Как выразить натуральный логарифм. Логарифм

Как известно, при перемножении выражений со степенями их показатели всегда складываются (a b *a c = a b+c). Этот математический закон был выведен Архимедом, а позже, в VIII веке, математик Вирасен создал таблицу целых показателей. Именно они послужили для дальнейшего открытия логарифмов. Примеры использования этой функции можно встретить практически везде, где требуется упростить громоздкое умножение на простое сложение. Если вы потратите минут 10 на прочтение этой статьи, мы вам объясним, что такое логарифмы и как с ними работать. Простым и доступным языком.

Определение в математике

Логарифмом называется выражение следующего вида: log a b=c, то есть логарифмом любого неотрицательного числа (то есть любого положительного) "b" по его основанию "a" считается степень "c", в которую необходимо возвести основание "a", чтобы в итоге получить значение "b". Разберем логарифм на примерах, допустим, есть выражение log 2 8. Как найти ответ? Очень просто, нужно найти такую степень, чтобы из 2 в искомой степени получить 8. Проделав в уме некоторые расчеты, получаем число 3! И верно, ведь 2 в степени 3 дает в ответе число 8.

Разновидности логарифмов

Для многих учеников и студентов эта тема кажется сложной и непонятной, однако на самом деле логарифмы не так страшны, главное - понять общий их смысл и запомнить их свойста и некоторые правила. Существует три отдельных вида логарифмических выражений:

  1. Натуральный логарифм ln a, где основанием является число Эйлера (e = 2,7).
  2. Десятичный a, где основанием служит число 10.
  3. Логарифм любого числа b по основанию a>1.

Каждый из них решается стандартным способом, включающим в себя упрощение, сокращение и последующее приведение к одному логарифму с помощью логарифмических теорем. Для получения верных значений логарифмов следует запомнить их свойства и очередность действий при их решениях.

Правила и некоторые ограничения

В математике существует несколько правил-ограничений, которые принимаются как аксиома, то есть не подлежат обсуждению и являются истиной. Например, нельзя числа делить на ноль, а еще невозможно извлечь корень четной степени из отрицательных чисел. Логарифмы также имеют свои правила, следуя которым можно с легкостью научиться работать даже с длинными и емкими логарифмическими выражениями:

  • основание "a" всегда должно быть больше нуля, и при этом не быть равным 1, иначе выражение потеряет свой смысл, ведь "1" и "0" в любой степени всегда равны своим значениям;
  • если а > 0, то и а b >0, получается, что и "с" должно быть больше нуля.

Как решать логарифмы?

К примеру, дано задание найти ответ уравнения 10 х = 100. Это очень легко, нужно подобрать такую степень, возведя в которую число десять, мы получим 100. Это, конечно же, 10 2 =100.

А теперь давайте представим данное выражение в виде логарифмического. Получим log 10 100 = 2. При решении логарифмов все действия практически сходятся к тому, чтобы найти ту степень, в которую необходимо ввести основание логарифма, чтобы получить заданное число.

Для безошибочного определения значенияя неизвестной степени необходимо научиться работать с таблицей степеней. Выглядит она следующим образом:

Как видите, некоторые показатели степени можно угадать интуитивно, если имеется технический склад ума и знание таблицы умножения. Однако для больших значений потребуется таблица степеней. Ею могут пользоваться даже те, кто совсем ничего не смыслит в сложных математических темах. В левом столбце указаны числа (основание a), верхний ряд чисел - это значение степени c, в которую возводится число a. На пересечении в ячейках определены значения чисел, являющиеся ответом (a c =b). Возьмем, к примеру, самую первую ячейку с числом 10 и возведем ее в квадрат, получим значение 100, которое указано на пересечении двух наших ячеек. Все так просто и легко, что поймет даже самый настоящий гуманитарий!

Уравнения и неравенства

Получается, что при определенных условиях показатель степени - это и есть логарифм. Следовательно, любые математические численные выражения можно записать в виде логарифмического равенства. Например, 3 4 =81 можно записать в виде логарифма числа 81 по основанию 3, равному четырем (log 3 81 = 4). Для отрицательных степеней правила такие же: 2 -5 = 1/32 запишем в виде логарифма, получим log 2 (1/32) = -5. Одной из самых увлекательных разделов математики является тема "логарифмы". Примеры и решения уравнений мы рассмотрим чуть ниже, сразу же после изучения их свойств. А сейчас давайте разберем, как выглядят неравенства и как их отличить от уравнений.

Дано выражение следующего вида: log 2 (x-1) > 3 - оно является логарифмическим неравенством, так как неизвестное значение "х" находится под знаком логарифма. А также в выражении сравниваются две величины: логарифм искомого числа по основанию два больше, чем число три.

Самое главное отличие между логарифмическими уравнениями и неравенствами заключается в том, что уравнения с логарифмами (пример - логарифм 2 x = √9) подразумевают в ответе одно или несколько определенных числовых значений, тогда как при решении неравенства определяются как область допустимых значений, так и точки разрыва этой функции. Как следствие, в ответе получается не простое множество отдельных чисел как в ответе уравнения, а а непрерывный ряд или набор чисел.

Основные теоремы о логарифмах

При решении примитивных заданий по нахождению значений логарифма, его свойства можно и не знать. Однако когда речь заходит о логарифмических уравнениях или неравенствах, в первую очередь, необходимо четко понимать и применять на практике все основные свойства логарифмов. С примерами уравнений мы познакомимся позже, давайте сначала разберем каждое свойство более подробно.

  1. Основное тождество выглядит так: а logaB =B. Оно применяется только при условии, когда а больше 0, не равно единице и B больше нуля.
  2. Логарифм произведения можно представить в следующей формуле: log d (s 1 *s 2) = log d s 1 + log d s 2. При этом обязательным условием является: d, s 1 и s 2 > 0; а≠1. Можно привести доказательство для этой формулы логарифмов, с примерами и решением. Пусть log a s 1 = f 1 и log a s 2 = f 2 , тогда a f1 = s 1 , a f2 = s 2. Получаем, что s 1 *s 2 = a f1 *a f2 = a f1+f2 (свойства степеней), а далее по определению: log a (s 1 *s 2)= f 1 + f 2 = log a s1 + log a s 2, что и требовалось доказать.
  3. Логарифм частного выглядит так: log a (s 1/ s 2) = log a s 1 - log a s 2.
  4. Теорема в виде формулы приобретает следующий вид: log a q b n = n/q log a b.

Называется эта формула "свойством степени логарифма". Она напоминает собой свойства обычных степеней, и неудивительно, ведь вся математика держится на закономерных постулатах. Давайте посмотрим на доказательство.

Пусть log a b = t, получается a t =b. Если возвести обе части в степень m: a tn = b n ;

но так как a tn = (a q) nt/q = b n , следовательно log a q b n = (n*t)/t, тогда log a q b n = n/q log a b. Теорема доказана.

Примеры задач и неравенств

Самые распространенные типы задач на тему логарифмов - примеры уравнений и неравенств. Они встречаются практически во всех задачниках, а также входят в обязательную часть экзаменов по математике. Для поступления в университет или сдачи вступительных испытаний по математике необходимо знать, как правильно решать подобные задания.

К сожалению, единого плана или схемы по решению и определению неизвестного значения логарифма не существует, однако к каждому математическому неравенству или логарифмическому уравнению можно применить определенные правила. Прежде всего следует выяснить, можно ли упростить выражение или привести к общему виду. Упрощать длинные логарифмические выражения можно, если правильно использовать их свойства. Давайте скорее с ними познакомимся.

При решении же логарифмических уравнений, следует определить, какой перед нами вид логарифма: пример выражения может содержать натуральный логарифм или же десятичный.

Вот примеры ln100, ln1026. Их решение сводится к тому, что нужно определить ту степень, в которой основание 10 будет равно 100 и 1026 соответственно. Для решений же натуральных логарифмов нужно применить логарифмические тождества или же их свойства. Давайте на примерах рассмотрим решение логарифмических задач разного типа.

Как использовать формулы логарифмов: с примерами и решениями

Итак, рассмотрим примеры использования основных теорем о логарифмах.

  1. Свойство логарифма произведения можно применять в заданиях, где необходимо разложить большое значение числа b на более простые сомножители. Например, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Ответ равен 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - как видите, применяя четвертое свойство степени логарифма, удалось решить на первый взгляд сложное и нерешаемое выражение. Необходимо всего лишь разложить основание на множители и затем вынести значения степени из знака логарифма.

Задания из ЕГЭ

Логарифмы часто встречаются на вступительных экзаменах, особенно много логарифмических задач в ЕГЭ (государственный экзамен для всех выпускников школ). Обычно эти задания присутствуют не только в части А (самая легкая тестовая часть экзамена), но и в части С (самые сложные и объемные задания). Экзамен подразумевает точное и идеальное знание темы "Натуральные логарифмы".

Примеры и решения задач взяты из официальных вариантов ЕГЭ. Давайте посмотрим, как решаются такие задания.

Дано log 2 (2x-1) = 4. Решение:
перепишем выражение, немного его упростив log 2 (2x-1) = 2 2 , по определению логарифма получим, что 2x-1 = 2 4 , следовательно 2x = 17; x = 8,5.

  • Все логарифмы лучше всего приводить к одному основанию, чтобы решение не было громоздким и запутанным.
  • Все выражение, стоящие под знаком логарифма, указываются как положительные, поэтому при вынесении множителем показателя степени выражения, который стоит под знаком логарифма и в качестве его основания, остающееся под логарифмом выражение должно быть положительно.

Рис. 16. Поведение функции f(x) = x4 4x3

При переходе через точку x = 0 производная не меняет знака: функция убывает как на промежутке (1; 0], так и на промежутке . Поэтому точка x = 0 является седловой точкой функции.

А вот при переходе через точку x = 3 производная меняет знак с () на (+). На промежутке {\displaystyle } . Простота этого определения, которое согласуется со многими другими формулами, в которых применяется данный логарифм, объясняет происхождение названия «натуральный».

Если рассматривать натуральный логарифм как вещественную функцию действительной переменной, то она является обратной функцией к экспоненциальной функции , что приводит к тождествам:

e ln ⁡ a = a (a > 0) ; {\displaystyle e^{\ln a}=a\quad (a>0);} ln ⁡ e a = a (a > 0) . {\displaystyle \ln e^{a}=a\quad (a>0).}

Подобно всем логарифмам, натуральный логарифм отображает умножение в сложение:

ln ⁡ x y = ln ⁡ x + ln ⁡ y . {\displaystyle \ln xy=\ln x+\ln y.}

Инструкция

Запишите заданное логарифмическое выражение. Если в выражении используется логарифм 10, то его запись укорачивается и выглядит так: lg b - это десятичный логарифм. Если же логарифм имеет в виде основания число е, то записывают выражение: ln b – натуральный логарифм. Подразумевается, что результатом любого является степень, в которую надо возвести число основания, чтобы получилось число b.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8

Видео по теме

Полезный совет

Выучите таблицу элементарных производных. Это заметно сэкономит время.

Источники:

  • производная константы

Итак, чем же отличается иррациональное уравнение от рационального? Если неизвестная переменная находиться под знаком квадратного корня, то уравнение считается иррациональным.

Инструкция

Основной метод решения таких уравнений - метод возведения обоих частей уравнения в квадрат. Впрочем. это естественно, первым делом необходимо избавиться от знака . Технически этот метод не сложен, но иногда это может привести к неприятностям. Например, уравнение v(2х-5)=v(4х-7). Возведя обе его стороны в квадрат, вы получите 2х-5=4х-7. Такое уравнение решить не составит труда; х=1. Но число 1 не будет являться данного уравнения . Почему? Подставьте единицу в уравнение вместо значения х.И в правой и в левой части будут содержаться выражения, не имеющие смысла, то есть . Такое значение не допустимо для квадратного корня. Поэтому 1 - посторонний корень, и следовательно данное уравнение не имеет корней.

Итак, иррациональное уравнение решается с помощью метода возведения в квадрат обоих его частей. И решив уравнение, необходимо обязательно , чтобы отсечь посторонние корни. Для этого подставьте найденные корни в оригинальное уравнение.

Рассмотрите еще один .
2х+vх-3=0
Конечно же, это уравнение можно решить по той же , что и предыдущее. Перенести составные уравнения , не имеющие квадратного корня, в правую часть и далее использовать метод возведения в квадрат. решить полученное рациональное уравнение и корни. Но и другой , более изящный. Введите новую переменную; vх=y. Соответственно, вы получите уравнение вида 2y2+y-3=0. То есть обычное квадратное уравнение. Найдите его корни; y1=1 и y2=-3/2. Далее решите два уравнения vх=1; vх=-3/2. Второе уравнение корней не имеет, из первого находим, что х=1. Не забудьте, о необходимости проверки корней.

Решать тождества достаточно просто. Для этого требуется совершать тождественные преобразования, пока поставленная цель не будет достигнута. Таким образом, при помощи простейших арифметических действий поставленная задача будет решена.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Простейший таких преобразований – алгебраические сокращенного умножения (такие как квадрат суммы (разности), разность квадратов, сумма (разность) , куб суммы (разности)). Кроме того существует множество и тригонометрических формул, которые по своей сути теми же тождествами.

Действительно, квадрат суммы двух слагаемых равен квадрату первого плюс удвоенное произведение первого на второе и плюс квадрат второго, то есть (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab+b^2.

Упростите обеих

Общие принципы решения

Повторите по учебнику по математическому анализу или высшей математике, что собой представляет определённый интеграл. Как известно, решение определенного интеграла есть функция, производная которой даст подынтегральное выражение. Данная функция называется первообразной. По данному принципу и строится основных интегралов.
Определите по виду подынтегральной функции, какой из табличных интегралов подходит в данном случае. Не всегда удается это определить сразу же. Зачастую, табличный вид становится заметен только после нескольких преобразований по упрощению подынтегральной функции.

Метод замены переменных

Если подынтегральной функцией является тригонометрическая функция, в аргументе которой некоторый многочлен, то попробуйте использовать метод замены переменных. Для того чтобы это сделать, замените многочлен, стоящий в аргументе подынтегральной функции, на некоторую новую переменную. По соотношению между новой и старой переменной определите новые пределы интегрирования. Дифференцированием данного выражения найдите новый дифференциал в . Таким образом, вы получите новый вид прежнего интеграла, близкий или даже соответствующий какому-либо табличному.

Решение интегралов второго рода

Если интеграл является интегралом второго рода, векторный вид подынтегральной функции, то вам будет необходимо пользоваться правилами перехода от данных интегралов к скалярным. Одним из таких правил является соотношение Остроградского-Гаусса. Данный закон позволяет перейти от потока ротора некоторой векторной функции к тройному интегралу по дивергенции данного векторного поля.

Подстановка пределов интегрирования

После нахождения первообразной необходимо подставить пределы интегрирования. Сначала подставьте значение верхнего предела в выражение для первообразной. Вы получите некоторое число. Далее вычтите из полученного числа другое число, полученное нижнего предела в первообразную. Если один из пределов интегрирования является бесконечностью, то при подстановке ее в первообразную функцию необходимо перейти к пределу и найти, к чему стремится выражение.
Если интеграл является двумерным или трехмерным, то вам придется изображать геометрически пределы интегрирования, чтобы понимать, как рассчитывать интеграл. Ведь в случае, скажем, трехмерного интеграла пределами интегрирования могут быть целые плоскости, ограничивающие интегрируемый объем.

Функция LN в Excel предназначена для расчета натурального логарифма числа и возвращает соответствующее числовое значение. Натуральным логарифмом является логарифм с основанием e (число Эйлера, равное примерно 2,718).

Функция LOG в Excel используется для расчета логарифма числа, при этом основание логарифма может быть указано явно в качестве второго аргумента данной функции.

Функция LOG10 в Excel предназначена для расчета логарифма числа с основанием 10 (десятичный логарифм).

Примеры использования функций LN, LOG и LOG10 в Excel

Археологи нашли останки древнего животного. Для определения их возраста было решено воспользоваться методом радиоуглеродного анализа. В результате замеров оказалось, что содержание радиоактивного изотопа C 14 составило 17% от количества, которое обычно содержится в живых организмах. Рассчитать возраст останков, если период полураспада изотопа углерода 14 составляет 5760 лет.

Вид исходной таблицы:

Для решения используем следующую формулу:

Данная формула была получена на основе формулы x=t*(lgB-lgq)/lgp, где:

  • q – количество изотопа углерода в начальный момент (в момент смерти животного), выраженное единицей (или 100%);
  • B – количество изотопа в момент проведения анализа останков;
  • t – период полураспада изотопа;
  • p – числовое значение, указывающее, во сколько раз изменяется количество вещества (изотопа углерода) за период времени t.

В результате вычислений получим:


Найденным останкам почти 15 тыс. лет.



Депозитный калькулятор со сложным процентом в Excel

Клиент банка внес депозит на сумму 50000 рублей с процентной ставкой 14,5% (сложные проценты). Определить, сколько времени потребуется на удвоение вложенной суммы?

Интересный факт! Для быстрого решения данной задачи можно воспользоваться эмпирическим способом приблизительной оценки сроков (в годах) на удвоение инвестиций, вложенных под сложный процент. Так называемое правило 72 (или 70 или правило 69). Для этого нужно воспользоваться простой формулой – число 72 разделить на процентную ставку: 72/14,5 = 4,9655 лет. Главный недостаток правила «магического» числа 72 заключается в погрешности. Чем выше процентная ставка, тем выше погрешность в правиле 72. Например, при процентной ставки 100% годовых погрешность в годах достигает до 0,72 (а в процентах это аж 28%!).

Для точного расчета сроков удвоения инвестиций будем использовать функцию LOG. За одно и проверим величину погрешности правила 72 при процентной ставке 14,5% годовых.

Вид исходной таблицы:

Для расчета будущей стоимости инвестиции при известной процентной ставке можно использовать следующую формулу: S=A(100%+n%) t , где:

  • S – ожидаемая сумма по истечению срока;
  • A – размер депозита;
  • n – процентная ставка;
  • t – срок хранения депозитных средств в банке.

Для данного примера эту формулу можно записать как 100000=50000*(100%+14,5%) t или 2=(100%+14,5%) t . Тогда для нахождения t можно переписать уравнение как t=log (114,5%) 2 или t=log 1,1452 .

Для нахождения значения t запишем следующую формулу сложного процента по депозиту в Excel:

LOG(B4/B2;1+B3)

Описание аргументов:

  • B4/B2 – соотношение ожидаемой и начальной сумм, которое является показателем логарифма;
  • 1+B3 – прирост процентов (основание логарифма).

В результате расчетов получим:

Депозит удвоится спустя немного более чем 5 лет. Для точного определения лет и месяцев воспользуемся формулой:

Функция ОТБР отбрасывает в дробном числе все что после запятой подобно функции ЦЕЛОЕ. Разница между функциями ОТБР и ЦЕЛОЕ заключается лишь в расчетах с отрицательными дробными числами. Кроме того, ОТБР имеет второй аргумент где можно указать количество оставляемых знаков после запятой. Поэтом в данном случаи можно воспользоваться любой из этих двух функций на выбор пользователя.


Получилось 5 лет и 1 месяц и 12 дней. Теперь сравним точные результаты с правилом 72 и определим величину погрешности. Для данного примера формула, следующая:

Мы должны умножить значение ячейки B3 на 100 так как ее текущее значение 0,145, которое отображается в процентном формате. В результате:

После скопируем формулу из ячейки B6 в ячейку B8, а в ячейке B9:


Посчитаем сроки погрешности:

Затем в ячейку B10 снова скопируем формулу из ячейки B6. В результате получим разницу:


И наконец посчитаем разницу в процентах, чтобы проверить как изменяется размер отклонения и насколько существенно влияет рост процентной ставки на уровень расхождения правила 72 и факта:

Теперь для наглядности пропорциональной зависимости роста погрешности и роста уровня процентной ставки повысим процентную ставку до 100% годовых:

На первый взгляд разница погрешности не существенная по сравнению с 14,5% годовых - всего около 2-ух месяцев и 100% годовых - в пределах 3-х месяцев. Но доля погрешности в сроках окупаемости более чем ¼, а точнее 28%.

Составим простой график для визуального анализа как коррелируется зависимость изменения процентной ставки и процента погрешности правила 72 от факта:


Чем выше процентная ставка, тем хуже работает правило 72. В итоге можно сделать следующий вывод: до 32,2% процентов годовых можно смело пользоваться правилом 72. Тогда погрешность составляет менее 10-ти процентов. Вполне сойдет если не требуются точные, но сложные расчеты по срокам окупаемости инвестиций в 2 раза.

Инвестиционный калькулятор сложных процентов с капитализацией в Excel

Клиенту банка предложили сделать вклад с непрерывным ростом итоговой суммы (капитализация со сложными процентами). Процентная ставка составляет 13% годовых. Определить, сколько потребуется времени, чтобы утроить начальную сумму (250000 рублей). Насколько необходимо увеличить процентную ставку, чтобы уменьшить время ожидания вдвое?

Примечание: так как мы в данном примере утраиваем сумму вложений, то здесь уже правило 72 не работает.

Вид исходной таблицы данных:

Непрерывный рост может быть описан формулой ln(N)=p*t, где:

  • N – отношение конечной суммы вклада к начальной;
  • p – процентная ставка;
  • t – количество лет, прошедших с момента внесения депозита.

Тогда t=ln(N)/p. Исходя из этого равенства запишем формулу в Excel:

Описание аргументов:

  • B3/B2 – соотношение конечной и начальной сумм депозита;
  • B4 – процентная ставка.

На утроение начальной суммы вклада потребуется почти 8,5 лет. Для расчета ставки, которая позволит сократить время ожидания вдвое, используем формулу:

LN(B3/B2)/(0,5*B5)

Полученный результат:

То есть, необходимо удвоить начальную процентную ставку.

Особенности использования функций LN, LOG и LOG10 в Excel

Функция LN имеет следующий синтаксис:

LN(число )

Примечания:

  1. Функция LN является обратной функцией EXP. Последняя возвращает значение, полученное в результате возведения числа e в указанную степень. Функция LN указывает, в какую степень необходимо возвести число e (основание), чтобы получить показатель логарифма (аргумент число).
  2. Если аргумент число задан числом из диапазона отрицательных значений или нулем, результатом выполнения функции LN будет код ошибки #ЧИСЛО!.

Синтаксис функции LOG имеет следующий вид:

LOG(число ;[основание])

Описание аргументов:

  • число – обязательный для заполнения аргумент, характеризующий числовое значение показателя логарифма, то есть число, полученное в результате возведения основания логарифма в некоторую степень, которая и будет вычислена функцией LOG;
  • [основание] – необязательный для заполнения аргумент, характеризующий числовое значение основания логарифма. Если аргумент явно не указан, логарифм считается десятичным (то есть основание равно 10).

Примечания:

  1. Несмотря на то, что результат вычисления функции LOG может являться отрицательным числом (например, функция =LOG(2;0,25) вернет значение -0,5), аргументы данной функции должны быть взяты из диапазона положительных значений. Если хотя бы один из аргументов является отрицательным числом, функция LOG вернет код ошибки #ЧИСЛО!.
  2. Если в качестве аргумента [основание] было передано значение 1, функция LOG вернет код ошибки #ДЕЛ/0!, поскольку результат возведения 1 в любую степень будет всегда одинаковым и равным 1.

Функция LOG10 имеет следующую синтаксическую запись:

LOG10(число )

  • число – единственный и обязательный для заполнения аргумент, смысл которого тождественен одноименному аргументу функций LN и LOG.

Примечание: если в качестве аргумента число было передано отрицательное число или 0, функция LOG10 вернет код ошибки #ЧИСЛО!.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва