Как образуется рентгеновское излучение. Основные свойства рентгеновского излучения

В 1895 году немецкий физик В.Рентген открыл новый, не известный ранее вид электромагнитного излучения, которое в честь его первооткрывателя было названо рентгеновским. В. Рентген стал автором своего открытия в возрасте 50 лет, занимая пост ректора Вюрцбургского Университета и имея репутацию одного из лучших экспериментаторов своего времени. Одним из первых нашел техническое применение открытию Рентгена американец Эдисон. Он создал удобный демонстрационный аппарат и уже в мае 1896 года организовал в Нью-Йорке рентгеновскую выставку, на которой посетители могли разглядывать собственную руку на светящемся экране. После того, как помощник Эдисона умер от тяжелых ожогов, которые он получил при постоянных демонстрациях, изобретатель прекратил дальнейшие опыты с рентгеновскими лучами.

Рентгеновское излучение стали применять в медицине в связи с его большой проникающей способностью. Поначалу, рентгеновское излучение использовалось для исследования переломов костей и определения местоположения инородных тел в теле человека. В настоящее время существует несколько методов, основанных на рентгеновском излучении. Но у данных методов есть свои недостатки: излучение может вызвать глубокие повреждения кожи. Появлявшиеся язвы нередко переходили в рак. Во многих случаях приходилось ампутировать пальцы или руки. Рентгеноскопия (синоним просвечивание) — один из основных методов рентгенологического исследования, состоящий в получении на просвечивающем (флюоресцирующем) экране плоскостного позитивного изображения исследуемого объекта. При рентгеноскопии исследуемый находится между просвечивающим экраном и рентгеновской трубкой. На современных рентгеновских просвечивающих экранах изображение возникает в момент включения рентгеновской трубки и исчезает сразу же после ее выключения. Рентгеноскопия дает возможность изучить функцию органа - пульсацию сердца, дыхательные движения ребер, легких, диафрагмы, перистальтику органов пищеварительного тракта и т.д. Рентгеноскопия используется при лечении заболеваний желудка, желудочно-кишечного тракта, 12-перстной кишки, заболеваний печени, желчного пузыря и желчевыводящих путей. При этом медицинский зонд и манипуляторы вводят без повреждения тканей, а действия в процессе операции контролируются рентгеноскопией и видны на мониторе.
Рентгенография - метод рентгенодиагностики с регистрацией неподвижного изображения на светочувствительном материале - спец. фотоплёнке (рентгеновской плёнке) или фотобумаге с последующей фотообработкой; при цифровой рентгенографии изображение фиксируется в памяти компьютера. Выполняется на рентгенодиагностических аппаратах - стационарных, установленных в специально оборудованных рентгеновских кабинетах, или передвижных и переносных - у постели больного или в операционной. На рентгенограммах значительно отчетливей, чем на флюоресцирующем экране, отображаются элементы структур различных органов. Рентгенографию выполняют в целях выявления и профилактики различных заболеваний, основная цель её помочь врачам разных специальностей правильно и быстро поставить диагноз. Рентгеновский снимок фиксирует состояние органа или ткани лишь в момент съемки. Однако однократная рентгенограмма фиксирует только анатомические изменения в определенный момент, она дает статику процесса; посредством серии рентгенограмм, произведенных через определенные промежутки времени, можно изучить динамику процесса, то есть функциональные изменения. Томография. Слово томография можно перевести с греческого как «изображение среза». Это означает, что назначение томографии - получение послойного изображения внутренней структуры объекта исследования. Компьютерная томогарфия характеризуется высоким разрешением, которое дает возможность различать тонкие изменения мягких тканей. КТ позволяет обнаружить такие патологические процессы, которые не могут быть обнаружены другими методами. Кроме того, использование КT позволяет уменьшить дозу рентгеновского излучения, получаемого в процессе диагностики пациентами.
Флюорография - диагностический метод, позволяющий получить изображение органов и тканей, был разработан еще в конце 20-го столетия, спустя год после того, как были обнаружены рентгеновские лучи. На снимках можно разглядеть склероз, фиброз, инородные предметы, новообразования, воспаления, имеющие развитую степень, присутствие в полостях газов и инфильтрата, абсцессы, кисты и так далее. Чаще всего производится флюорография грудной клетки, позволяющая выявить туберкулез, злокачественную опухоль в легких или груди и иные патологии.
Рентгенотерапия — это современный метод, с помощью которого производится лечение некоторых патологий суставов. Основными направлениями лечения ортопедических заболеваний данным методом, являются: Хронические. Воспалительные процессы суставов (артрит, полиартрит); Дегенеративные (остеоартроз, остеохондроз, деформирующий спондилез). Целью рентгенотерапии является угнетение жизнедеятельности клеток патологически изменённых тканей или полное их разрушение. При неопухолевых заболеваниях рентгенотерапия направлена на подавление воспалительной реакции, угнетение пролиферативных процессов, снижение болевой чувствительности и секреторной активности желёз. Следует учитывать, что наиболее чувствительны к рентгеновским лучам половые железы, кроветворные органы, лейкоциты, клетки злокачественных опухолей. Дозу облучения в каждом конкретном случае определяют индивидуально.

За открытие рентгеновских лучей Рентгену в 1901 году была присуждена первая Нобелевская премия по физике, причём нобелевский комитет подчёркивал практическую важность его открытия.
Таким образом, рентгеновские лучи представляют собой невидимое электромагнитное излучение с длиной волны 105 - 102 нм. Рентгеновские лучи могут проникать через некоторые непрозрачные для видимого света материалы. Испускаются они при торможении быстрых электронов в веществе (непрерывный спектр) и при переходах электронов с внешних электронных оболочек атома на внутренние (линейчастый спектр). Источниками рентгеновского излучения являются: рентгеновская трубка, некоторые радиоактивные изотопы, ускорители и накопители электронов (синхротронное излучение). Приемники - фотопленка, люминисцентные экраны, детекторы ядерных излучений. Рентгеновские лучи применяют в рентгеноструктурном анализе, медицине, дефектоскопии, рентгеновском спектральном анализе и т.п.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучениями и представляет собой электромагнитное излучение с длиной волны от 10 -14 до 10 -7 м. В медицине используется рентгеновское излучение с длиной волны от 5 х 10 -12 до 2,5 х 10 -10 м, то есть 0,05 – 2,5 ангсмтрема, а собственно для рентгенодиагностики – 0,1 ангстрема. Излучение представляет собой поток квантов (фотонов), распространяющихся прямолинейно со скоростью света (300 000 км/с). Эти кванты не имеют электрического заряда. Масса кванта со­ставляет ничтожную часть атомной единицы массы.

Энергию квантов измеряют в Джоулях (Дж), но на практике часто пользуются внесистемной единицей "электрон-вольт" (эВ) . Один электрон-вольт - это энергия, которую приобретает один электрон, пройдя в электриче­ском поле разность потенциалов в 1 вольт. 1 эВ = 1,6 10~ 19 Дж. Производными являются килоэлектрон-вольт (кэВ), равный тысяче эВ, и мегаэлектрон-вольт (МэВ), равный миллиону эВ.

Рентгеновские лучи получают с помощью рентгеновских трубок, линейных ускорителей и бетатронов. В рентгеновской трубке разность потенциалов между катодом и анодом-мишенью (десятки киловольт) ускоряет электроны, бомбардирующие анод. Рентгеновское излучение возникает при торможении быстрых электронов в электрическом поле атомов вещества анода (тормозное излучение) или при перестрой­ке внутренних оболочек атомов (характеристическое излучение ) . Характеристическое рентгеновское излучение имеет дискретный характер и возникает при переходе электронов атомов вещества анода с одного энергетического уровня на другой под воздействием внеш­них электронов или квантов излучения. Тормозное рентгеновское излучение имеет непрерывный спектр, зависящий от анодного напря­жения на рентгеновской трубке. При торможении в веществе анода электроны большую часть своей энергии расходуют на нагрев анода (99%) и лишь малая доля (1%) превра­щается в энергию рентгеновского излучения. В рентгенодиагностике чаще всего используется тормозное излучение.

Основные свойства рентгеновских лучей характерны для всех электромагнитных излучений, однако существуют некоторые особенности. Рентгеновские лучи обладают следующими свойствами:

- невидимость - чувствительные клетки сетчатки глаза человека не реа­гируют на рентгеновские лучи, так как длина их волны в тысячи раз меньше, чем у видимого света;

- прямолинейное распространение – лучи преломляются, поляризуются (распространяются в определенной плоскости) и дифрагируют, как и видимый свет. Коэффициент преломления очень мало отличается от единицы;



- проникающая способность - проникают без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение;

- способность к поглощению - обладают способностью поглощаться тканями организма, на этом основана вся рентгенодиагностика. Способность к поглощению зависит от удельного веса тканей (чем больше, тем больше поглощение); от толщины объекта; от жесткости излучения;

- фотографическое действие - разлагают галоидные соеди­нения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет полу­чать рентгеновские снимки;

- люминесцирующее действие - вызывают люминесценцию ряда химических соединений (люминофоров), на этом осно­вана методика рентгеновского просвечивания. Интенсивность свечения зависит от строения флюоресцирующего вещества, его количества и расстояния от источника рентгеновского излучения. Люминофоры используют не только для получения изображения исследуемых объектов на рентгеноскопическом экране, но и при рентгенографии, где они позволяют увеличить лучевое воздействие на рентгенографическую пленку в кассете благодаря примене­нию усиливающих экранов, поверхностный слой которых выполнен из флюо­ресцирующих веществ;

- ионизационное действие - обладают способностью вызывать распад нейтральных атомов на положительно и отрицательно заряженные частицы, на этом основана дозиметрия. Эффект ионизации любой среды заключается в образовании в ней положительных и отрицательных ионов, а также свободных электронов из нейтральных атомов и молекул вещества. Ионизация воздуха в рентгеновском кабинете при работе рентгеновской трубки приводит к увеличению электрической проводимости воздуха, усилению статических электрических зарядов на предметах кабинета. С целью устранения такого нежелательного влияния их в рентгеновских кабинетах предусмотрена принудительная приточно-вытяжная вентиляция;

- биологическое действие - оказывают воздействие на биологические объекты, в большинстве случаев это воздействие является вредным;

- закон обратных квадратов - для точечного источника рентгеновского излучения интенсивность убывает пропорционально квадра­ту расстояния до источника.

Министерство образования и науки РФ

Федеральное агентство по образованию

ГОУ ВПО ЮУрГУ

Кафедра физической химии

по курсу КСЕ: “Рентгеновское излучение”

Выполнил:

Наумова Дарья Геннадиевна

Проверил:

Доцент, К. Т.Н.

Танклевская Н.М.

Челябинск 2010 г.

Введение

Глава I. Открытие рентгеновского излучения

Получение

Взаимодействие с веществом

Биологическое воздействие

Регистрация

Применение

Как делают рентгеновский снимок

Естественное рентгеновское излучение

Глава II. Рентгентография

Применение

Метод получения изображения

Преимущества рентгенографии

Недостатки рентгенографии

Рентгеноскопия

Принцип получения

Преимущества рентгеноскопии

Недостатки рентгеноскопии

Цифровые технологии в рентгеноскопии

Многострочный сканирующий метод

Заключение

Список использованной литературы

Введение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых определяется диапазоном энергией от ультрафиолетовых до гамма-излучений, что соответствует интервалу длин волн от 10−4 до 10² Å (от 10−14 до 10−8 м).

Как и видимый свет, рентгеновское излучение вызывает почернение фотопленки. Это его свойство имеет важное значение для медицины, промышленности и научных исследований. Проходя сквозь исследуемый объект и падая затем на фотопленку, рентгеновское излучение изображает на ней его внутреннюю структуру. Поскольку проникающая способность рентгеновского излучения различна для разных материалов, менее прозрачные для него части объекта дают более светлые участки на фотоснимке, чем те, через которые излучение проникает хорошо. Так, костные ткани менее прозрачны для рентгеновского излучения, чем ткани, из которых состоит кожа и внутренние органы. Поэтому на рентгенограмме кости обозначатся как более светлые участки и более прозрачное для излучения место перелома может быть достаточно легко обнаружено. Рентгеновская съемка используется также в стоматологии для обнаружения кариеса и абсцессов в корнях зубов, а также в промышленности для обнаружения трещин в литье, пластмассах и резинах.

Рентгеновское излучение используется в химии для анализа соединений и в физике для исследования структуры кристаллов. Пучок рентгеновского излучения, проходя через химическое соединение, вызывает характерное вторичное излучение, спектроскопический анализ которого позволяет химику установить состав соединения. При падении на кристаллическое вещество пучок рентгеновских лучей рассеивается атомами кристалла, давая четкую правильную картину пятен и полос на фотопластинке, позволяющую установить внутреннюю структуру кристалла.

Применение рентгеновского излучения при лечении рака основано на том, что оно убивает раковые клетки. Однако оно может оказать нежелательное влияние и на нормальные клетки. Поэтому при таком использовании рентгеновского излучения должна соблюдаться крайняя осторожность.

Глава I. Открытие рентгеновского излучения

Открытие рентгеновского излучения приписывается Вильгельму Конраду Рентгену. Он был первым, кто опубликовал статью о рентгеновских лучах, которые он назвал икс-лучами (x-ray). Статья Рентгена под названием "О новом типе лучей" была опубликована 28-го декабря 1895 года в журнале Вюрцбургского физико-медицинского общества. Считается, однако, доказанным, что рентгеновские лучи были уже получены до этого. Катодолучевая трубка, которую Рентген использовал в своих экспериментах, была разработана Й. Хитторфом и В. Круксом. При работе этой трубки возникают рентгеновские лучи. Это было показано в экспериментах Крукса и с 1892 года в экспериментах Генриха Герца и его ученика Филиппа Ленарда через почернение фотопластинок. Однако никто из них не осознал значения сделанного ими открытия и не опубликовал своих результатов. Также Никола Тесла, начиная с 1897 года, экспериментировал с катодолучевыми трубками, получил рентгеновские лучи, но не опубликовал своих результатов.

По этой причине Рентген не знал о сделанных до него открытиях и открыл лучи, названные впоследствие его именем, независимо - при наблюдении флюоресценции, возникающей при работе катодолучевой трубки. Рентген занимался Х-лучами немногим более года (с 8 ноября 1895 года по март 1897 года) и опубликовал о них всего три сравнительно небольших статьи, но в них было дано столь исчерпывающее описание новых лучей, что сотни работ его последователей, опубликованных затем на протяжении 12 лет, не могли ни прибавить, ни изменить ничего существенного. Рентген, потерявший интерес к Х-лучам, говорил своим коллегам: "Я уже всё написал, не тратьте зря время". Свой вклад в известность Рентгена внесла также знаменитая фотография руки его жены, которую он опубликовал в своей статье (см. изображение справа). Подобная слава принесла Рентгену в 1901 году первую Нобелевскую премию по физике, причём нобелевский комитет подчёркивал практическую важность его открытия. В 1896 году впервые было употреблено название "рентгеновские лучи". В некоторых странах осталось старое название - X-лучи. В России лучи стали называть "рентгеновскими" с подачи ученика В.К. Рентгена - Абрама Фёдоровича Иоффе.

Положение на шкале электромагнитных волн

Энергетические диапазоны рентгеновского излучения и гамма-излучения перекрываются в широкой области энергий. Оба типа излучения являются электромагнитным излучением и при одинаковой энергии фотонов - эквивалентны. Терминологическое различие лежит в способе возникновения - рентгеновские лучи испускаются при участии электронов (либо в атомах, либо свободных) в то время как гамма-излучение испускается в процессах девозбуждения атомных ядер. Фотоны рентгеновского излучения имеют энергию от 100 эВ до 250 кэВ, что соответствует излучению с частотой от 3·1016 Гц до 6·1019 Гц и длиной волны 0,005 - 10 нм (общепризнанного определения нижней границы диапазона рентгеновских лучей в шкале длин волн не существует). Мягкий рентген характеризуется наименьшей энергией фотона и частотой излучения (и наибольшей длиной волны), а жёсткий рентген обладает наибольшей энергией фотона и частотой излучения (и наименьшей длиной волны).

(Рентгеновская фотография (рентгенограмма) руки своей жены, сделанная В.К. Рентгеном)

)

Получение

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (в основном электронов) либо же при высокоэнергетичных переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках, в которых электроны, испущенные раскалённым катодом, ускоряются (при этом рентгеновские лучи не испускаются, т.к ускорение слишком мало) и ударяются об анод, где они резко тормозятся (при этом испускаются рентгеновские лучи: т. н. тормозное излучение) и в то же время выбивают электроны из внутренних электронных оболочек атомов металла, из которого сделан анод. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с определённой, характерной для материала анода, энергией (характеристическое излучение, частоты определяются законом Мозли:

,

где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготовляются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена. В процессе ускорения-торможения лишь 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Т.н. синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Схематическое изображение рентгеновской трубки. X - рентгеновские лучи, K - катод, А - анод (иногда называемый антикатодом), С - теплоотвод, Uh - напряжение накала катода, Ua - ускоряющее напряжение, Win - впуск водяного охлаждения, Wout - выпуск водяного охлаждения (см. рентгеновская трубка).

Взаимодействие с веществом

Коэффициент преломления почти любого вещества для рентгеновских лучей мало отличается от единицы. Следствием этого является тот факт, что не существует материала, из которого можно было бы изготовить линзу для рентгеновских лучей. Кроме того, при перпендикулярном падении на поверхность рентгеновские лучи почти не отражаются. Несмотря на это, в рентгеновской оптике были найдены способы построения оптических элементов для рентгеновских лучей.

Рентгеновские лучи могут проникать сквозь вещество, причём различные вещества по-разному их поглощают. Поглощение рентгеновских лучей является важнейшим их свойством в рентгеновской съёмке. Интенсивность рентгеновских лучей экспоненциально убывает в зависимости от пройденного пути в поглощающем слое (I = I0e-kd, где d - толщина слоя, коэффициент k пропорционален Z3λ3, Z - атомный номер элемента, λ - длина волны).

Поглощение происходит в результате фотопоглощения и комптоновского рассеяния:

Под фотопоглощением понимается процесс выбивания фотоном электрона из оболочки атома, для чего требуется, чтобы энергия фотона была больше некоторого минимального значения. Если рассматривать вероятность акта поглощения в зависимости от энергии фотона, то при достижении определённой энергии она (вероятность) резко возрастает до своего максимального значения. Для более высоких значений энергии вероятность непрерывно уменьшается. По причине такой зависимости говорят, что существует граница поглощения. Место выбитого при акте поглощения электрона занимает другой электрон, при этом испускается излучение с меньшей энергией фотона, происходит т. н. процесс флюоресценции.

Огромную роль в современной медицине играет рентгеновское излучение, история открытия рентгена берет свое начало еще в 19 веке.

Рентгеновское излучение представляет собой электромагнитные волны, которые образуются при участии электронов. При сильном ускорении заряженных частиц создается искусственное рентгеновское излучение. Оно проходит через специальное оборудование:

  • ускорители заряженных частиц.

История открытия

Изобрел данные лучи 1895 году немецкий ученый Рентген: во время работы с катодолучевой трубкой он обнаружил эффект флуоресценции платино-цианистого бария. Тогда и произошло описание таких лучей и их удивительной способности проникать сквозь ткани организма. Лучи стали называться икс-лучами (х-лучи). Позже в России их стали именовать рентгеновскими.

Х-лучи способны проникать даже сквозь стены. Так Рентген осознал, что сделал величайшее открытие в области медицины. Именно с этого времени стали формироваться отдельные разделы в науке, такие как рентгенология и радиология.

Лучи способны проникать сквозь мягкие ткани, но задерживаются, длина их определяется препятствием твердой поверхности. Мягкие ткани в человеческом организме — это кожа, а твердые — это кости. В 1901 году ученому присудили Нобелевскую премию.

Однако еще до открытия Вильгельма Конрада Рентгена подобной темой были заинтересованы и другие ученые. В 1853 году французский физик Антуан-Филибер Масон изучал высоковольтный разряд между электродами в стеклянной трубке. Содержащийся в ней газ при низком давлении начал выпускать красноватое свечение. Откачивание лишнего газа из трубки привело к распаду свечения на сложную последовательность отдельных светящихся слоев, оттенок которых зависел от количества газа.

В 1878 году Уильям Крукс (английский физик) высказал предположение о том, что флуоресценция возникает вследствие ударения лучей о стеклянную поверхность трубки. Но все эти исследования не были нигде опубликованы, поэтому Рентген не догадывался о подобных открытиях. После опубликования своих открытий в 1895 году в научном журнале, где ученый писал о том, что все тела прозрачны для этих лучей, хотя и в весьма различной степени, подобными экспериментами заинтересовались и другие ученые. Они подтвердили изобретение Рентгена, и в дальнейшем начались разработки и усовершенствование икс-лучей.

Сам Вильгельм Рентген опубликовал еще две научные работы по теме икс-лучей в 1896 и 1897 годах, после чего занялся другой деятельностью. Таким образом, изобрели несколько ученых, но именно Рентген опубликовал научные труды по этому поводу.


Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.


Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Как работает рентген и где применяется

  1. В медицине. Рентгенодиагностика применяется для просвечивания живых тканей с целью выявления некоторых нарушений внутри организма. Рентгенотерапия проводится для устранения опухолевых образований.
  2. В науке. Выявляется строение веществ и природа рентгеновских лучей. Этими вопросами занимаются такие науки, как химия, биохимия, кристаллография.
  3. В промышленности. Для выявления нарушений в металлических изделиях.
  4. Для безопасности населения. Рентгенологические лучи установлены в аэропортах и других общественных местах с целью просвечивания багажа.


Медицинское использование рентгенологического излучения. В медицине и стоматологии широко применяются рентгеновские лучи в следующих целях:

  1. Для диагностирования болезней.
  2. Для мониторинга метаболических процессов.
  3. Для лечения многих заболеваний.

Применение рентген-лучей в лечебных целях

Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:

  1. Для уничтожения раковых клеток.
  2. Для уменьшения размера опухоли.
  3. Для снижения болевых ощущений.

Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни. В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как и компьютерная осевая томография.

Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.


Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

Хотя ученые открыли эффект рентгена только начиная с 1890-х, применение рентгеновского излучения в медицине для этой природной силы прошло быстро. Сегодня на благо человечества рентгеновское электромагнитное излучение используется в медицине, научных кругах и промышленности, а также для генерации электроэнергии.

Кроме того излучение имеет полезные приложения в таких областях, как сельское хозяйство, археология, космос, работа на правоохранительные органы, геология (включая горнодобывающую промышленность) и многие другие виды деятельности, даже разрабатываются автомобили с применением явления ядерного деления.

Медицинское использование рентгеновского излучения

В медицинских учреждениях врачи и стоматологи используют различные ядерные материалы и процедуры для диагностики, мониторинга и лечения широкого ассортимента метаболических процессов и заболеваний в организме человека. В результате медицинские процедуры с использованием лучей спасли тысячи жизней путем выявления и лечения заболеваний, начиная от гиперфункции щитовидной железы до рака кости.

Наиболее распространенные из этих медицинских процедур включают использование лучей, которые могут пройти через нашу кожу. Когда выполняется снимок, наши кости и другие структуры как бы отбрасывают тени, потому что они плотнее, чем наша кожа, и эти тени могут быть обнаружены на пленке или экране монитора. Эффект похож на размещение карандаша между листом бумаги и светом. Тень от карандаша будет видна на листе бумаги. Разница заключается в том, что лучи невидимы, так что необходим регистрирующий элемент, что-то типа фотоплёнки. Это позволяет врачам и стоматологам оценить применение рентгеновского излучения увидев сломанные кости или проблемы с зубами.

Применение рентгеновского излучения в лечебных целях

Применение рентгеновского излучения целевым образом в лечебных целях не только для обнаружения повреждений. При специализированном использовании, оно предназначено, чтобы убить раковые ткани, уменьшить размер опухоли или уменьшить боль. Например, радиоактивный йод (в частности йод-131) часто используется для лечения рака щитовидной железы, от заболевания от которой страдает много людей.

Аппараты использующие это свойство также подключаются к компьютерам и сканируют, называясь: компьютерная осевая томография или компьютерная томография.

Эти инструменты обеспечивают врачам цветное изображение, которое показывает очертания и детали внутренних органов. Это помогает врачам обнаруживать и идентифицировать опухоли, размер аномалий или другие проблемы физиологических или функциональных органов.
Кроме того больницы и радиологические центры выполняют миллионы процедур ежегодно. В таких процедурах врачи запускают слегка радиоактивные вещества в тело пациентов, чтобы посмотреть некоторые внутренние органы, например, поджелудочную железу, почки, щитовидную железу, печень или головной мозг, для диагностики клинических условий.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва