Прямой поперечный изгиб сопромат. Поперечный изгиб

Плоский поперечный изгиб балок. Внутренние усилия при изгибе. Дифференциальные зависимости внутренних усилий. Правила проверки эпюр внутренних усилий при изгибе. Нормальные и касательные напряжения при изгибе. Расчет на прочность по нормальным и касательным напряжениям.

10. ПРОСТЫЕ ВИДЫ СОПРОТИВЛЕНИЯ. ПЛОСКИЙ ИЗГИБ

10.1. Общие понятия и определения

Изгиб – это такой вид нагружения, при котором стержень загружен моментами в плоскостях, проходящих через продольную ось стержня.

Стержень, работающий на изгиб, называется балкой (или брусом). В дальнейшем будем рассматривать прямолинейные балки, поперечное сечение которых имеет хотя бы одну ось симметрии.

В сопротивлении материалов различают изгиб плоский, косой и сложный.

Плоский изгиб – изгиб, при котором все усилия, изгибающие балку, лежат в одной из плоскостей симметрии балки (в одной из главных плоскостей).

Главными плоскостями инерции балки называют плоскости, проходящие через главные оси поперечных сечений и геометрическую ось балки (ось x ).

Косой изгиб – изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб – изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

10.2. Определение внутренних усилий при изгибе

Рассмотрим два характерных случая изгиба: в первом – консольная балка изгибается сосредоточенным моментом M o ; во втором – сосредоточенной силой F .

Используя метод мысленных сечений и составляя уравнения равновесия для отсеченных частей балки, определим внутренние усилия в том и другом случае:

Остальные уравнения равновесия, очевидно, тождественно равны нулю.

Таким образом, в общем случае плоского изгиба в сечении балки из шести внутренних усилий возникает два – изгибающий момент М z и поперечная сила Q y (или при изгибе относительно другой главной оси – изгибающий момент М y и поперечная сила Q z ).

При этом, в соответствии с двумя рассмотренными случаями нагружения, плоский изгиб можно подразделить на чистый и поперечный.

Чистый изгиб – плоский изгиб, при котором в сечениях стержня из шести внутренних усилий возникает только одно – изгибающий момент (см. первый случай).

Поперечный изгиб – изгиб, при котором в сечениях стержня кроме внутреннего изгибающего момента возникает и поперечная сила (см. второй случай).

Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

При определении внутренних усилий будем придерживаться следующего правила знаков:

1) поперечная сила Q y считается положительной, если она стремится повернуть рассматриваемый элемент балки по часовой стрелке;

2) изгибающий момент М z считается положительным, если при изгибе элемента балки верхние волокна элемента оказываются сжатыми, а нижние – растянутыми (правило зонта).

Таким образом, решение задачи по определению внутренних усилий при изгибе будем выстраивать по следующему плану: 1) на первом этапе, рассматривая условия равновесия конструкции в целом, определяем, если это необходимо, неизвестные реакции опор (отметим, что для консольной балки реакции в заделке можно и не находить, если рассматривать балку со свободного конца); 2) на втором этапе выделяем характерные участки балки, принимая за границы участков точки приложения сил, точки изменения формы или размеров балки, точки закрепления балки; 3) на третьем этапе определяем внутренние усилия в сечениях балки, рассматривая условия равновесия элементов балки на каждом из участков.

10.3. Дифференциальные зависимости при изгибе

Установим некоторые взаимосвязи между внутренними усилиями и внешними нагрузками при изгибе, а также характерные особенности эпюр Q и M , знание которых облегчит построение эпюр и позволит контролировать их правильность. Для удобства записи будем обозначать: M ≡ M z , Q ≡ Q y .

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx . Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Q и M в общем случае меняются вдоль оси балки, то в сечениях элемента dx будут возникать поперечные силы Q и Q +dQ , а также изгибающие моменты M и M +dM . Из условия равновесия выделенного элемента получим

∑ F y = 0 Q + q dx − (Q + dQ) = 0;

∑ M 0 = 0 M + Q dx + q dx dx 2 − (M + dM ) = 0.

Из второго уравнения, пренебрегая слагаемым q ·dx ·(dx /2) как бесконечно малой величиной второго порядка, найдем

Соотношения (10.1), (10.2) и (10.3) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ приведенных выше дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил:

а – на участках, где нет распределенной нагрузки q , эпюры Q ограничены прямыми, параллельными базе, а эпюры M – наклонными прямыми;

б – на участках, где к балке приложена распределенная нагрузка q , эпюры Q ограничены наклонными прямыми, а эпюры M – квадратичными параболами. При этом, если эпюру М строим «на растянутом волокне», то выпуклость па-

раболы будет направлена по направлению действия q , а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию;

в – в сечениях, где к балке прикладывается сосредоточенная сила на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М – перегибы, острием направленные в направлении действия этой силы; г – в сечениях, где к балке прикладывается сосредоточенный момент на эпю-

ре Q изменений не будет, а на эпюре М – скачки на величину этого момента; д – на участках, где Q >0, момент М возрастает, а на участках, где Q <0, момент М убывает (см. рисунки а–г).

10.4. Нормальные напряжения при чистом изгибе прямого бруса

Рассмотрим случай чистого плоского изгиба балки и выведем формулу для определения нормальных напряжений для данного случая. Отметим, что в теории упругости можно получить точную зависимость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

а – гипотеза плоских сечений (гипотеза Бернулли)

– сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой – сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

б – гипотеза о постоянстве нормальных напряже-

ний – напряжения, действующие на одинаковом расстоянии y от нейтральной оси, постоянны по ширине бруса;

в – гипотеза об отсутствии боковых давлений – со-

седние продольные волокна не давят друг на друга.

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Задача. Построить эпюры Q и M для статически неопределимой балки. Вычислим балки по формуле:

n = ΣR - Ш — 3 = 4 — 0 — 3 = 1

Балка один раз статически неопределима, значит одна из реакций является «лишней» неизвестной . За «лишнюю» неизвестную примем реакцию опоры В R В .

Статически определимая балка, которая получается из заданной путем удаления «лишней» связи называется основной системой (б).

Теперь эту систему следует представить эквивалентной заданной. Для этого загружаем основную систему заданной нагрузкой, а в точке В приложим «лишнюю» реакцию R В (рис.в ).

Однако для эквивалентности этого недостаточно , поскольку в такой балке точка В может перемещаться по вертикали , а в заданной балке (рис.а ) такого произойти не может. Поэтому добавляем условие , что прогиб т. В в основной системе должен быть равен 0 . Прогиб т. В складывается из прогиба от действующей нагрузки Δ F и от прогиба от «лишней» реакции Δ R .

Тогда составляем условие совместности перемещений :

Δ F + Δ R =0 (1)

Теперь остается вычислить эти перемещения (прогибы ).

Загружаем основную систему заданной нагрузкой (рис.г) и построим грузовую эпюру М F (рис. д ).

В т.В приложим и построим эп. (рис.е,ж ).

По формуле Симпсона определим прогиб от действующей нагрузки .

Теперь определим прогиб от действия «лишней» реакции R В , для этого загружаем основную систему R В (рис.з ) и строим эпюру моментов от ее действия М R (рис. и ).

Составляем и решаем уравнение (1) :

Построим эп. Q и М (рис. к,л ).

Строим эпюру Q.

Построим эпюру М методом характерных точек . Расставляем точки на балке — это точки начала и конца балки (D,A ), сосредоточенного момента (B ), а также отметим в качестве характерной точки середину равномерно распределенной нагрузки (K ) — это дополнительная точка для построения параболической кривой.

Определяем изгибающие моменты в точках. Правило знаков см. — .

Момент в т. В будем определять следующим образом. Сначала определим:

Точку К возьмем в середине участка с равномерно распределенной нагрузкой.

Строим эпюру M . Участок АВ параболическая кривая (правило «зонтика»), участок ВD прямая наклонная линия .

Для балки определить опорные реакции и построить эпюры изгибающих моментов (М ) и поперечных сил (Q ).

  1. Обозначаем опоры буквами А и В и направляем опорные реакции R А и R В .

Составляем уравнения равновесия .

Проверка

Записываем значения R А и R В на расчетную схему .

2. Построение эпюры поперечных сил методом сечений . Сечения расставляем на характерных участках (между изменениями). По размерной нитке – 4 участка, 4 сечения .

сеч. 1-1 ход слева .

Сечение проходит по участку с равномерно распределенной нагрузкой , отмечаем размер z 1 влево от сечения до начала участка . Длина участка 2 м. Правило знаков для Q — см.

Строим по найденным значением эпюру Q .

сеч. 2-2 ход справа .

Сечение вновь проходит по участку равномерно распределенной нагрузкой, отмечаем размер z 2 вправо от сечения до начала участка. Длина участка 6 м.

Строим эпюру Q .

сеч. 3-3 ход справа .

сеч. 4-4 ход справа.

Строим эпюру Q .

3. Построение эпюры М методом характерных точек .

Характерная точка – точка, сколь-либо заметная на балке. Это точки А , В , С , D , а также точка К , в которой Q =0 и изгибающий момент имеет экстремум . Также в середине консоли поставим дополнительную точку Е , поскольку на этом участке под равномерно распределенной нагрузкой эпюра М описывается кривой линией, а она строится, как минимум, по 3 точкам.

Итак, точки расставлены, приступаем к определению в них значений изгибающих моментов . Правило знаков — см. .

Участки NA, AD параболическая кривая (правило «зонтика» у механических специальностей или «правило паруса» у строительных), участки DС, СВ прямые наклонные линии.

Момент в точке D следует определять как слева, так и справа от точки D . Сам момент в эти выражения не входит . В точке D получим два значения с разницей на величину m скачок на его величину.

Теперь следует определить момент в точке К (Q =0). Однако сначала определим положение точки К , обозначив расстояние от нее до начала участка неизвестным х .

Т. К принадлежит второму характерному участку, его уравнение для поперечной силы (см. выше)

Но поперечная сила в т. К равна 0 , а z 2 равняется неизвестному х .

Получаем уравнение:

Теперь, зная х , определим момент в точке К с правой стороны.

Строим эпюру М . Построение выполним для механических специальностей, откладывая положительные значения вверх от нулевой линии и используя правило «зонтика».

Для заданной схемы консольной балки требуется построить эпюры поперечной силы Q и изгибающего момента M, выполнить проектировочный расчет, подобрав круглое сечение.

Материал — дерево, расчетное сопротивление материала R=10МПа, М=14кН·м,q=8кН/м

Строить эпюры в консольной балке с жесткой заделкой можно двумя способами — обычным, предварительно определив опорные реакции, и без определения опорных реакций, если рассматривать участки, идя от свободного конца балки и отбрасывая левую часть с заделкой. Построим эпюры обычным способом.

1. Определим опорные реакции .

Равномерно распределенную нагрузку q заменим условной силой Q= q·0,84=6,72 кН

В жесткой заделке три опорные реакции — вертикальная, горизонтальная и момент, в нашем случае горизонтальная реакция равна 0.

Найдем вертикальную реакцию опоры R A и опорный момент М A из уравнений равновесия.

На первых двух участках справа поперечная сила отсутствует. В начале участка с равномерно распределенной нагрузкой (справа) Q=0 , в заделеке — величине реакции R A.
3. Для построения составим выражения для их определения на участках. Эпюру моментов построим на волокнах, т.е. вниз.

(эпюра единичных моментов уже была построена ранее)

Решаем уравнение (1), сокращаем на EI

Статическая неопределимость раскрыта , значение «лишней» реакции найдено. Можно приступать к построению эпюр Q и M для статически неопределимой балки... Зарисовываем заданную схему балки и указываем величину реакции R b . В данной балке реакции в заделке можно не определять, если идти ходом справа.

Построение эпюры Q для статически неопределимой балки

Строим эпюру Q.

Построение эпюры М

Определим М в точке экстремума – в точке К . Сначала определим её положение. Обозначим расстояние до неё как неизвестное «х ». Тогда

Строим эпюру М.

Определение касательных напряжений в двутавровом сечении . Рассмотрим сечение двутавра. S x =96,9 см 3 ; Yх=2030 см 4 ; Q=200 кН

Для определения касательного напряжения применяется формула ,где Q — поперечная сила в сечении, S x 0 – статический момент части поперечного сечения, расположенной по одну сторону от слоя, в котором определяются касательные напряжения, I x – момент инерции всего поперечного сечения, b – ширина сечения в том месте, где определяется касательное напряжение

Вычислим максимальное касательное напряжение:

Вычислим статический момент для верхней полки:

Теперь вычислим касательные напряжения:

Строим эпюру касательных напряжений:

Проектный и проверочный расчеты. Для балки с построенными эпюрами внутренних усилий подобрать сечение в виде двух швеллеров из условия прочности по нормальным напряжениям. Проверить прочность балки, используя условие прочности по касательным напряжениям и энергетический критерий прочности. Дано:

Покажем балку с построенными эпюрами Q и М

Согласно эпюре изгибающих моментов опасным является сечение С, в котором М С =М max =48,3кНм.

Условие прочности по нормальным напряжениям для данной балки имеет вид σ max =M C /W X ≤σ adm . Требуется подобрать сечение из двух швеллеров.

Определим необходимое расчетное значение осевого момента сопротивления сечения:

Для сечения в виде двух швеллеров согласно принимаем два швеллера №20а , момент инерции каждого швеллера I x =1670см 4 , тогда осевой момент сопротивления всего сечения:

Перенапряжение (недонапряжение) в опасных точках посчитаем по формуле: Тогда получим недонапряжение :

Теперь проверим прочность балки, исходя из условия прочности по касательным напряжениям. Согласно эпюре поперечных сил опасными являются сечения на участке ВС и сечение D. Как видно из эпюры, Q max =48,9 кН.

Условие прочности по касательным напряжениям имеет вид:

Для швеллера №20 а: статический момент площади S x 1 =95,9 см 3 , момент инерции сечения I x 1 =1670 см 4 , толщина стенки d 1 =5,2 мм, средняя толщина полки t 1 =9,7 мм, высота швеллера h 1 =20 см, ширина полки b 1 =8 см.

Для поперечного сечения из двух швеллеров:

S x = 2S x 1 =2·95,9=191,8 см 3 ,

I x =2I x 1 =2·1670=3340 см 4 ,

b=2d 1 =2·0,52=1,04 см.

Определяем значение максимального касательного напряжения:

τ max =48,9·10 3 ·191,8·10 −6 /3340·10 −8 ·1,04·10 −2 =27МПа.

Как видно, τ max <τ adm (27МПа<75МПа).

Следовательно, условие прочности выполняется.

Проверяем прочность балки по энергетическому критерию .

Из рассмотрения эпюр Q и М следует, что опасным является сечение С, в котором действуют M C =M max =48,3 кНм и Q C =Q max =48,9 кН.

Проведем анализ напряженного состояния в точках сечения С

Определим нормальные и касательные напряжения на нескольких уровнях (отмечены на схеме сечения)

Уровень 1-1: y 1-1 =h 1 /2=20/2=10см.

Нормальные и касательные напряжения:

Главные напряжения:

Уровень 2−2: y 2-2 =h 1 /2−t 1 =20/2−0,97=9,03см.


Главные напряжения:


Уровень 3−3: y 3-3 =h 1 /2−t 1 =20/2−0,97=9,03см.

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 4−4: y 4-4 =0.

(в середине нормальные напряжения равны нулю, касательные максимальны, их находили в проверке прочности по касательным напряжениям)

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 5−5:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 6−6:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

Уровень 7−7:

Нормальные и касательные напряжения:

Главные напряжения:

Экстремальные касательные напряжения:

В соответствии с выполненными расчетами эпюры напряжений σ, τ, σ 1 , σ 3 , τ max и τ min представлены на рис.

Анализ этих эпюр показывает , что в сечении балки опасными являются точки на уровне 3-3 (или 5-5 ), в которых:

Используя энергетический критерий прочности, получим

Из сравнения эквивалентного и допускаемого напряжений следует, что условие прочности также выполняется

(135,3 МПа<150 МПа).

Неразрезная балка нагружена во всех пролетах. Построить эпюры Q и M для неразрезной балки.

1. Определяем степень статической неопределимости балки по формуле:

n= Соп -3= 5-3 =2, где Соп – число неизвестных реакций, 3 – число уравнений статики . Для решения данной балки требуется два дополнительных уравнения.

2. Обозначим номера опор с нулевой по порядку (0,1,2,3 )

3. Обозначим номера пролетов с первого по порядку (ι 1, ι 2, ι 3 )

4. Каждый пролет рассматриваем как простую балку и строим для каждой простой балки эпюры Q и M. То, что относится к простой балке , будем обозначать с индексом «0 », то, что относится к неразрезной балке, будем обозначать без этого индекса. Таким образом, — это поперечная сила и изгибающий момент для простой балки.

Для наглядного представления характера деформации брусьев (стержней) при изгибе проводится следующий опыт. На боковые грани резинового бруса прямоугольного сечения наносится сетка линий, параллельных и перпендикулярных оси бруса (рис. 30.7, а). Затем к брусу по его концам прикладываются моменты (рис. 30.7, б), действующие в плоскости симметрии бруса, пересекающей каждое его поперечное сечение по одной из главных центральных осей инерции. Плоскость, проходящая через ось бруса и одну из главных центральных осей инерции каждого его поперечного сечения, будем называть главной плоскостью.

Под действием моментов брус испытывает прямой чистый изгиб. В результате деформации, как показывает опыт, линии сетки, параллельные оси бруса, искривляются, сохраняя между собой прежние расстояния. При указанном на рис. 30.7, б направлении моментов эти линии в верхний части бруса удлиняются, а в нижней - укорачиваются.

Каждую линию сетки, перпендикулярную к оси бруса, можно рассматривать как след плоскости некоторого поперечного сечения бруса. Так как эти линии остаются прямыми, то можно предполагать, что поперечные сечения бруса, плоские до деформации, остаются плоскими и в процессе деформации.

Это предположение, основанное на опыте, как известно, носит название гипотезы плоских сечений, или гипотезы Бернулли (см. § 6.1).

Гипотеза плоских сечений применяется не только при чистом, но и при поперечном изгибе. Для поперечного изгиба она является приближенной, а для чистого изгиба строгой, что подтверждается теоретическими исследованиями, проведенными методами теории упругости.

Рассмотрим теперь прямой брус с поперечным сечением, симметричным относительно вертикальной оси, заделанный правым концом и нагруженный на левом конце внешним моментом действующим в одной из главных плоскостей бруса (рис. 31.7). В каждом поперечном сечении этого бруса возникают только изгибающие моменты действующие в той же плоскости, что и момент

Таким образом, брус на всем своем протяжении находится в состоянии прямого чистого изгиба. В состоянии чистого изгиба могут находиться отдельные участки балки и в случае действия на нее поперечных нагрузок; например, чистый изгиб испытывает участок 11 балки, изображенной на рис. 32.7; в сечениях этого участка поперечная сила

Выделим из рассматриваемого бруса (см. рис. 31.7) двумя поперечными сечениями элемент длиной . В результате деформации, как это следует из гипотезы Бернулли, сечения останутся плоскими, но наклонятся по отношению друг к другу на некоторый угол Примем левое сечение условно за неподвижное. Тогда в результате поворота правого сечения на угол оно займет положение (рис. 33.7).

Прямые пересекутся в некоторой точке А, которая является центром кривизны (или, точнее, следом оси кривизны) продольных волокон элемента Верхние волокна рассматриваемого элемента при показанном на рис. 31.7 направлении момента удлиняются, а нижние укорачиваются. Волокна же некоторого промежуточного слоя перпендикулярного к плоскости действия момента сохраняют свою длину. Этот слой называется нейтральным слоем.

Обозначим радиус кривизны нейтрального слоя, т. е. расстояние от этого слоя до центра кривизны А (см. рис. 33.7). Рассмотрим некоторый слой расположенный на расстоянии у от нейтрального слоя. Абсолютное удлинение волокон этого слоя равно а относительное

Рассматривая подобные треугольники устанавливаем, что Следовательно,

В теории изгиба предполагается, что продольные волокна бруса не давят друг на друга. Экспериментальные и теоретические исследования показывают, что это предположение не влияет существенно на результаты расчета.

При чистом изгибе в поперечных сечениях бруса не возникают касательные напряжения. Таким образом, все волокна при чистом изгибе находятся в условиях одноосного растяжения или сжатия.

По закону Гука для случая одноосного растяжения или сжатия нормальное напряжение о и соответствующая относительная деформация связаны зависимостью

или на основании формулы (11.7)

Из формулы (12.7) следует, что нормальные напряжения в продольных волокнах бруса прямо пропорциональны их расстояниям у от нейтрального слоя. Следовательно, в поперечном сечении бруса в каждой его точке нормальные напряжения пропорциональны расстоянию у от этой точки до нейтральной оси, представляющей собой линию пересечения нейтрального слоя с поперечным сечением (рис.

34.7, а). Из симметрии бруса и нагрузки следует, что нейтральная ось горизонтальна.

В точках нейтральной оси нормальные напряжения равны нулю; по одну сторону от нейтральной оси они растягивающие, а по другую - сжимающие.

Эпюра напряжений о представляет собой график, ограниченный прямой линией, с наибольшими по абсолютной величине значениями напряжений для точек, наиболее удаленных от нейтральной оси (рис. 34.7,б).

Рассмотрим теперь условия равновесия выделенного элемента бруса. Действие левой части бруса на сечение элемента (см. рис. 31.7) представим в виде изгибающего момента остальные внутренние усилия в этом сечении при чистом изгибе равны нулю. Действие правой части бруса на сечение элемента представим в виде элементарных сил о приложенных к каждой элементарной площадке поперечного сечения (рис. 35.7) и параллельных оси бруса.

Составим шесть условий равновесия элемента

Здесь - суммы проекций всех сил, действующих на элемент соответственно на оси - суммы моментов всех сил относительно осей (рис. 35.7).

Ось совпадает с нейтральной осью сечения а ось у перпендикулярна к ней; обе эти оси расположены в плоскости поперечного сечения

Элементарная сила не дает проекций на оси у и и не вызывает момента относительно оси Поэтому уравнения равновесия удовлетворяются при любых значениях о.

Уравнение равновесия имеет вид

Подставим в уравнение (13.7) значение а по формуле (12.7):

Так как (рассматривается изогнутый элемент бруса, для которого ), то

Интеграл представляет собой статический момент поперечного сечения бруса относительно нейтральной оси . Равенство его нулю означает, что нейтральная ось (т. е. ось ) проходит через центр тяжести поперечного сечения. Таким образом, центр тяжести всех поперечных сечений бруса, а следовательно, и ось бруса, являющаяся геометрическим местом центров тяжести, расположены в нейтральном слое. Следовательно, радиус кривизны нейтрального слоя является радиусом кривизны изогнутой оси бруса.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно нейтральной оси :

Здесь представляет собой момент элементарной внутренней силы относительно оси .

Обозначим площадь части поперечного сечения бруса, расположенной над нейтральной осью, - под нейтральной осью.

Тогда представит собой равнодействующую элементарных сил приложенных выше нейтральной оси, ниже нейтральной оси (рис. 36.7).

Обе эти равнодействующие равны друг другу по абсолютной величине, так как их алгебраическая сумма на основании условия (13.7) равна нулю. Эти равнодействующие образуют внутреннюю пару сил, действующую в поперечном сечении бруса. Момент этой пары сил, равный т. е. произведению величины одной из них на расстояние между ними (рис. 36.7), представляет собой изгибающий момент в поперечном сечении бруса.

Подставим в уравнение (15.7) значение а по формуле (12.7):

Здесь представляет собой осевой момент инерции , т. е. оси, проходящей через центр тяжести сечения. Следовательно,

Подставим значение из формулы (16.7) в формулу (12.7):

При выводе формулы (17.7) не учтено, что при внешнем моменте направленном, как это показано на рис. 31.7, согласно принятому правилу знаков, изгибающий момент является отрицательным. Если учесть это, то перед правой частью формулы (17.7) необходимо поставить знак «минус». Тогда при положительном изгибающем моменте в верхней зоне бруса (т. е. при ) значения а получатся отрицательными, что укажет на наличие в этой зоне сжимающих напряжений. Однако обычно знак «минус» в правой части формулы (17.7) не ставится, а эта, формула используется лишь для определения абсолютных значений напряжений а. Поэтому в формулу (17.7) следует подставлять абсолютные значения изгибающего момента и ординаты у. Знак же напряжений всегда легко устанавливается по знаку момента или по характеру деформации балки.

Составим теперь уравнение равновесия в виде суммы моментов всех сил, приложенных к элементу бруса, относительно оси у:

Здесь представляет собой момент элементарной внутренней силы относительно оси у (см. рис. 35.7).

Подставим в выражение (18.7) значение а по формуле (12.7):

Здесь интеграл представляет собой центробежный момент инерции поперечного сечения бруса относительно осей у и . Следовательно,

Но так как

Как известно (см. § 7.5), центробежный момент инерции сечения равен нулю относительно главных осей инерции.

В рассматриваемом случае ось у является осью симметрии поперечного сечения бруса и, следовательно, оси у и являются главными центральными осями инерции этого сечения. Поэтому условие (19.7) здесь удовлетворяется.

В случае, когда поперечное сечение изгибаемого бруса не имеет ни одной оси симметрии, условие (19.7) удовлетворяется, если плоскость действия изгибающего момента проходит через одну из главных центральных осей инерции сечения или параллельна этой оси.

Если плоскость действия изгибающего момента не проходит ни через одну из главных центральных осей инерции поперечного сечения бруса и не параллельна ей, то условие (19.7) не удовлетворяется и, следовательно, нет прямого изгиба - брус испытывает косой изгиб.

Формула (17.7), определяющая нормальное напряжение в произвольной точке рассматриваемого сечения бруса, применима при условии, что плоскость действия изгибающего момента проходит через одну из главных осей инерции этого сечения или ей параллельна. При этом нейтральная ось поперечного сечения является его главной центральной осью инерции, перпендикулярной к плоскости действия изгибающего момента.

Формула (16.7) показывает, что при прямом чистом изгибе кривизна изогнутой оси бруса прямо пропорциональна произведению модуля упругости Е на момент инерции Произведение будем называть жесткостью сечения при изгибе; она выражается в и т. д.

При чистом изгибе балки постоянного сечения изгибающие моменты и жесткости сечений постоянны по ее длине. В этом случае радиус кривизны изогнутой оси балки имеет постоянное значение [см. выражение (16.7)], т. е. балка изгибается по дуге окружности.

Из формулы (17.7) следует, что наибольшие (положительные - растягивающие) и наименьшие (отрицательные-сжимающие) нормальные напряжения в поперечном сечении бруса возникают в точках, наиболее удаленных от нейтральной оси, расположенных по обе стороны от нее. При поперечном сечении, симметричном относительно нейтральной оси, абсолютные величины наибольших растягивающих и сжимающих напряжений одинаковы и их можно определить по формуле

Для сечений, не симметричных относительно нейтральной оси, например для треугольника, тавра и т. п., расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон различны; поэтому для таких сечений имеются два момента сопротивления:

где - расстояния от нейтральной оси до наиболее удаленных растянутых и сжатых волокон.


10.1. Общие понятия и определения

Изгиб – это такой вид нагружения, при котором стержень загружен моментами в плоскостях, проходящих через продольную ось стержня.

Стержень, работающий на изгиб, называется балкой (или брусом). В дальнейшем будем рассматривать прямолинейные балки, поперечное сечение которых имеет хотя бы одну ось симметрии.

В сопротивлении материалов различают изгиб плоский, косой и сложный.

Плоский изгиб – изгиб, при котором все усилия, изгибающие балку, лежат в одной из плоскостей симметрии балки (в одной из главных плоскостей).

Главными плоскоcтями инерции балки называют плоскости, проходящие через главные оси поперечных сечений и геометрическую ось балки (ось x).

Косой изгиб – изгиб, при котором нагрузки действуют в одной плоскости, не совпадающей с главными плоскостями инерции.

Сложный изгиб – изгиб, при котором нагрузки действуют в различных (произвольных) плоскостях.

10.2. Определение внутренних усилий при изгибе

Рассмотрим два характерных случая изгиба: в первом – консольная балка изгибается сосредоточенным моментом Mo; во втором – сосредоточенной силой F.

Используя метод мысленных сечений и составляя уравнения равновесия для отсеченных частей балки, определим внутренние усилия в том и другом случае:

Остальные уравнения равновесия, очевидно, тождественно равны нулю.

Таким образом, в общем случае плоского изгиба в сечении балки из шести внутренних усилий возникает два – изгибающий момент Мz и поперечная сила Qy (или при изгибе относительно другой главной оси – изгибающий момент Мy и поперечная сила Qz).

При этом, в соответствии с двумя рассмотренными случаями нагружения, плоский изгиб можно подразделить на чистый и поперечный.

Чистый изгиб – плоский изгиб, при котором в сечениях стержня из шести внутренних усилий возникает только одно – изгибающий момент (см. первый случай).

Поперечный изгиб – изгиб, при котором в сечениях стержня кроме внутреннего изгибающего момента возникает и поперечная сила (см. второй случай).

Строго говоря, к простым видам сопротивления относится лишь чистый изгиб; поперечный изгиб относят к простым видам сопротивления условно, так как в большинстве случаев (для достаточно длинных балок) действием поперечной силы при расчетах на прочность можно пренебречь.

При определении внутренних усилий будем придерживаться следующего правила знаков:

1) поперечная сила Qy считается положительной, если она стремится повернуть рассматриваемый элемент балки по часовой стрелке;



2) изгибающий момент Мz считается положительным, если при изгибе элемента балки верхние волокна элемента оказываются сжатыми, а нижние – растянутыми (правило зонта).

Таким образом, решение задачи по определению внутренних усилий при изгибе будем выстраивать по следующему плану: 1) на первом этапе, рассматривая условия равновесия конструкции в целом, определяем, если это необходимо, неизвестные реакции опор (отметим, что для консольной балки реакции в заделке можно и не находить, если рассматривать балку со свободного конца); 2) на втором этапе выделяем характерные участки балки, принимая за границы участков точки приложения сил, точки изменения формы или размеров балки, точки закрепления балки; 3) на третьем этапе определяем внутренние усилия в сечениях балки, рассматривая условия равновесия элементов балки на каждом из участков.

10.3. Дифференциальные зависимости при изгибе

Установим некоторые взаимосвязи между внутренними усилиями и внешними нагрузками при изгибе, а также характерные особенности эпюр Q и M, знание которых облегчит построение эпюр и позволит контролировать их правильность. Для удобства записи будем обозначать: M≡Mz, Q≡Qy.

Выделим на участке балки с произвольной нагрузкой в месте, где нет сосредоточенных сил и моментов, малый элемент dx. Так как вся балка находится в равновесии, то и элемент dx будет находиться в равновесии под действием приложенных к нему поперечных сил, изгибающих моментов и внешней нагрузки. Поскольку Q и M в общем случае меняются вдоль

оси балки, то в сечениях элемента dx будут возникать поперечные силы Q и Q+dQ, а также изгибающие моменты M и M+dM. Из условия равновесия выделенного элемента получим

Первое из двух записанных уравнений дает условие

Из второго уравнения, пренебрегая слагаемым q·dx·(dx/2) как бесконечно малой величиной второго порядка, найдем

Рассматривая выражения (10.1) и (10.2) совместно можем получить

Соотношения (10.1), (10.2) и (10.3) называют дифференциальными зависимостями Д. И. Журавского при изгибе.

Анализ приведенных выше дифференциальных зависимостей при изгибе позволяет установить некоторые особенности (правила) построения эпюр изгибающих моментов и поперечных сил: а – на участках, где нет распределенной нагрузки q, эпюры Q ограничены прямыми, параллельными базе, а эпюры M – наклонными прямыми; б – на участках, где к балке приложена распределенная нагрузка q, эпюры Q ограничены наклонными прямыми, а эпюры M – квадратичными параболами.

При этом, если эпюру М строим «на растянутом волокне», то выпуклость параболы будет направлена по направлению действия q, а экстремум будет расположен в сечении, где эпюра Q пересекает базовую линию; в – в сечениях, где к балке прикладывается сосредоточенная сила на эпюре Q будут скачки на величину и в направлении данной силы, а на эпюре М – перегибы, острием направленные в направлении действия этой силы; г – в сечениях, где к балке прикладывается сосредоточенный момент на эпюре Q изменений не будет, а на эпюре М – скачки на величину этого момента; д – на участках, где Q>0, момент М возрастает, а на участках, где Q<0, момент М убывает (см. рисунки а–г).

10.4. Нормальные напряжения при чистом изгибе прямого бруса

Рассмотрим случай чистого плоского изгиба балки и выведем формулу для определения нормальных напряжений для данного случая.

Отметим, что в теории упругости можно получить точную зависи-мость для нормальных напряжений при чистом изгибе, если же решать эту задачу методами сопротивления материалов необходимо ввести некоторые допущения.

Таких гипотез при изгибе три:

а – гипотеза плоских сечений (гипотеза Бернулли) – сечения плоские до деформации остаются плоскими и после деформации, а лишь поворачиваются относительно некоторой линии, которая называется нейтральной осью сечения балки. При этом волокна балки, лежащие с одной стороны от нейтральной оси будут растягиваться, а с другой – сжиматься; волокна, лежащие на нейтральной оси своей длины не изменяют;

б – гипотеза о постоянстве нормальных напряжений – напряжения, действующие на одинаковом расстоянии y от нейтральной оси, постоянны по ширине бруса;

в – гипотеза об отсутствии боковых давлений – соседние продольные волокна не давят друг на друга.

Статическая сторона задачи

Чтобы определить напряжения в поперечных сечениях балки, рассмотрим, прежде всего, статическую сторон у задачи. Применяя метод мысленных сечений и составляя уравнения равновесия для отсеченной части балки, найдем внутренние усилия при изгибе. Как было показано ранее, единственным внутренним усилием, действующим в сечении бруса при чистом изгибе, является внутренний изгибающий момент, а значит здесь возникнут связанные с ним нормальные напряжения.

Связь между внутренними усилиями и нормальными напряжениями в сечении балки найдем из рассмотрения напряжений на элементарной площадке dA, выделенной в поперечном сечении A балки в точке с координатами y и z (ось y для удобства анализа направлена вниз):

Как видим, задача является внутренне статически неопределимой, так как неизвестен характер распределения нормальных напряжений по сечению. Для решения задачи рассмотрим геометрическую картину деформаций.

Геометрическая сторона задачи

Рассмотрим деформацию элемента балки длиной dx, выделенного из изгибаемого стержня в произвольной точке с координатой x. Учитывая принятую ранее гипотезу плоских сечений, после изгиба сечения балки повернуться относительно нейтральной оси (н.о.) на угол dϕ, при этом волокно ab, отстоящее от нейтральной оси на расстояние y, превратится в дугу окружности a1b1, а его длина изменится на некоторую величину. Здесь напомним, что длина волокон, лежащих на нейтральной оси, не изменяется, а потому дуга a0b0 (радиус кривизны которой обозначим ρ) имеет ту же длину, что и отрезок a0b0 до деформации a0b0=dx.

Найдем относительную линейную деформацию εx волокна ab изогнутой балки.

 
Статьи по теме:
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
Депортация интеллигенции
Первым упоминанием о количестве интеллигенции, депортированной из советской России осенью 1922 года является интервью В.А.Мякотина берлинской газете «Руль». По сохранившимся «Сведениям для составления сметы на высылку» В.С.Христофоров. «Философский парохо