Очистка воздуха на предприятиях деревообрабатывающей промышленности. Промышленная очистка воздуха Системы очистки воздуха на заводах

На промышленных предприятиях производится очистка воздуха, не только подаваемого в цехи, отделы, но и удаляемого из них в атмосферу, чтобы не допускать загрязнения наружного воздуха на территории предприятия и прилегающих к нему жилых кварталов. Воздух, выбрасываемый в атмосферу из систем местных отсосов и общеобменной вентиляции производственных помещений, содержащий загрязняющие вещества, должен очищаться и рассеиваться в атмосфере с учетом требований /36/.

Очистка технологических и вентиляционных выбросов от взвешенных частиц пыли или тумана осуществляется в аппаратах пяти типов:

1) механических сухих пылеуловителях (пылеосадочных камерах различных конструкций, инерционных пыле- и брызгоуловителях, циклонах и мультициклонах). Пылеосадочные камеры улавливают частицы размером более 40…50 мкм, инерционные пылеуловители – более 25…30 мкм, циклоны – 10…200 мкм;

2) мокрых пылеуловителях (скрубберах, пенных промывателях, трубах Вентури и др.). Они более эффективны, чем сухие механические аппараты. Скруббер улавливает частицы пыли размером более 10 мкм, а с помощью трубы Вентури улавливаются частицы пыли размером менее 1 мкм;

3) фильтрах (масляных, кассетных, рукавных и др.). Улавливают частицы пыли размером от 0,5 мкм;

4) электрофильтрах , применяемых для тонкой очистки газов. Они улавливают частицы размером от 0,01 мкм;

5) комбинированных пылеуловителях (многоступенчатых, включающих не менее двух разных типов пылеуловителей).

Выбор типа пылеуловителя зависит от характера пыли (от размера пылинок и ее свойств: сухая, волокнистая, липкая пыль и т.д.), ценности данной пыли и необходимой степени очистки.

Наиболее простым пылеуловителем для очистки удаляемого воздуха является пылеосадочная камера (рис. 2.2), работа которой основана на резком уменьшении скорости движения загрязненного воздуха при входе в камеру до 0,1 м/с и изменении направления движения. Пылинки, теряя скорость, осаждаются на дно. Время пылеосаж

дения уменьшается при установке полочных элементов (рис. 2.2, б). Если пыль взрывоопасна, ее следует увлажнять.

Среди имеющихся конструкций пылеосадочных камер заслуживает внимания инерционный пылеотделитель, представляющий собой горизонтальную лабиринтную камеру (рис. 2.2, в). В этой оригинальной камере механические примеси выпадают в результате резких изменений направления потока, ударов пылинок о перегородки и завихрения воздуха.

В пылеосадочных камерах происходит лишь грубая очистка воздуха от пыли; в них задерживаются пылинки размером более 40…50 мк. Остаточная запыленность воздуха после такой очистки нередко составляет 30…40 мг/м 3 , что не может быть признано удовлетворительным даже в тех случаях, когда воздух после очистки не возвращается в помещение, а выбрасывается наружу. В связи с этим нередко необходима вторая ступень очистки воздуха в сетчатых, матерчатых фильтрах и других устройствах для улавливания пыли.

Более эффективным и менее дорогим пылеуловителем для грубой очистки следует считать циклон (рис. 2.3). Циклоны получили широкое распространение и применяются для задерживания стружек, опилок, металлической пыли и др. Запыленный воздух подводится вентилятором в верхнюю часть наружного цилиндра циклона. В циклоне воздух получает вращательное движение, вследствие чего развивается центробежная сила, отбрасывающая механические примеси к стенкам, по которым они скатываются в нижнюю часть циклона, имеющую форму усеченного конуса, и периодически удаляются. Очищенный воздух через внутренний цилиндр циклона, так называемую выхлопную трубу, выходит наружу. Степень очистки 85…90 %.

Кроме обычных циклонов в промышленных предприятиях применяются группы из 2, 3, 4 циклонов. На тепловых станциях для предварительной очистки в комплексе с другими методами золоулавливания устанавливают мультициклоны (рис. 2.4). Мультициклон представляет собой объединение в одном агрегате многих маленьких циклонов диаметром 30…40 см с общей подачей в них загрязненного воздуха и общим бункером для осевшей золы. В мультициклоне задерживается до 65… 70 % золы.

Интерес представляют пылеуловители мокрого типа (скрубберы), отличительной особенностью которых является захват улавливаемых частиц жидкостью, которая затем уносит их из аппарата в виде шлама. Процессу улавливания пыли в мокрых пылеуловителях способствует конденсационный эффект, проявляющийся в предварительном укрупнении частиц за счет конденсации на них водяных паров. Степень очистки скрубберов около 97 %.В этих аппаратах запыленный поток соприкасается с жидкостью или с поверхностями, орошаемыми ею. Простейшей конструкцией является промывная башня (рис. 2.5), заполненная кольцами Рашига, стекловолокном или другими материалами.

Чтобы увеличить поверхность соприкосновения капелек жидкости (воды), применяют распыление. К аппаратам такого типа относятся скрубберы и трубы Вентури. Часто для вывода образовавшегося шлама труба Вентури дополняется циклоном (рис. 2.6).

Эффективность мокрых пулеулавливателей в основном зависит от смачиваемости пыли. При улавливании плохо смачивающихся пылей, например угольной, в воду вводят поверхностно-активные вещества.

Мокрые пылеулавливатели типа трубы Вентури отличаются большим расходом электроэнергии для подачи и распыления воды. Этот расход особенно возрастает, когда улавливается пыль с частицами размерами менее 5 мкм. Удельный расход энергии при переработке газов конверторов с кислородным дутьем в случае применения трубы Вентури составляет от 3 до 4 кВт·ч, а в случае простой промывной башни менее 2 кВт·ч на 1000 м 3 обеспыливаемого газа

К недостаткам мокрого пылеулавливателя относятся: сложность выделения уловленной пыли из воды (необходимость отстойников); возможность щелочной или кислотной коррозии при переработке некоторых газов; значительное ухудшение условий рассеивания через заводские трубы отходящих газов, увлажненных при охлаждении в аппаратах этого типа.

Принцип действия пенного пылеуловителя (рис. 2.7) основан на прохождении воздушных струек через водяную пленку. Устанавливают их в отапливаемых помещениях для очистки воздуха от плохо смачиваемой пыли с начальной загрязненностью свыше 10 г/м 3 .

В пылеулавливателях типа фильтров газовый поток проходит через пористый материал различной плотности и толщины, в котором задерживается основная часть пыли. Очистку от грубой пыли проводят в фильтрах, заполненных коксом, песком, гравием, насадкой различной формы и природы. Для очистки от тонкой пыли применяют фильтрующий материал типа бумаги, войлока или ткани различной плотности. Бумагу используют при очистке атмосферного воздуха или же газа с низким содержанием пыли. В промышленных условиях применяют тканевые или рукавные фильтры.


Они имеют форму барабана, матерчатых мешков или карманов, работающих параллельно.

Основным показателем фильтра является его гидравлическое сопротивление. Сопротивление чистого фильтра пропорционально корню квадратному из радиуса ячейки ткани. Гидравлическое сопротивление фильтра, работающего в ламинарном режиме, изменяется пропорционально скорости фильтрации. С увеличением слоя осевшей на фильтре пыли его гидравлическое сопротивление возрастает. В качестве фильтрующих тканей в промышленности раньше широко применяли шерсть, хлопок. Они позволяют очищать газы при температуре меньше 100 °С. Теперь их вытесняют синтетические волокна – химически и механически более стойкие материалы. Они менее влагоемки (например, шерсть поглощает до 15 % влаги, а тергаль лишь 0,4 % от собственной массы), не гниют и позволяют перерабатывать газы, при температуре до 150 °С.

Кроме того, синтетические волокна термопластичны, что позволяет при помощи простых термических операций проводить их монтаж, крепление и ремонт.

Для средней и тонкой очистки запыленного воздуха с успехом применяют различные матерчатые фильтры, например рукавный фильтр (рис. 2.8). Рукавные фильтры получили распространение во многих отраслях промышленности и, особенно в тех, где пыль, содержащаяся в очищаемом воздухе, представляет ценный продукт производства (мукомольная, сахарная и др.).

Фильтрующие рукава из некоторых синтетических тканей с помощью термической обработки выполняются в виде гapмошки, что значительно увеличивает их фильтрующую поверхность при тех же размерах фильтра. Стали применяться ткани из стекловолокна, которое выдерживает температуру до 250 °С. Однако хрупкость таких волокон ограничивает сферу их применения.

Рукавные фильтры очищают от пыли следующими методами: механическим встряхиванием, обратной продувкой воздухом, ультразвуком и импульсной продувкой сжатым воздухом (гидравлический удар).

Главным достоинством рукавных фильтров является высокая эффективность очистки, достигающая 99 % для всех размеров частиц. Гидравлическое сопротивление тканевых фильтров составляет обычно 0,5…1,5 кПа (50…150 мм вод. ст.), а удельный расход энергии равен 0,25…0,6 кВт·ч на 1000 м 3 газа.

Развитие производств металлокерамических изделий открыло новые перспективы в пылеочистке. Металлокерамический фильтр ФМК предназначен для тонкой очистки запыленных газов и улавливания ценных аэрозолей из отходящих газов предприятий химической, нефтехимической и других отраслей промышленности. Фильтрующие элементы, закрепленные в трубной решетке, заключены в корпус фильтра. Они собираются из металлокерамических труб. На наружной поверхности фильтрующего элемента образуется слой уловленной пыли. Для разрушения и частичного удаления этого слоя (регенерация элементов) предусмотрена обратная продувка сжатым воздухом. Удельная нагрузка по газу 0,4…0,6 м 3 /(м 2 ∙мин). Рабочая длина фильтрующего элемента 2 м, его диаметр 10 см. Эффективность пылеулавливания 99,99 %. Температура очищаемого газа до 500 °С. Гидравлическое сопротивление фильтра 50…90 Па. Давление сжатого воздуха для регенерации 0,25…0,30 МПа. Период между продувками от 30 до 90 мин, продолжительность продувки 1…2 с.

Для технологической и санитарной очистки газов от капель тумана и растворимых аэрозольных частиц предназначен волокнистый туманоулавливатель .

Применяется в производстве серной и термической фосфорной кислот. В качестве «насадки» используется новое синтетическое волокно.

Аппарат имеет цилиндрическую или плоскую форму, работает при высоких скоростях фильтрации и поэтому имеет небольшие габариты; в случае цилиндрической конструкции они составляют: диаметр от 0,8 до 2,5 м, высота от 1 до 3 м. Аппараты имеют производительность от 3 до 45 тыс. м 3 /ч, гидравлическое сопротивление аппарата от 5,0 до 60,0 МПа. Эффективность улавливания – выше 99 %. Волокнистые туманоулавливатели дешевле, надежнее и проще в эксплуатации, чем электрофильтры или скрубберы Вентури.

Принцип действия электрофильтра (рис. 2.9) основан на том, что пылевые частицы, проходя с воздухом через электрическое поле, получают заряды и, притягиваясь, оседают на электродах, с которых затем удаляются механическим способом. Степень очистки в электрофильтрах 88…98 %.

Если напряженность электрического, поля между пластинчатыми электродами превышает критическую, которая при атмосферном давлении и температуре 15 °С равно 15 кВ/см, молекулы воздуха, находящегося в аппарате, ионизируются и приобретают положительные и отрицательные заряды. Ионы движутся к противоположно заряженному электроду, встречают при своем движении частицы пыли, передают им свой заряд и те, в свою очередь, направляются к электроду. Достигнув электрода, частицы пыли теряют свой заряд.

Осевшие на электроде частицы образуют слой, который удаляют с его поверхности при помощи удара, вибрации, отмывки и т.д. Постоянный (выпрямленный) электрический ток высокого напряжения (50…100 кВ) в электрофильтр подают на так называемый коронный электрод (обычно отрицательный) и осадительный электрод. Каждому значению напряжения соответствует определенная частота искровых разрядов в межэлектродном пространстве электрофильтра. В то же время частота разрядов определяет степень очистки газа.

По конструкции электрофильтры подразделяют на трубчатые и пластинчатые . В трубчатых электрофильтрах запыленный газ пропускают по вертикальным трубам диаметром 200…250 мм, по оси которых натянут коронирующий электрод – провод диаметром 2…4 мм.Осадительным электродом служит сама труба, на внутренней поверхности которой оседает пыль. В пластинчатых электрофильтрах коронирующие электроды (провода) натянуты между параллельными плоскими пластинами, являющимися осадительными электродами. В электрофильтрах улавливают пыль с частицами размером выше 5 мкм. Их рассчитывают так, чтобы очищаемый газ находился в электрофильтре в течение 6…8 с.

Для увеличения эффективности электроды иногда смачивают водой; такие электрофильтры называют мокрыми. Гидравлическое сопротивление электрофильтров невелико – 150…200 Па. Расход энергии в электрофильтрах изменяется от 0,12 до 0,20 кВт∙ч на 1000 м 3 газа. Электрофильтры работают эффективно и экономично при значительных объемах выбросов и высоких температурах. Эксплуатационные затраты на содержание и обслуживание электрофильтров, установленных, например, на электростанции, составляют около 3 % общих расходов.

В ультразвуковых пылеуловителях используется способность пылевых частиц под действием мощного звукового потока к коагуляции (образованию хлопьев), что очень важно для улавливания из воздуха аэрозолей. Эти хлопья выпадают в бункер. Звуковой эффект создается сиреной. Выпускаемые у нас сирены могут быть применены в пылеочистных установках пропускной способностью до 15000 м 3 /ч.

Описанные устройства для очистки воздуха цехов и отделов промышленных предприятий, удаляемого вытяжной вентиляцией в атмосферу, далеко не исчерпывают все виды пылеуловителей и фильтров, используемых для предотвращения загрязнения воздушного бассейна городов.

Очистку газообразных выбросов от пыли или тумана на практике осуществляют в различных по конструкции аппаратах , которые можно разделить на четыре основные группы:

1. механические пылеуловители (пылеотстойные или пылеосадочные камеры, инерционные пыле- и брызгоуловители, циклоны и мультициклоны). Аппараты этой группы применяют обычно для предварительной очистки газов;

2. мокрые пылеуловители (полые, насадочные или барботажцые скрубберы, пенные аппараты, трубы Вентури и др.). Эти устройства более эффективны, чем сухие пылеуловители;

3. фильтры (волокнистые, ячейковые, с насыпными слоями зернистого материала, масляные и др.). Наиболее распространены рукавные фильтры;

4. электрофильтры – аппараты тонкой очистки газов–улавливают частицы размером от 0,01 мкм.

Методы очистки. Одной из актуальных проблем на сегодняшний день является очистка воздуха от различного рода загрязнителей. Как раз от их физико-химических свойств необходимо исходить при выборе того или иного метода очистки. Рассмотрим основные современные способы удаления загрязняющих веществ из воздушной среды.

Механическая очистка

Сущность данного метода заключается в механической фильтрации частиц при прохождении воздуха через специальные материалы, поры которых способны пропускать воздушный поток, но при этом удерживать загрязнителя. От размера пор, ячеек фильтрующего материала зависит скорость и эффективность фильтрации. Чем больше размер, тем быстрее протекает процесс очистки, но эффективность его ниже при этом. Следовательно, перед выбором данного метода очистки необходимо изучить дисперсность загрязняющих веществ среды, в которой он будет применяться. Это позволит производить очистку в пределах требуемой степени эффективности и за минимальный период времени.

Абсорбционный метод. Абсорбция представляет собой процесс растворения газообразного компонента в жидком растворителе. Абсорбционные системы разделяют на водные и неводные. Во втором случае применяют обычно малолетучие органические жидкости. Жидкость используют для абсорбции только один раз или же проводят ее регенерацию, выделяя загрязнитель в чистом виде. Схемы с однократным использованием поглотителя применяют в тех случаях, когда абсорбция приводит непосредственно к получению готового продукта или полупродукта.

В качестве примеров можно назвать:

· получение минеральных кислот (абсорбция SO3 в производстве серной кислоты, абсорбция оксидов азота в производстве азотной кислоты);

· получение солей (абсорбция оксидов азота щелочными растворами с получением нитрит-нитратных щелоков, абсорбция водными растворами извести или известняка с получением сульфата кальция);


· других веществ (абсорбция NH3 водой для получения аммиачной воды и др.).

Схемы с многократным использованием поглотителя (циклические процессы) распространены шире. Их применяют для улавливания углеводородов, очистки от SO2 дымовых газов ТЭС, очистки вентгазов от сероводорода железно-содовым методом с получением элементарной серы, моноэтаноламиновой очистки газов от CO2 в азотной промышленности.

В зависимости от способа создания поверхности соприкосновения фаз различают поверхностные, барботажные и распыливающие абсорбционные аппараты.

· В первой группе аппаратов поверхностью контакта между фазами является зеркало жидкости или поверхность текучей пленки жидкости. Сюда же относят насадочные абсорбенты, в которых жидкость стекает по поверхности загруженной в них насадки из тел различной формы.

· Во второй группе абсорбентов поверхность контакта увеличивается благодаря распределению потоков газа в жидкость в виде пузырьков и струй. Барботаж осуществляют путем пропускания газа через заполненный жидкостью аппарат либо в аппаратах колонного типа с тарелками различной формы.

· В третьей группе поверхность контакта создается путем распыления жидкости в массе газа. Поверхность контакта и эффективность процесса в целом определяется дисперсностью распыленной жидкости.

Наибольшее распространение получили насадочные (поверхностные) и барботажные тарельчатые абсорберы. Для эффективного применения водных абсорбционных сред удаляемый компонент должен хорошо растворяться в абсорбционной среде и часто химически взаимодействовать с водой, как, например, при очистке газов от HCl, HF, NH3, NO2. Для абсорбции газов с меньшей растворимостью (SO2, Cl2, H2S) используют щелочные растворы на основе NaOH или Ca(OH)2. Добавки химических реагентов во многих случаях увеличивают эффективность абсорбции благодаря протеканию химических реакций в пленке. Для очистки газов от углеводородов этот метод на практике используют значительно реже, что обусловлено, прежде всего, высокой стоимостью абсорбентов. Общими недостатками абсорбционных методов является образование жидких стоков и громоздкость аппаратурного оформления.

Электрический метод очистки. Данный метод применим для мелкодисперсных частиц. В электрических фильтрах создается электрическое поле, при прохождении через которое частица заряжается и осаждается на электроде. Основными преимуществами данного метода является его высокая эффективность, простота конструкции, легкость в эксплуатации – нет необходимости в периодической замене элементов очистки.

Адсорбционный метод. Основан на химической очистке от газообразных загрязнителей. Воздух контактирует с поверхностью активированного угля, в процессе чего загрязняющие вещества осаждаются на ней. Данный метод в основном применим при удалении неприятных запахов и вредных веществ. Минусом является необходимость систематической замены фильтрующего элемента.

Можно выделить следующие основные способы осуществления процессов адсорбционной очистки:

· После адсорбции проводят десорбцию и извлекают уловленные компоненты для повторного использования. Таким способом улавливают различные растворители, сероуглерод в производстве искусственных волокон и ряд других примесей.

· После адсорбции примеси не утилизируют, а подвергают термическому или каталитическому дожиганию. Этот способ применяют для очистки отходящих газов химико-фармацевтических и лакокрасочных предприятий, пищевой промышленности и ряда других производств. Данная разновидность адсорбционной очистки экономически оправдана при низких концентрациях загрязняющих веществ и (или) многокомпонентных загрязнителей.

· После очистки адсорбент не регенерируют, а подвергают, например, захоронению или сжиганию вместе с прочно хемосорбированным загрязнителем. Этот способ пригоден при использовании дешевых адсорбентов.

Фотокаталитическая очистка. Является одним из самых перспективных и эффективных методов очистки на сегодняшний день. Главное его преимущество – разложение опасных и вредных веществ на безвредные воду, углекислый газ и кислород. Взаимодействие катализатора и ультрафиолетовой лампы приводит к взаимодействию на молекулярном уровне загрязнителей и поверхности катализатора. Фотокаталитические фильтры абсолютно безвредны и не требуют замены очищающих элементов, что делает их использование безопасным и весьма выгодным.

Термическое дожигание. Дожигание представляет собой метод обезвреживания газов путем термического окисления различных вредных веществ, главным образом органических, в практически безвредных или менее вредных, преимущественно СО2 и Н2О. Обычные температуры дожигания для большинства соединений лежат в интервале 750-1200 °C. Применение термических методов дожигания позволяет достичь 99%-ной очистки газов.

При рассмотрении возможности и целесообразности термического обезвреживания необходимо учитывать характер образующихся продуктов горения. Продукты сжигания газов, содержащих соединения серы, галогенов, фосфора, могут превосходить по токсичности исходный газовый выброс. В этом случае необходима дополнительная очистка. Термическое дожигание весьма эффективно при обезвреживании газов, содержащих токсичные вещества в виде твердых включений органического происхождения (сажа, частицы углерода, древесная пыль и т.д.).

Важнейшими факторами, определяющими целесообразность термического обезвреживания, являются затраты энергии (топлива) для обеспечения высоких температур в зоне реакции, калорийность обезвреживаемых примесей, возможность предварительного подогрева очищаемых газов. Повышение концентрации дожигаемых примесей ведет к значительному снижению расхода топлива. В отдельных случаях процесс может протекать в автотермическом режиме, т. е. рабочий режим поддерживается только за счет тепла реакции глубокого окисления вредных примесей и предварительного подогрева исходной смеси отходящими обезвреженными газами.

Принципиальную трудность при использовании термического дожигания создает образование вторичных загрязнителей, таких как оксиды азота, хлор, SO2 и др.

Термические методы широко применяются для очистки отходящих газов от токсичных горючих соединений. Разработанные в последние годы установки дожигания отличаются компактностью и низкими энергозатратами. Применение термических методов эффективно для дожигания пыли многокомпонентных и запыленных отходящих газов.

Промывочный способ. Осуществляется промывкой жидкостью (водой) потока газа (воздуха). Принцип действия: жидкость (вода) вводимая в поток газа (воздуха) движется с высокой скоростью, дробиться на мелкие капли мелкодисперсную взвесь) обвалакивает частицы взвеси (происходит слияние жидкостной фракции и взвеси) в результате укрупненные взвеси гарантированно улавливаются промывочным пылеуловителем. Конструкция: конструктивно промывочные пылеуловители представлены скрубберами, мокрыми пылеуловителями, скоростными пылеуловителями, в которых жидкость движется с большой скоростью и пенными пылеуловителями, в которых газ в виде мелких пузырьков проходит через слой жидкости (воды).

Плазмохимические методы. Плазмохимический метод основан на пропускании через высоковольтный разряд воздушной смеси с вредными примесями. Используют, как правило, озонаторы на основе барьерных, коронных или скользящих разрядов, либо импульсные высокочастотные разряды на электрофильтрах. Проходящий низкотемпературную плазму воздух с примесями подвергается бомбардировке электронами и ионами. В результате в газовой среде образуется атомарный кислород, озон, гидроксильные группы, возбуждённые молекулы и атомы, которые и участвуют в плазмохимических реакциях с вредными примесями. Основные направления по применению данного метода идут по удалению SO2, NOx и органических соединений. Использование аммиака, при нейтрализации SO2 и NOx, дает на выходе после реактора порошкообразные удобрения (NH4)2SO4 и NH4NH3, которые фильтруются.

Недостатком данного метода являются:

· недостаточно полное разложение вредных веществ до воды и углекислого газа, в случае окисления органических компонентов, при приемлемых энергиях разряда

· наличие остаточного озона, который необходимо разлагать термически либо каталитически

· существенная зависимость от концентрации пыли при использовании озонаторов с применением барьерного разряда.

Гравитационный способ. Основан на гравитационном осаждении влаги и (или) взвешенных частиц. Принцип действия: газовый (воздушный) поток попадает в расширяющуюся осаждающую камеру (емкость) гравитационного пылеуловителя, в которой замедляется скорость потока и под действием гравитации происходит осаждение капельной влаги и (или) взвешенных частиц.

Конструкция: Конструктивно осаждающие камеры гравитационных пылеуловителей могут быть прямоточного типа, лабиринтного и полочного. Эффективность: гравитационный способ очистки газа позволяет улавливать крупные взвеси.

Плазмокаталитический метод. Это довольно новый способ очистки, который использует два известных метода – плазмохимический и каталитический. Установки, работающие на основе этого метода, состоят из двух ступеней. Первая – это плазмохимический реактор (озонатор), вторая - каталитический реактор. Газообразные загрязнители, проходя зону высоковольтного разряда в газоразрядных ячейках и взаимодействуя с продуктами электросинтеза, разрушаются и переходят в безвредные соединения, вплоть до CO2 и H2O. Глубина конверсии (очистки) зависит от величины удельной энергии, выделяющейся в зоне реакции. После плазмохимического реактора воздух подвергается финишной тонкой очистке в каталитическом реакторе. Синтезируемый в газовом разряде плазмохимического реактора озон попадает на катализатор, где сразу распадается на активный атомарный и молекулярный кислород. Остатки загрязняющих веществ (активные радикалы, возбужденные атомы и молекулы), не уничтоженные в плазмохимическом реакторе, разрушаются на катализаторе благодаря глубокому окислению кислородом.

Преимуществом этого метода являются использование каталитических реакций при температурах, более низких (40-100 °C), чем при термокаталитическом методе, что приводит к увеличению срока службы катализаторов, а также к меньшим энергозатратам (при концентрациях вредных веществ до 0,5 г/м³.).

Недостатками данного метода являются:

· большая зависимость от концентрации пыли, необходимость предварительной очистки до концентрации 3-5 мг/м³,

· при больших концентрациях вредных веществ(свыше 1 г/м³) стоимость оборудования и эксплуатационные расходы превышают соответствующие затраты в сравнении с термокаталитическим методом

Центробежный способ

Основан на инерционном осаждении влаги и (или) взвешенных частиц за счет создания в поле движения газового потока и взвеси центробежной силы. Центробежный способ очистки газа относится к инерционным способам очистки газа (воздуха). Принцип действия: газовый (воздушный) поток направляется в центробежный пылеуловитель в котором, за счет изменении направления движения газа (воздуха) с влагой и взвешенными частицами, как правило по спирали, происходит очистка газа. Плотность взвеси в несколько раз больше плотности газа (воздуха) и она продолжает двигаться по инерции в прежнем направлении и отделяется от газа (воздуха). За счет движения газа по спирали создается центробежная сила, которая во много раз превосходит силу тяжести. Конструкция: Конструктивно центробежные пылеуловители представлены циклонами. Эффективность: осаждается сравнительно мелкая пыль, с размером частиц 10 – 20 мкм.

Не стоит забывать об элементарных методах очистки воздуха от пыли, как влажная уборка, регулярное проветривание, поддержание оптимального уровня влажности и температурного режима. При этом периодически избавляться от скоплений в помещении большого количества хлама и ненужных предметов, которые являются «пылесборниками» и не несут в себе никаких полезных функций.

Основные схемы, формулы и т.д., иллюстрирующие содержание : схемы приводятся в тексте

Вопросы для самоконтроля:

1. Что такое атмосфера?

2. Что такое смог? Чем отличается Лос-Анжелевский от Лондонского типа смога?

3. Какие методы очистки атмосферного воздуха Вы знаете?

4. Как классифицируются загрязнения атмосферного воздуха?

5. Как классифицируются источники загрязнения воздуха?

6. Какие основные пути предотвращения загрязнения атмосферы представлены в лекции?

1. Акимова Т.А., Хаскин В.В., Экология. Человек-экономика-биота-среда., М., «ЮНИТИ», 2007

2. Бигалиев А.Б., Халилов М.Ф., Шарипова М.А. Основы общей экологии Алматы, «Қазақ университеті», 2006

3. Кукин П.П., Лапин В.Л., Пономарев Н.Л., Сердюк Н.И. Безопасность жизнедеятельности. Безопасность технологических процессов и производств (ОТ). – М.: Высшая школа, 2002. – 317 с.


ЛЕКЦИЯ 5. Очистка и повторное использование технической воды и промыш­ленных стоков.

Цель:

Изучить современные методы очистки сточных вод

Задачи:

- Изучить жидкую оболочку Земли

Знать экологические проблемы, связанные с нехваткой пресной воды и загрязнением поверхностных вод.

Уметь различать способы очистки сточных вод.

Характеристика водной оболочки Земли. Свойства воды.

Источники и уровни загрязнения гидросферы.

Экологические последствия загрязнения гидросферы.

Сточные воды и их классификация.

Методы водоочистки.

Важным элементом вентиляционных установок являются пылеочистные устройства. Очистку производят, если приточный и вытяжной воздух содержит пыль в количествах, превышающих допустимые по нормам.

Очистка может быть: тонкой, средней и грубой.

Тонкая очистка применяется в приточных системах для задержания мелких фракций пыли,(10 мк и ниже), а также при рециркуляции, когда очищенный от пыли воздух выпускается вновь в рабочее помещение или частично подмешивается к приточному в целях экономии тепла.

При средней очистке происходит улавливание частиц пыли размером 10-100 мк. Средней очисткой снабжаются обеспыливающие установки вытяжной вентиляции.

Целью грубой очистки является удаление из вытяжного воздуха главным образом пылинок размером больше 100 мк. Применяется она в тех случаях, когда транспортируемая воздухом пыль состоит в основном из крупных частиц (опилки, лузга и т. п.).

Иногда находит применение двухступенчатая очистка вытяжного и особенно рециркуляционного воздуха от пыли: на первой ступени; улавливается крупная пыль, на второй - мелкая.

Эффективность очистки воздуха от пыли характеризуется в основном весовыми (гравиметрическими) показателями и выражается в процентах по формуле:

где d1 - концентрация пыли в воздухе до очистки в миллиграммах на 1 м 3 ;
d2 - концентрация пыли после очистки.

Так, например, при начальной запыленности d1 = 100 мг/м 3 и конечной d2=10 мг/м 3 весовая эффективность пылезадержания составит:

Выбор того или иного пылеочистного устройства определяется дисперсностью, физико-химическими свойствами пыли, необходимой степенью очистки и технико-экономическими соображениями. Существенными являются соображения о возможности утилизации задерживаемой пыли.

Для тонкой очистки находят применение масляные и бумажные фильтры, собираемые в установки из отдельных ячеек.

Ячейка масляного фильтра представляет собой плоскую металлическую коробку с днищами из сетки. Заполнена коробка стальными кольцами. Ячейки смачиваются жидким маслом специального сорта, не имеющим запаха, с неизменяющейся вязкостью в широком диапазоне температур. Воздух, проходя в фильтре извилистый путь, оставляет пыль на поверхности заполнителя, покрытой масляной пленкой. Периодически загрязненные ячейки промывают горячим раствором соды, сушат и вновь промасливают. В качестве заполнителя ячеек применяют, кроме металлических, и фарфоровые кольца, металлические и пластмассовые гофрированные сетки, минеральное волокно и т. п.

При большом количестве воздуха для очистки его от пыли используют самоочищающиеся масляные фильтры, представляющие собой сетчатую ленту, непрерывно движущуюся в вертикальном направлении. При проходе ленты через масляную ванну, установленную внизу фильтра, она освобождается от задержанной пыли и на ней возобновляется слой масла.

Бумажные фильтры применяют при высокой дисперсности и малых начальных концентрациях пыли. Пористую бумагу (шелковка, алигнин) укладывают в 8-10 слоев на гофрированную сетку, прикрепленную к металлической рамке. Загрязненные пылью бумажные слои заменяют свежими. Находят применение рулонные бумажные фильтры.

Если возникает необходимость в очень тонкой очистке воздуха (например, от радиоактивной пыли), используются специальные фильтрующие материалы ФПП и ФПА, практически обеспечивающие полное пылеулавливание в так называемых фильтрах ЛАИК.

Грубую и среднюю, а в некоторых случаях и тонкую очистку воздуха от пыли, применяемую в установках вытяжной вентиляции, можно производить различными мокрыми и сухими способами.

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

На сегодняшний день, как никогда остро, стоит вопрос загрязнения атмосферы вредными веществами. Очистка воздуха является наиболее приоритетной задачей, из-за высокого уровня загрязнения, главной причиной которого является деятельность человека, в частности, развитие промышленности, сельского хозяйства, увеличение количества автотранспортных средств.

Ежедневный объем выбросов вредных веществ (газы, вредные примеси), которые вступают в реакцию с атмосферными газами (O2, N2) ведут к изменению состава воздуха и увеличению количества СО2. Различные изменения в атмосфере ведут к возникновению кислотных осадков, негативно влияющих на грунты, почву, флору и фауну. Кроме этого, такие осадки ведут к постепенному разрушению архитектурных объектов, сооружений, зданий, оборудования.

Весомый вклад в загрязнение атмосферы вносят промышленные производства, которые были введены в эксплуатацию несколько десятилетий назад, и функционирующие по сей день, не имеющие современной системы очистки воздуха. Очень часто в слаборазвитых странах отсутствует какое-либо оборудование для очистки воздуха, что приводит к настоящей экологической катастрофе на близлежащих территориях.

Средства защиты атмосферы

Выделим основные меры по очистке атмосферного воздуха и защите атмосферы от вредного антропогенного влияния:

  • Внедрение современных экологически безопасных технологических процессов на производстве. Создание малоотходных или замкнутых технологических циклов, которые способствуют полному исключению или же значительному снижению вредных выбросов в атмосферу. Предварительное очищение используемого сырья, для снижения в его составе вредных примесей. Переход на альтернативные источники энергии, которые вообще не имеют вредных компонентов, загрязняющих атмосферу, либо, имеют минимальное содержание вредных веществ. Переход с двигателей внутреннего сгорания, на альтернативные моторы: электродвигатели, гибридные, водородные и другие.
  • Внедрение очистных сооружений. К средствам защиты атмосферы от вредного влияния жизнедеятельности человека должны относиться способы очистки воздуха при помощи очистных сооружений, которые позволят довести до минимума вредные выбросы в атмосферу на производстве и в сельском хозяйстве.
  • Внедрение санитарных зон. СЗЗ – санитарно-защитная зона – полоса территории, которая разделяет промышленную зону от жилой. Ранее при строительстве промышленных и жилых объектов практически не обращали внимание на использование санитарно-защитных зон, что приводило к размещению рядом производственной и жилой зоны. Установление ССЗ, ее длина, ширина, площадь определяются исходя из количества выделяемых в атмосферу вредных примесей.
  • Внедрение правильного архитектурно-планировочного разделения подразумевает правильное расположение промышленных производств и жилых сооружений: с учетом рельефа местности, направления ветра, автомобильных и других видов дорог.

Методы очистки

На сегодняшний день существуют различные методы очищения, выделим самые эффективные.

Озонный метод

Озонный метод используют для очистки атмосферного воздуха от вредных выбросов и дезодорации выбросов с промышленных предприятий. Делают это путем введения озона, который способствует ускорению окислительных реакций. Время контакта газа с озоном, для обезвреживания вредных компонентов составляет от 0,5 до 0,9 секунды.

Усредненные затраты на использование озона в качестве дезодоратора и очистителя составляют до 4,5% от мощности энергоблока. Такая очистка воздуха от вредных веществ, обычно, используется не в промышленности, а при переработке животного сырья (мясо и жирокомбинаты), а также в быту.

Термокаталитический метод

Основан на использовании в качестве очистителя — катализатора. В емкости (реакторе) с содержанием катализатора происходит очищение токсичных газообразных примесей. Катализаторами обычно выступают: минералы, металлы, которые обладают сильными межатомными полями. Катализатор должен иметь устойчивую структуру в условиях возникновения реакции.

Этим способом выполняется эффективное очищение от запахов и вредных соединений. Он довольно дорогой. Поэтому главная тенденция последних лет направлена на создание и развитие недорогих катализаторов, которые эффективно работают при любых температурах, в любых условиях, устойчивы к ядовитым соединениям, и, кроме этого, являются энергоэффективными, с минимальными затратами на их эксплуатацию. Использование катализаторов, в качестве очистителей, довольно широко применяется при очищении газов от оксидов азота.

Абсорбционный метод

Заключается в растворении в жидком растворителе газообразного компонента. Загрязнитель выделяют при помощи жидкости, которую используют один раз. Так получают минеральные кислоты, соли и другие вещества. Плазмохимический метод заключается в использовании в качестве очистителя высоковольтных разрядов, через которые пропускают загрязненную воздушную смесь. В качестве оборудования применяют электрофильтры.

Адсорбционный метод

Его можно назвать одним из самых распространенных, особенно на территории США. Очищение воздушного пространства от вредных примесей на основе адсорбции доказало свою эффективность в промышленной эксплуатации.

Специальные системы, где основные адсорбенты это сорбенты, оксиды и активированные угли, позволяют не только очистить плохо пахнущие дымовые газы от запаха, но и в разы снижают содержание в них вредных веществ, а после этого выполняют каталитическое или термическое дожигание, чтобы добиться максимального результата. Особенно данный комплекс мер часто применяют в химической, фармацевтической или пищевой промышленности.

Термический метод или термическое дожигание

Из названия понятно, что очищение вредных выбросов заключается в их термическом окислении, при температуре от 750 до 1200 °C. Этим способом достигается 99% очистка газов. Из недостатков следует отметить ограниченность применения.

Этот способ эффективный для очистки газов, содержащих твердые включения в виде: углерода, сажи, древесной пыли. Если в выбросах содержатся такие примеси, как сера, фосфор, галогены, то продукты горения при использовании термокаталитического метода по своей токсичности будут превосходить исходные.

Плазмокаталитический

Новый метод, объединяющий в себе методы очистки воздуха от вредных веществ: каталитический и плазмохимический. Эти мероприятия по очистке воздуха от вредных веществ хорошо изучены и широко применяются на практике, а данный метод, является новым и высокоэффективным. Происходит двухступенчатая очистка через реакторы:

  1. Плазмохимический реактор, в котором происходит озонирование.
  2. Каталитический реактор. На первом этапе вредные примеси проходят через высоковольтный разряд, где, взаимодействуя с продуктами электросинтеза, переходят в экологически безопасные соединения. На втором этапе происходит финишная очистка при помощи синтеза на молекулярный и атомарный кислород. Остатки вредных веществ окисляются кислородом.

Недостатком этого метода является его дороговизна и обязательная предварительная очистка воздуха от пыли. В особенности, при ее большом содержании.

Фотокаталитический

Фотокаталитический метод очистки воздуха от вредных веществ также относится к современным, инновационным, которые применяются все чаще. Применяется аппарат для очистки воздуха на основе катализаторов из TiO2 (оксид титана), которые облучаются ультрафиолетом. Этот метод широко используется в бытовых очистительных приборах и является одним из самых эффективных путей очищения поступающего воздуха.

Критерии выбора очистителей

Очистка воздуха в помещении сегодня очень актуальна для многих людей, живущих в городе. Его качество оставляет желать лучшего, поэтому активное развитие получила не только промышленная очистка продуктов производства, но и бытовая очистка воздуха от запахов, вредных веществ, табака, пыли.

Чтобы получить качественное и чистое воздушное пространство в помещении, необходимо оборудование с качественными и эффективными фильтрами.

Используемые фильтры

В основном, используют несколько видов фильтров:

  • угольные
  • водные
  • озонирующие
  • фотокаталитические
  • электростатические

Каждый из видов имеет свои недостатки и преимущества. В Эффективных моделях очистителей всегда используют не один, а несколько разных средств очистки воздуха (многоступенчатая очистка). Вам могут предложить очистители воздуха с красивыми цветными дисплеями, лапочками, индикаторами, но на чистоту воздуха в помещении данные функции влияния не оказывают.

Чтобы очистка воздуха действительно была эффективной, а деньги потрачены не зря, всегда выбирайте прибор для очистки воздуха с наличием нескольких видов очищающих компонентов. Чем больше их будет, тем лучше он будет выполнять свою функцию. С приборами многоступенчатой системой фильтрации, очень эффективным будет функция увлажнения воздуха. Это не только позволит сделать воздух свежее, но и позволит самому контролировать уровень влажности в помещении, позволит более эффективно справиться с очисткой воздуха от табачного дыма, устранить пыль, неприятные запахи.

Широкое применение вместо аппаратов для очистки атмосферного воздуха получают климатические комплексы. Они являются многофункциональными приборами, объединяющими в себе три функции:

  • очищение
  • увлажнение
  • ионизацию

Климатические комплексы имеют более высокую стоимость, нежели обычные очистители или ионизаторы, но качество очистки воздуха в помещении, котором установлен климатический комплекс, гораздо выше.

Популярными производителями климатических комплексов, которые используются для промышленной очистки воздуха, а также для очистки воздуха в ресторанах, отелях, магазинах, офисах или квартирах, являются известные мировые бренды: Panasonic, Daikin, Midea, Boneco, IQAir, Euromate, Venta, Winia и другие.

Перед покупкой воздухоочистителей и климатических комплексов внимательно ознакомьтесь с их характеристиками, производительностью и функциональностью.

Для очистки запыленных воздушных потоков перед выбросом их в атмосферу применяют следующие основные способы:

  • осаждение под действием сил тяжести;
  • осаждение под действием инерционных сил, возникающих при резком изменении направления газового потока;
  • осаждение под действием центробежной силы, возникающей при вращательном движении потока газа;
  • осаждение под действием электрического поля;
  • фильтрация;
  • мокрая очистка.

Аппараты сухой очистки от пыли

Пылеосадительные камеры. Простейшим типом газоочистительных аппаратов являются пылеосадительные камеры (рис. 3.1), в которых улавливаемые частицы удаляются из потока под действием сил тяжести. Как известно, время осаждения тем меньше, чем меньше высота отстойной камеры. С целью уменьшения времени осаждения внутри аппарата на расстоянии 400 мм или несколько больше установлены горизонтальные или наклонные перегородки, которые делят весь объем камеры на систему параллельных каналов относительно небольшой высоты.

Рис. 3.1.

/ - запыленный газ; II - очищенный газ; 7 - камера; 2 - перегородка

Пылеосадительные камеры имеют сравнительно большие габариты и используются для удаления наиболее крупных частиц при предварительной очистке газа.

Инерционные пылеуловители (рис. 3.2). Поток запыленного воздуха со скоростью 10-15 м/с вводится в аппарат, внутри которого установлены лопатки жалюзи), разделяющие его рабочий объем на две

Рис. 3.2.

/ - очищаемый газ; II - очищенный газ; III - запыленный газ; 1 - корпус; 2 -

лопатки (жалюзи)

камеры: камеру запыленного газа и камеру очищенного газа. При входе в каналы между лопатками газ резко меняет свое направление и одновременно уменьшается его скорость. По инерции частицы движутся вдоль оси аппарата и, ударяясь о жалюзи, отбрасываются в сторону, а очищенный газ проходит сквозь жалюзийную решетку и выводится из аппарата.

Остальная часть газа (около 10%), содержащая основную массу пыли, выводится через другой штуцер и обычно подвергается дополнительной очистке в циклонах. Аппараты этого типа более компактны, чем пылеосадительные камеры, однако также пригодны только для грубой очистки.

(рис. 3.3). В циклон запыленный воздух вводится со скоростью 15-25 м/с тангенциально и получает вращательное движение. Частицы пыли под действием центробежной силы перемещаются к периферии и, достигнув стенки, направляются в бункер. Газ, совершив 1,5-3 оборота в циклоне, поворачивает вверх и выводится через центральную выхлопную трубу.

В циклоне центробежная сила зависит от скорости вращения газа, которую в первом приближении можно принять равной скорости газа во входном патрубке w.

Однако с постоянной линейной скоростью газ движется в циклоне лишь в течение первого оборота, а затем профиль скоростей перестраивается и газ приобретает постоянную угловую скорость со. Поскольку линейная и угловая скорости связаны соотношением w = со г, на периферии газ имеет большую линейную скорость.

Рис. 3.3.

/ - запыленный газ; II - очищенный газ; III - уловленные частицы; 1 - корпус;

2 - выхлопная труба; 3 - успокоитель; 4 - бункер; 5 - затвор

Степень очистки в циклоне сначала быстро возрастает с увеличением скорости, а затем мало изменяется. Сопротивление же при этом увеличивается пропорционально квадрату скорости. Чрезмерно большая скорость движения газа в циклоне приводит к повышению гидравлического сопротивления, уменьшению степени очистки вследствие вихреобразования и выноса уловленных частиц в поток очищенного газа.

Рукавные фильтры. Рассмотренные выше способы очистки не позволяют эффективно улавливать мелкие частицы (диаметром менее 20 мкм). Так, если КПД циклона при улавливании частиц диаметром 20 мкм составляет 90%, то частицы диаметром 10 мкм улавливаются только на 65%. Для очистки потоков от мелких частиц применяют рукавные фильтры (рис. 3.4), которые эффективно улавливают мелкие частицы и обеспечивают содержание пыли в очищенном газе менее 5 мг/м 3 .

Фильтр представляет собой группу параллельно соединенных цилиндрических тканевых рукавов диаметром 150-200 мм и длиной до 3 м, размещенных в корпусе аппарата. Для сохранения формы рукава имеют вшитые в них проволочные кольца. Верхние концы рукавов закрыты и подвешены к раме, соединенной со встряхивающим механизмом, установленным на крышке фильтра. Нижние концы рукавов закреплены замками на патрубках распределительной

Рис. 3.4.

  • 7 - корпус; 2 - рукава; 3 - рама для подвески рукавов; 4 - встряхивающий механизм; 5 - коллектор очищенного газа; 6,7 - клапаны; 8 - бункер; 9 - разгрузочный шнек
  • (трубной) решетки. В верхней части аппарата находятся коллектор очищенного газа и клапаны для вывода очищенного газа 6 и для подачи продувочного воздуха 7. Запыленный воздух поступает в аппарат и распределяется по отдельным рукавам.

Частицы пыли оседают на внутренней поверхности рукавов, а очищенный газ выходит из аппарата. Поверхность фильтра очищается встряхиванием рукавов и обратной продувкой.

На время продувки встряхивавающего механизма происходит автоматическое отключение рукавов от коллектора очищенного газа (клапан 6 закрывается) и открывается клапан 7, через который в аппарат подается для продувки наружный воздух. Бункер 8 для сбора пыли снабжен шнеком для выгрузки пыли и шлюзовым затвором.

Фильтрация происходит при постоянной скорости до получения определенной величины перепада давления, равной 0,015- 0,030 МПа. Скорость фильтрации зависит от плотности ткани и составляет обычно 50-200 м 3 /(м 2 ч).

При очистке потоков, имеющих повышенную температуру (выше 100 °С), используют стеклоткань, углеродную ткань и др. При наличии химически агрессивных примесей применяют стеклоткань и различные синтетические материалы.

Недостатками рукавных фильтров для обработки больших объемов газов являются трудоемкость ухода за тканью рукавов и сравнительно большая металлоемкость. Большим достоинством этих фильтров является высокая степень очистки от тонкодисперсной пыли (до 98-99%). Очень часто для предварительной очистки от грубодисперсной пыли перед рукавным фильтром устанавливают циклон в качестве первой ступени очистки.

Электрофильтры используют для очистки запыленных потоков от наиболее мелких частиц (пыли, туманов) диаметром до 0,01 мкм. Поскольку частицы пыли обычно нейтральны, им необходимо сообщить заряд. При этом мелким частицам можно сообщить большой электрический заряд и создать благоприятные условия для их осаждения, не достижимые в поле силы тяжести или центробежной силы.

Для сообщения взвешенным в газе частицам электрического заряда газ предварительно ионизируют. С этой целью поток пропускают между двумя электродами, создающими неоднородное электрическое поле. Размеры электродов должны существенно различаться, чтобы создать значительную разность напряженностей поля. Обычно для этого один электрод выполняется в виде тонкой проволоки диаметром 1-3 мм, а второй - в виде соосного цилиндра диаметром 250-300 мм или в виде плоских параллельных пластин.

Вследствие значительной разности площадей электродов вблизи электрода малой площади возникает местный пробой газа (корона), приводящий к его ионизации. Коронирующий электрод соединен с отрицательным полюсом источника напряжения. Для воздуха критическое напряжение, при котором образуется корона, составляет около 30 кВ. Рабочее напряжение в 1,5-2,5 раза больше критического и обычно находится в пределах 40-75 кВ.

Электрофильтры работают на постоянном токе, поэтому установка для электроочистки запыленных потоков включает кроме электрофильтров подстанцию для преобразования электрического тока.

Электрофильтры с осадительными электродами из труб называются трубчатыми, а с плоскими электродами - пластинчатыми. Электроды могут быть сплошными или из металлической сетки.

Скорость движения газа в электрофильтре обычно принимают равной 0,75-1,5 м/с для трубчатых фильтров и 0,5-1,0 м/с - для пластинчатых. При таких скоростях можно достичь степени очистки, близкой к 100%. Гидравлическое сопротивление электрофильтров составляет 50-200 Па, т.е. меньше, чем циклонов и тканевых фильтров.

На рис. 3.5 представлена схема трубчатого электрофильтра. В трубчатом электрофильтре в камере 1 расположены осадительные электроды 2 высотой h = 3-6 м, выполненные из труб диаметром 150-300 мм. По осям труб натянуты коронирующие электроды 3 (диаметром 1-3 мм), которые закреплены между рамами 4 (во избежание их раскачивания). Рама 4 соединена с опорно-проходным изолятором 5. Запыленный газ входит в аппарат через распределительную решетку 6 и равномерно распределяется по трубам. Под действием электрического поля частицы пыли осаждаются на электродах 2 и периодически удаляются из аппарата.

Рис. 3.5.

7 - корпус; 2 - осадительный электрод; 3 - коронирующий электрод; 4 - рама; 5 - изолятор; 6 - распределительные решетки; 7 - заземление

В пластинчатом электрофильтре коронирующие электроды натянуты между параллельными поверхностями осадительных электродов, расстояние между которыми составляет 250-350 мм.

В большинстве случаев при удалении пыли с осадительных электродов применяют специальные встряхивающие механизмы (обычно ударного действия). С целью повышения производительности электрофильтра запыленный газ иногда увлажняют, так как при толстом слое пыли на электроде напряжение падает, что приводит к снижению производительности аппарата. Для нормальной работы электрофильтров необходимо следить за чистотой как осадительных, так и коронирующих электродов, ибо пыль, попавшая на корониру- ющий электрод, действует как изолятор и препятствует образованию коронного разряда.

Электрофильтры можно применять для различных рабочих условий (горячий газ, влажный газ, газ с химически активными примесями и т.п.), что делает этот вид газоочистного оборудования весьма эффективным при санитарной очистке.

На практике нашли применение и ультразвуковые газоочистительные установки, в которых для увеличения пылеулавливания используется укрупнение (коагуляция) частиц посредством воздействия на поток упругих акустических колебаний звуковой и ультразвуковой частоты. Эти колебания вызывают вибрацию частиц пыли, в результате чего растет число их столкновений и происходит коагуляция (слипание частиц при соприкосновении друг с другом), значительно облегчающая осаждение.

Процесс коагуляции происходит при уровне акустических колебаний не менее 145-150 дБ и частоте 2-50 кГц. Скорость пылегазового потока w при этом не должна превышать величины w , опреде- „ „ „ К Р _

ляемои силами сцепления в данной неоднородной системе. При

w > w агрегаты скоагулированных частиц разрушаются. Существуют также пределы концентраций дисперсной фазы С, при которой целесообразно вести коагуляцию в звуковом поле: при С 0,2 г/м 3 коагуляция не наблюдается; тогда как при С > 230 г/м 3 коагуляция ухудшается вследствие затухания акустических колебаний и больших потерь звуковой энергии.

Акустическая коагуляция находит промышленное применение для предварительной очистки горячих газовых потоков и при обработке газов в условиях повышенной опасности (в горнодобывающей промышленности, металлургической, газовой, химической и др.). Запыленность производственных газовых потоков, поступающих на очистку, может составлять от 0,5 до 20 г/м 3 (при дисперсности 0,5-4 мкм с преобладанием более мелкой фракции), температура газа - от 50 до 350 °С, скорость газа - 0,4-3,5 м/с, время пребывания газа в звуковом поле - от 3 до 20 с. Эффективность пылеулавливания зависит от расхода газа и времени озвучивания и достигает 96%.

На рис. 3.6 показана схема установки ультразвуковых (УЗ) сирен в аппаратах для коагуляции аэрозолей.

Рис. 3.6. Схема акустических пылеуловителей для коагуляции аэрозолей: а, б - различное расположение УЗ-сирены в аппарате

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва