоговоритель:

5) по значению L2p выбирается необходимый громкоговоритель или находится его необходимая типовая мощность. При выборе по типовой мощности используется соотношение — 95 дБ/Вт.

Пример 3.

Операционный зал банка:
Длина помещения — 18 м, ширина — 7,5 м, высота — 4,5 м.
Рекомендуется использовать два громкоговорителя — по одному на каждую сторону.
Шаг громкоговорителей: D = 6 м.
По назначению помещения ожидаемый уровень фонового шума — 60-63 дБ;

звуковое давление, которое должен развивать громкоговоритель на расстоянии 1 м:


уровень звукового давления громкоговорителя:

Такой уровень звукового давления соответствует типовым громкоговорителям с мощностью, намного меньшей 0,5 Вт.

Торговый зал магазина:
длина помещения: L-25 м, ширина: b — 18 м, высота: h — 5 м, люди преимущественно стоят — добавочная высота: hd 1,5 м. Рекомендуется двойная настенная цепочка, по три громкоговорителя на каждую сторону, шаг цепочки D — 8 м.
По назначению и площади объекта ориентировочный уровень фонового шума следует ожидать в диапазоне 65-70 дБ;
необходимый уровень звука в помещении:

звуковое давление, которое должны развивать громкоговорители:

звуковое давление, которое должен развивать громкоговоритель на расстоянии 1 м:

уровень звукового давления громкоговорителя:

Такой уровень звукового давления соответствует типовому громкоговорителю мощностью немного меньше 1 Вт,

следовательно, можно использовать громкоговорители по 1 Вт каждый.

РАСЧЕТ МОЩНОСТИ ГРОМКОГОВОРИТЕЛЕЙ ДЛЯ ОДИНОЧНОЙ И ДВОЙНОЙ ПОТОЛОЧНОЙ ЦЕПОЧКИ И ПОТОЛОЧНОЙ РЕШЕТКИ:

1) определяется необходимый уровень звука в помещении:

где — действующий уровень фонового шума в помещении (при уровне фонового шума более 75 дБ — Lmax = La + 7, дБ);

2) рассчитывается звуковое давление, которое должен развивать громкоговоритель в удаленной точке:

3) определяется звуковое давление, которое должен развивать громкоговоритель на расстоянии 1 м:

— для одиночной цепочки, расположенной по средней линии помещения:

— для двойной цепочки:

— для потолочной решетки:

где b — ширина помещения, D — расстояние между громкоговорителями в цепочке;

4) определяется уровень звукового давления, которое должен обеспечивать каждый громкоговоритель:

5) по значению выбирается необходимый громкоговоритель или находится его необходимая типовая мощность. При выборе по типовой мощности используется соотношение 95 дБ/Вт.

Несмотря на кажущуюся сложность, приведенные формулы не представляют значительного труда при расчетах и не требуют специальной математической подготовки. Более того, после нескольких расчетов проектировщик будет определять необходимые характеристики акустических устройств без дополнительных вычислений, интуитивно.

В заключение можно указать причину большинства решений, противоречащих практическому опыту, получаемых в результате специализированных программ по акустике или при использовании вышеприведенных формул. Как правило, она кроется в некорректном задании действующего уровня фонового шума. В ряде справочных и технических изданий приводятся примерные уровни фоновых шумов для помещений различного функционального назначения. Относиться к этим данным следует крайне осторожно, поскольку в разных источниках для одних и тех же помещений они могут отличаться на 5-10 дБ (что дает очень существенный разброс по звуковому давлению), кроме того, необходимо учитывать, что при пожаре из-за возникшей паники или обрушения конструкций требуемый уровень фоновых шумов следует принимать большим, чем для обычных диспетчерских передач.

А. Пинаев к.т.н.,
М. Альшевский с.н.с. НИИ ПБ и ЧС МЧС РБ

Кочнов Олег Владимирович
руководитель учебно-производственного отдела компании ESCORT GROUP

Интенсивные экономические преобразования, происходящие в нашей стране, усовершенствованная и упрочненная нормативная база способствуют возрождению промышленности, росту числа производственных предприятий. Во исполнение федерального закона от 22.07.2008 - ФЗ № 123-ФЗ «Технический регламент о требованиях пожарной безопасности», имеющиеся на промышленных предприятиях производственные помещения с работающими в них людьми должны быть защищены системами противопожарной безопасности. Наиважнейшей частью, обеспечивающей комплексную безопасность зданий и сооружений, являются организационные мероприятия, элементом которых является электроакустический расчет. Цель данной статьи - познакомить читателя с методикой электроакустического расчета (ЭАР), дать его как нормативное, так и фактическое обоснование - очертить специфику расчета в условиях высоких шумов, характерных для промышленных предприятий, продемонстрировать примеры расчета.

При возникновении пожара (или иных чрезвычайных ситуаций), возникающих внутри производственных помещений (или на территории защищаемого предприятия), задействуется (автоматически включается) система оповещения, осуществляющая трансляцию специально разработанных текстов, необходимых для эффективной эвакуации людей в безопасное место.

На промышленных предприятиях используются следующие типы систем оповещения:

■ системы оповещения и управления эвакуацией (СОУЭ), проектируемые на основании ;

■ объектовые (ОСО) и локальные (ЛСО) системы оповещения при чрезвычайных ситуациях, а также системы громкоговорящей связи, проектируемые на основании . Нормативным основанием для проектирования централизованных, локальных и объектовых систем оповещения является федеральный закон № 68-ФЗ «О защите населения и территорий от чрезвычайных ситуаций природного и техногенного характера» от 21.12.1994.

На особо крупных объектах, таких как атомные или гидроэлектростанции, используются командно-поисковые системы (комплексы).

Достоверность передачи аварийного сообщения определяется характеристиками, функциональностью и надежностью технических средств систем оповещения, а вот достоверность восприятия может быть подтверждена только расчетами.

Электроакустический расчет позволяет с достаточно высокой точностью определить уровень звукового давления в так называемой расчетной точке (РТ) - точке (месте) возможного нахождения людей. Такие точки выбираются в местах наиболее критичных с точки зрения как удаления, так и присутствующего в них шума. Зная расстояние между расчетной точкой и звуковым источником, легко определить степень уменьшения звукового давления на расстоянии, однако этого совсем не достаточно. Согласно требованиям нормативной документации необходимо обеспечить условия, при которых полученный уровень попадет в определенные границы.

В специфике промышленных предприятий наиболее важной задачей является определение точного значения уровня шума на рабочих местах. Следует заметить, что измерительные приборы в такого рода задачах могут использоваться лишь как вспомогательные средства в силу постоянно меняющихся условий. Таким образом, условия четкого восприятия могут быть достигнуты решением двух задач - эффективной расстановкой громкоговорителей и защитными акустическими мероприятиями.

Любая из этих систем в качестве конечного исполнительного элемента использует громкоговоритель - устройство, осуществляющее преобразование электрического сигнала на входе в акустический (слышимый) сигнал на выходе. В зависимости от требований к характеру передаваемой (транслируемой) информации, к громкоговорителю предъявляются различные требования. Так, по требованиям, изложенным в , если численность людей, работающих на производственном объекте: в цеху, на складском помещении, в лаборатории и т. д., превышает 100 человек, то для защиты такого объекта применяется СОУЭ 3 типа - речевая система оповещения, осуществляющая трансляцию специально разработанных текстов. В этом случае громкоговоритель должен эффективно работать в диапазоне от 200 Гц до 5 кГц. Под понятием эффективности следует понимать как величину звукового давления (громкости), так и КПД громкоговорителя. Для повышения степени информативности СОУЭ включают и световой способ оповещения.

ОСНОВЫ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Понятие «акустический расчет» (АР) само по себе является достаточно емким. В контексте обеспечения безопасности людей, находящихся внутри производственных помещений, выполняется так называемый электроакустический расчет (ЭАР), в процессе которого:

■ анализируется защищаемое помещение;

■ выбираются расчетные точки (РТ);

■ рассчитывается звуковое давление в РТ;

■ определяются уровни шума (УШ) в РТ, характерные для данного помещения;

■ выявляются дополнительные источники шума;

■ проверяются граничные условия расчета;

■ выбираются параметры громкоговорителей и определяются схемы их расстановки;

■ в случае невыполнения граничных условий разрабатываются организационные мероприятия, повышающие достоверность передачи информации.

Требования, предъявляемые к ЭАР, можно найти в , а методику - в Приложении А, к , однако, следует заметить, что имеющаяся в данном приложении методика для какого-либо серьезного расчета совершенно непригодна.

Название расчета - электроакустический - обусловлено учетом электрических параметров звукового тракта, являющихся входными для акустического расчета. Следует заметить, что требования к расчету, изложенные в , не вполне достаточны, однако, являются необходимыми, поэтому основное внимание в данной статье будет уделено выполнению именно этих требований. Что касается специфики данного расчета, в частности, высоких шумов, будем опираться на СНиП по Шуму , в котором достаточно подробно излагаются как расчетные, так и организационные мероприятия по расчету, учету и борьбе с высокими шумами.

Рассмотрим основные понятия, необходимые для выполнения ЭАР.

ОСНОВНЫЕ ПАРАМЕТРЫ ГРОМКОГОВОРИТЕЛЯ

Согласно нормативной документации, громкоговорители должны воспроизводить звуковой или речевой сигнал в диапазоне: 200 Гц - 5 кГц.

Звуковое давление громкоговорителя измеряется в децибелах (дБ) и определяется как его чувствительностью Р 0 , дБ, так и электрической мощностью, Р вт, Вт, подведенной к его входу:

Р дб = Р о + 10log (Р вт / Р пор), (1)

Р о - чувствительность громкоговорителя, дБ; Р вт - мощность громкоговорителя, Вт; Р пор - пороговая мощность, = 1Вт.

Чувствительность громкоговорителя, дБ - уровень звукового давления, измеренного на рабочей оси громкоговорителя на расстоянии 1 м от рабочего центра на частоте 1 кГц при мощности 1 Вт. Мощность громкоговорителя берется из паспорта, предоставляемого производителем или поставщиком, при этом следует обращать внимание на следующие обстоятельства:

1) Если в паспорте нет никаких специальных ссылок или указаний, то (в большинстве случаев) указывается т. н. RMS мощность, измеренная на 1кГц.

2) На т. н. «градации включения».

Здесь требуется комментарий. Дело в том, что громкоговорители, используемые в системах оповещения, являются трансформаторными. Первичная обмотка трансформатора имеет, как правило, несколько отводов, имеющих различный импеданс и позволяющих работать на различных мощностях, поэтому в формуле (1) необходимо указывать конкретную мощность включения.

Исполнение. Немаловажным параметром громкоговорителей, характерным для производственных помещений, является параметр, называемый «исполнение». Для различных условий эксплуатации (температура, влага, пыль, агрессивные среды) могут использоваться громкоговорители с различными классами исполнения (защиты). При низких температурах используются морозостойкие громкоговорители. При повышенной концентрации влаги и пыли - громкоговорители с различными степенями защиты, определяемые индексом IP:

■ IP-41 - закрытые помещения;

■ IP-54 - уличное исполнение;

■ IP-67 - высокая степень защиты от пыли и влаги. Дополнительные параметры громкоговорителя будут рассмотрены ниже.

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ЭЛЕКТРОАКУСТИЧЕСКОГО РАСЧЕТА

Исходными данными для ЭАР (на производственных предприятиях) являются:

■ план и разрез помещения с расположением технологического и инженерного оборудования с целью выбора расчетных точек;

■ определение уровня шума в расчетных точках;

■ сведения о характеристиках ограждающих конструкций помещения (коэффициенты поглощения);

■ технические характеристики и геометрические размеры источников шума.

Для расчета уровня звукового давления в расчетной точке необходимо рассмотреть два важных понятия:

■ само понятие «расчетная точка» (РТ);

■ понятие «уровень шума» (УШ) в РТ.

РАСЧЕТНАЯ ТОЧКА

Расчетная точка - место возможного (вероятного) нахождения людей наиболее критичное с точки зрения положения и удаления от звукового источника (громкоговорителя). РТ выбирается на расчетной плоскости - (мнимой) плоскости, проведенной параллельно полу на высоте 1,5 м, (1,2 м для сидячих мест) в месте с наихудшими условиями -точке наиболее удаленной от громкоговорителя или в точке с наибольшим УШ.

Согласно НД , РТ выбираются:

■ в зоне прямого звука;

■ в зоне отраженного звука;

■ в середине толпы (месте максимальной концентрации людей).

Данный выбор (способ) не подходит для ЭАР, кроме последнего пункта, и вот почему. Под зоной прямого звука в контексте имеется в виду расстояние, не превышающее двойного размера источника звука. В под источниками звука (шума) подразумеваются машины, турбины, агрегаты и т. д. При использовании в качестве звукового источника даже самого большого громкоговорителя это расстояние не превысит 1 м, что не актуально.

В зоне отраженного звука. Здесь имеется в виду точка, расположенная, во-первых, вблизи отражающей поверхности и, во-вторых, максимально удаленная от источника звука. Выбор РТ вблизи отражающей поверхности объясняется спецификой акустического расчета как расчета именно для шумовых источников, для которых учитывается как энергия прямого звука, так и диффузионная энергия. При удалении от источника шума на расстояние, вдвое превышающее его размеры, начинает резко превалировать влияние диффузионной составляющей, см. далее формулу (7). Электроакустический же расчет, по своей специфике, близок к акустическому расчету, выполняемому для кинотеатров, концертных залов, в которых характерной информацией является музыка или речь. Такие расчеты для обеспечения надлежащей разборчивости выполняются с использованием так называемой геометрически-лучевой теории, позволяющей учитывать отражения и определять уровни прямого звука, приходящего (поступающего) в РТ. Согласно данной теории, известной еще древним грекам, звуковая энергия отождествляется с тонким лучом (света). При попадании на предметы часть звуковой энергии поглощается, а часть отражается под тем же самым углом.

В акустике под прямым звуком подразумевается как прямой звук - звук, распространяющийся напрямую от источника до РТ, так и первичные отражения - звук, поступающий в РТ, отразившись от поверхностей (площадок) не более 1 раза.

УРОВНИ ШУМА

Для выполнения ЭАР необходимо знать точное значение УШ. С определением УШ сопряжен ряд сложностей. Какую именно величину УШ необходимо использовать, на какой частоте его измерять и т. д.

Определить величину УШ можно несколькими способами:

■ непосредственным измерением;

■ из нормативных таблиц ;

■ дополнительными расчетами.

Относительно УШ имеется достаточно серьезная документация в виде , однако, например, проектировщики СОУЭ в своих расчетах на данный (подробный) СНиП не опираются. Отсутствие четких методик ЭАР не дает возможности подметить однозначную взаимосвязь между двумя величинами - необходимым уровнем звукового давления в РТ и УШ, определяемым в этой же точке. Это первое. Второе - в для определения УШ используется достаточно специфичный, непривычный для среднестатистического проектировщика СОУЭ расчетный аппарат, связанный с октавными уровнями, расчетом диффузионной энергии. Такие расчеты, как правило, выполняют специалисты по акустике, в то время как непосредственного требования выполнить ЭАР нет и он выполняется либо по требованию (по техническому заданию) заказчика, либо по желанию проектировщика. Непосредственное измерение УШ сопряжено с рядом сложностей. Во-первых, для такого измерения необходим профессиональный, а главное, поверенный измеритель УШ (шумомер). Во-вторых, измерение необходимо производить не только на различных частотах, но и в различные промежутки (отрезки) времени. Согласно , для производственных предприятий необходимо использовать период рабочей смены. При невозможности выполнить подобные измерения необходимо пользоваться уже имеющимися данными, взятыми из конструкторской документации или из ТЗ заказчика, а в случае их отсутствия необходимо обратиться к Шум-таблицам, например, СП 51.13330.2011. Защита от шума .

СПЕЦИФИКА ОПРЕДЕЛЕНИЯ ОКТАВНЫХ УРОВНЕЙ ШУМА

В указаны уровни для 9-октавных полос от 31,5 Гц до 8 кГц. Согласно пп. 5.1 расчет выполняется для 8-октавных полос от 63 Гц до 8 кГц. Согласно же , частотный диапазон 0,2-5 кГц вмещает лишь 5 полос со среднегеометрическими частотами -0,25/0,5/1/2/4 кГц. Данное расхождение преодолевается требованием выполнять расчет в дБА - уровнях звукового давления, скорректированных по шкале А. Можно показать, что суммарный эффект восприятия, с учетом корректировки по шкале А, 8-октавных (шумовых) полос практически равносилен восприятию 5-октавных полос, что дает нам право в ЭАР в качестве величины УШ использовать эквивалентные уровни непостоянного (прерывистого и колеблющегося во времени) звукового давления /L Аэкв, дБА, приведенные в и в .

УШ, взятые из Шум-таблиц, являются лишь обобщающими, их можно назвать собственными шумами. Так, например, согласно , для помещений с постоянными рабочими местами на производственных предприятиях /L Аэкв = 80 дБА. Однако для каждого конкретного предприятия необходимы дополнительные расчеты, учитывающие дополнительные, привнесенные шумы -шумы, возникающие в результате работы каких-либо источников шума - агрегатов, станков, или шумы, проникающие через окна, двери и т. д.

ПРИМЕРЫ АКУСТИЧЕСКИХ РАСЧЕТОВ, В УСЛОВИЯХ ВЫСОКОГО ШУМА

Рассмотрим пример. На рисунке 1 изображена элементарная ситуация - производственное помещение с двумя РТ и двумя звуковыми источниками: громкоговорителем и источником шума.

На рисунке изображены две расчетные точки РТ 1 и РТ 2 . Предположим, что в РТ 1 - влияние источника шума, изображенного в верхней правой части рисунка, в силу удаления и экранирования звукопоглощающей конструкцией не значительно.

Рис. 1. Пример, демонстрирующий особенности учета уровней шумов

УРОВЕНЬ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ

Рассчитаем уровень звукового давления, дБ, в РТ, формируемого громкоговорителем :

L = P o + 10logР вт - 20log (r 1 - 1), (2)

r 1 - расстояние от источника звука (громкоговорителя) до РТ, м. При r o = 1 м, r > 2 м;

1 - коэффициент, учитывающий, что чувствительность громкоговорителя измерена на расстоянии 1 м.

КРИТЕРИИ РАСЧЕТА

Критерием правильности расчета будет выполнение следующих требований :

Звуковые сигналы СОУЭ должны обеспечивать общий уровень звука (уровень звука постоянного шума вместе со всеми сигналами, производимыми оповещателями) не менее 75 дБА на расстоянии 3 м от оповещателя, но не более 120 дБА в любой точке защищаемого помещения. Звуковые сигналы СОУЭ должны обеспечивать уровень звука не менее, чем на 15 дБА выше допустимого уровня звука постоянного шума в защищаемом помещении.

Данное требование содержит 3 условия:

1. Требование к минимальному уровню. Уровень звукового давления громкоговорителя должно быть не ниже 85 дБ:

Р дб > 85 дБ (3)

В случае невыполнения данного условия необходимо выбрать громкоговоритель с большим звуковым давлением.

2. Требование к максимальному уровню. Уровень звукового давления в РТ должно быть не выше 120 дБ:

(Р дб - 20log (r мин - 1))

r мин - расстояние от громкоговорителя до ближайшего слушателя.

В случае невыполнения данного условия можно уменьшить звуковое давление громкоговорителя или использовать распределенную схему расстановки громкоговорителей.

3. Условие правильности ЭАР:

L > УШ + 15, (5)

УШ - уровень шума в помещении, дБ;

15 - запас звукового давления, согласно , дБ.

В случае невыполнения данного условия можно:

■ выбрать громкоговоритель с большей чувствительностью Р o , дБ;

■ выбрать громкоговоритель с большей мощностью Р вт, Вт;

■ увеличить количество громкоговорителей;

■ изменить схему расстановки громкоговорителей.

УЧЕТ ДОПОЛНИТЕЛЬНОГО ШУМА

В РТ 2 влияние источника шума очевидно. Если уровень шума, создаваемый источником шума, УШ и, дБ в РТ, превосходит УШ, дБ в помещении УШ и УШ необходимо учитывать суммарное воздействие двух шумов УШ сум, дБ:

УШ сум = 10log (10 0,1УШ + 10 0,1УШи), (б)

и затем подставить полученный результат в формулу (5), приравняв УШ = УШ сум.

РАСЧЕТ ЗВУКОВОГО ДАВЛЕНИЯ В РАСЧЕТНОЙ ТОЧКЕ, ФОРМИРУЕМОГО ИСТОЧНИКОМ ШУМА

Из рисунка 1 видно, что источник звука находится на некотором расстоянии, r 3 , м, от РТ. Для расчета УШ и, дБ, воспользуемся результатами, изложенными в :

УШ и =Р ист + 10log (ΧΦ н /Ωr 2 2 + 4Ψ/В ), (7)

P ист - октавный (на частоте 1 кГц) уровень звуковой мощности звукового источника, дБ , берется из спецификаций или технических характеристик на оборудование;

Χ - коэффициент, учитывающий влияние ближнего поля в тех случаях, когда расстояние от источника шума, до РТ, r 3 таблице 2, );

Φ н - фактор направленности источника шума (для источников с равномерным излучением Ф = 1);

Ω - пространственный угол излучения источника, рад. (принимают по таблице 3, );

r 2 - расстояние от громкоговорителя до РТ, м;

Ψ - коэффициент, учитывающий нарушение диффузности звукового поля в помещении, таблица 1;

В - акустическая постоянная помещения, м 2 .

АКУСТИЧЕСКАЯ ПОСТОЯННАЯ ПОМЕЩЕНИЯ

Расчет акустической постоянной помещения В сопряжен с определением основного фонда звукопоглощения или эквивалентной площади звукопоглощения, А, м 2 , формула (3), .

Коэффициент, учитывающий нарушение диффузности звукового поля в помещении, - Ψ зависит от отношения постоянной помещения B к площади ограждающих поверхностей S, таблица 1:

Табл. 1. Коэффициент, учитывающий нарушение диффузности звукового поля помещений (Ψ)

Для приблизительного определения В можно воспользоваться следующей формулой: В = μ * В 1000 ,

В 1000 - постоянная помещения на частоте 1 кГц; μ - частотный множитель, таблица 2.

Табл. 2. Частотный множитель μ

Объем помещения, м 3

Среднегеометрическая частота, кГц

V = 200, 1000

V >> 1000

Постоянная помещения В 1000 для частоты 1 кГц в зависимости от объема помещения V, м 3 , определяется следующим способом:

В 1000 = V/20 - для помещений без мебели с небольшим количеством людей (металлообрабатывающие цеха, машинные залы, испытательные стенды и т. д.);

В 1000 = V/10 - для помещений с жесткой мебелью или с небольшим количеством людей и мягкой мебелью (лаборатории, кабинеты и т. д.);

В 1000 = V/6 - для помещений с большим количеством людей и мягкой мебелью (рабочие помещения административных зданий, жилые комнаты и т. п.);

В 1000 = V/1,5 - для помещений со звукопоглощающей облицовкой потолка и части стен.

Поясним, почему УШ, определяет точность расчетов. Для выбора параметров громкоговорителя или схемы их расстановки используется следующий подход (метод):

1. Выбираем РТ.

2. Определяем УШ в РТ.

3. Определяем ожидаемый уровень звукового давления в РТ.

4. Определяем место установки и расстояние до предполагаемого громкоговорителя.

5. Рассчитываем минимально необходимый уровень звукового давления предполагаемого громкоговорителя.

ДОПОЛНИТЕЛЬНЫЕ ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

При высоких уровнях шумов возникает ситуация, когда использование громкоговорителя становится нерациональным. В этом случае на первый план выступают организационные мероприятия. Так, на основании :

В защищаемых помещениях, где люди находятся в шумо-защитном снаряжении, а также в защищаемых помещениях с уровнем звука шума более 95 дБА звуковые оповещатели должны комбинироваться со световыми оповещателями. Допускается использование световых мигающих оповещателей.

ЭФФЕКТИВНАЯ РАССТАНОВКА ГРОМКОГОВОРИТЕЛЕЙ

Для выполнения полноценного ЭАР одних нормативных требований крайне недостаточно, поэтому приходится вводить дополнительные характеристики. Продемонстрируем некоторые их них :

Ширина диаграммы направленности (ШДН) - угол раскрыва, определяемый из (круговой) диаграммы направленности громкоговорителя, при котором уровень звукового давления уменьшается на 6 дБ относительно рабочей (геометрической) оси громкоговорителя.

Эффективная дальность D, м, звучания громкоговорителя - расстояние от громкоговорителя до точки, звуковое давление r, дБ, в которой превышается УШ на 15 дБ.

Эффективную дальность можно определить как:

D = 10 1/20 (Рдб - УШ -15) + 1, (8) где

Р дб - звуковое давление, развиваемое громкоговорителем на определенной мощности, дБ.

1 - коэффициент, учитывающий, что чувствительность громкоговорителя определяется на 1 метре.

Оперирование приведенными характеристиками (параметрами) позволяет в зависимости от типов громкоговорителей - потолочный, настенный, рупорный - строить различные диаграммы - контуры озвучиваемых площадей. Так, например, для потолочного громкоговорителя эффективной озвучиваемой площадью (контуром) является площадь круга. Для ШДН = 90° радиус такого круга: R = H - 1,5 м, где Н -высота потолков . Для настенных или рупорных громкоговорителей актуальным параметром является эффективная дальность D , м.

ПРИМЕР АКУСТИЧЕСКОГО РАСЧЕТА ДЛЯ СКЛАДСКОГО ПОМЕЩЕНИЯ

На рисунке 2 изображена упрощенная схема складского помещения, для озвучивания которого используются три рупорных громкоговорителя.

Рупорные громкоговорители по сравнению с другими типами имеют ряд преимуществ:

■ класс защиты не ниже IP54 и могут использоваться в неотапливаемых помещениях;

■ высокое звуковое давление, позволяющее работать в условиях высоких шумов;

■ универсальное крепление, позволяющее варьировать результирующей диаграммой направленности. Расстановка громкоговорителей по одной стене (рис. 2),

имеет практическое основание, однако, его необходимо подтвердить расчетами.

ВОЗМОЖНЫЕ АЛГОРИТМЫ РАСЧЕТА

Алгоритм ЭАР (проверки) для РТ 1 может быть следующим:

1. Расчетная точка РТ 1 выбрана правильно - в месте, максимально удаленном от второго громкоговорителя ГР 2 .

2. Удостоверимся, что РТ 1 попадает в область действия диаграммы направленности (ШДН) второго громкоговорителя (ГР 2).

3. Определим УШ в РТ 1 .

4. Рассчитаем уровень звукового давления в РТ 1 , L 1 , дБ, по формуле (2).

5. Проверим выполнение граничных условий (3), (4), (5).

6. В случае выполнения условий (3), (4), (5) расчет для РТ 1 выполнен.

7. В случае невыполнения условий (3), (4), (5) выбирается другой громкоговоритель, меняется схема расстановки громкоговорителей, выполняются дополнительные организационные мероприятия.

Однако, обосновать ЭАР для РТ 1 можно более простым способом:

■ определяем эффективную дальность D , м, для второго громкоговорителя;

■ сравниваем полученное значение D , м, с расстоянием r 1 , м;

■ если D > r 1 , ЭАР для РТ 1 выполнен.

Для РТ 2 алгоритм ЭАР может быть следующим:

1. Расчетная точка РТ 2 выбрана правильно - в месте, наиболее критичном с точки зрения расположения громкоговорителей.

2. Определим УШ в РТ 2 .

3. Удостоверимся, что РТ 2 попадает в область действия диаграмм направленностей второго (ГР 2) или третьего (ГР 3) громкоговорителей.

4. Так как РТ 2 не попадает ни в одну из областей диаграмм, обратимся к геометрическо-лучевой теории.

5. Из рисунка 2 видно, что в РТ 2 попадают 2 луча звуковой энергии, формируемые ГР 2 и ГР 3 и отраженные от второго стеллажа.

Рис. 2. Пример расстановки громкоговорителей для складского помещения

б. Уровень звукового давления L 2 , дБ, в РТ 2 может быть рассчитан следующим способом:

■ рассчитаем уровень звукового давления в точке А, L А, дБ, по формуле (2);

■ рассчитаем уровень звукового давления в точке Б, L Б, дБ, по следующей формуле:

L Б = L А - 20logr 3 + 10log(1 - К погл),

К погл - коэффициент поглощения отражающей поверхности;

■ аналогичным образом рассчитаем уровень звукового давления, формируемый третьим громкоговорителем (ГР 3) в точках В, L B , дБ, и Г, L Г, дБ;

■ рассчитаем уровень звукового давления в РТ 2 , L 2 , дБ: L 2 = 10log (10 0,1LБ + 10 0,1Lг).

ОРГАНИЗАЦИОННЫЕ МЕРОПРИЯТИЯ

Защита от шума строительно-акустическими методами должна обеспечиваться:

■ рациональным с акустической точки зрения решением генерального плана объекта, рациональным архитектурно-планировочным решением зданий;

■ применением ограждающих конструкций зданий с требуемой звукоизоляцией;

■ применением звукопоглощающих конструкций (звукопоглощающих облицовок, кулис, штучных поглотителей);

■ применением звукоизолирующих кабин наблюдения и дистанционного управления;

■ применением звукоизолирующих кожухов на шумных агрегатах;

■ применением акустических экранов;

■ применением глушителей шума в системах вентиляции, кондиционирования воздуха и в аэрогазодинамических установках;

■ виброизоляцией технологического оборудования.

В проектах должны быть предусмотрены мероприятия по защите от шума:

■ в разделе «Технологические решения» (для производственных предприятий)при выборе технологического оборудования следует отдавать предпочтение малошумному оборудованию;

■ размещение технологического оборудования должно осуществляться с учетом снижения шума на рабочих местах, в помещениях и на территориях путем применения рациональных архитектурно-планировочных решений;

■ в разделе «Строительные решения» (для производственных предприятий) на основе акустического расчета ожидаемого шума на рабочих местах должны быть, в случае необходимости, рассчитаны и запроектированы строительно-акустические мероприятия по защите от шума;

■ шумовые характеристики технологического и инженерного оборудования должны содержаться в его технической документации и прилагаться к разделу проекта «Защита от шума»;

■ следует учитывать зависимость шумовых характеристик от режима работы, выполняемой операции, обрабатываемого материала и т. п.;

возможные варианты шумовых характеристик должны быть отражены в технической документации оборудования.

В КАЧЕСТВЕ ЗАКЛЮЧЕНИЯ

Мы рассмотрели только часть вопросов, касающихся акустических расчетов. Отдельного рассмотрения требуют вопросы расстановки громкоговорителей, определения времени реверберации помещения, расчета разборчивости. Приведем некоторые рекомендации, касающиеся повышения общей разборчивости речи .

1. Наибольшее влияние на разборчивость речи оказывают естественные шумы.

2. Существенное влияние на разборчивость речи оказывают реверберационные помехи, снижение которых достигается дополнительными (специальными) мероприятиями.

3. Хорошая разборчивость в реверберирующих помещениях с ограниченным звуковым трактом может быть достигнута при разнице между звуковым давлением в РТ и уровнем шума не меньше 6 дБ.

4. На разборчивость существенное влияние оказывает качество выбираемых громкоговорителей. При неравномерности АЧХ громкоговорителя, приближающейся к 10%, разборчивость ухудшается на 7%.

5. Существенное повышение речевой разборчивости может быть достигнуто увеличением доли прямого звука в суммарной звуковой энергии внутри помещения, за счет:

■ повышения локализации звуковых источников;

■ грамотной расстановки звуковых источников (громкоговорителей), учитывающей их направленности и расположение, при котором РТ-точка не сильно удалена от источника и не находится в тени.

ЛИТЕРАТУРА

1. ФЗ № 123, свод правил СП 3.13130.2009. Требования пожарной безопасности к звуковому и речевому оповещению и управлению эвакуацией людей.

2. ФЗ № 123, свод правил СП 133.13330.2012. (Приложение А. Упрощенный расчет числа громкоговорителей в системах оповещения).

3. Кочнов О. В. Электроакустический расчет, выполняемый при проектировании СОУЭ// Материалы XVнаучно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 8-9 апреля 2015.

4. СП 51.13330.2011. Защита от шума. Актуализированная редакция СНиП 23-03-2003. М., 2011.

5. СНиП 23-03-2003. Защита от шума (Sound protection) от 01-01-2004.

6. Кочнов О. В. Расчет разборчивости речи // Материалы XVIII научно-практической конференции «Интеграция науки и практики как механизм развития современного общества». 28-29 декабря 2015.

В защищаемых помещениях производственных цехов наибольший фоновый уровень звукового давления шума Lоп принят на уровне 60 дБ, в помещениях административных зданий – 45 дБ (согласно СНиП 23-03-2003). Согласно п. 4.2 СП3. 13130.2009, уровень звукового давления от звуковых оповещателей системы оповещения должен превышать уровень фона на 15 дБ, т.е. уровень звукового давления в любой точке LN должен составлять не менее 75 дБ - в помещениях производственных цехов; не менее 60 дБ – в помещениях административных зданий.
Для определения уровня звукового давления в точке, удаленной от источника звука (звуковой оповещатель), применяется следующая зависимость:

Li2 = Li1 - 20 Lg r
где:
Li2 – уровень звукового давления в проверяемой точке, дБ;
Li1 – уровень звукового давления, создаваемого акустическим излучателем на расстоянии 1 м, дБ;
r – расстояние от излучателя до проверяемой точки, м.

Li3 = Li2 - Liр
Li3 = Li1 - 20 Lg r - Liр
где:
Li3 – уровень звукового давления в проверяемой точке с учетом промежуточных перегородок с дверью, дБ;
Liр – затухание сигнала при наличии промежуточных перегородок с дверью, дБ;
Необходимо учитывать промежуточные перегородки с дверью (затухание сигнала Liр около 5 дБ - в помещениях производственных цехов и 10 дБ – в помещениях административных зданий) расположенные между излучателем и проверяемой точкой. Максимальное расстояние от излучателя до проверяемой точки с учетом промежуточной перегородки с дверью (1-ой – в производственных цехах, 2-х – в административных зданиях) составляет около 10 м. В защищаемых помещениях устанавливаются оповещатели охранно-пожарные звуковые типа "ОПОП2-35", с уровнем звукового давления на расстоянии 1м – не менее 100 дБ.

Li3 = 100 - 20 Lg 10 – 5 = 75 дБ (в помещениях производственных цехов)

Li3 = 100 - 20 Lg 10 – 20 = 60 дБ (в помещениях административных зданий)

В точках проверяемых помещений, наиболее удаленных от звуковых оповещателей, уровень звукового давления соответствует требованиям СП3. 13130.2009. В остальных помещениях расстояние от оповещателя до наиболее удаленных точек (с учетом промежуточных перегородок с дверью) меньше величин, использованных в расчетах. Результаты расчетов уровней звукового давления на различных расстояниях от звуковых оповещателей в помещениях производственных цехов и помещениях административных зданий (значение приводится в скобках) приведены в Таблице 2.

Таблица 2.

Номер расчета
Li1, дБ Расстояние r, м Затухание сигнала 20 Lg r, дБ
Lоп, дБ
LN, дБ Уровень
зв. давления
Li2, дБ
1 100 1 0 60(45) 75(60) 100
2 100 2 6,02 60(45) 75(60) 93,98
3 100 4 12,04 60(45) 75(60) 87,96
4 100 6 15,56 60(45) 75(60) 84,44
5 100 7 16,90 60(45) 75(60) 83,10
6 100 8 18,06 60(45) 75(60) 81,4
7 100 10 20 60(45) 75(60) 80
8 100 15 23,52 60(45) 75(60) 76,48
9 100 17 24,61 60(45) 75(60) 75,35

Требование п. 4.2 СП3. 13130.2009 выполняется на расстоянии не более 10 м от излучателя звукового оповещателя, с учетом промежуточных перегородок с дверью в помещениях производственных цехов (одна перегородка) и административных зданий (две перегородки) соответственно.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо