Использование датчиков при разработке робота. Робот объезжающий и избегающий препятствия Типы индуктивных датчиков

Часть робота представляет собой плату, поэтому можно не бояться, что провода робота попадут ему в колеса. Создать такого робота сможет даже новичок при появлении должного уровня энтузиазма. Рассмотрим подробнее, как же можно создать такого робота.

Материалы и инструменты для изготовления:
- непосредственно платформа Arduino;
- два моторчика с редукторами;
- макет;
- транзистор для управления двигателями;
- макетная плата среднего размера;
- планка небольших размеров для основной платформы;
- ИК-датчик (для определения расстояния);
- один прочный шарик;
- проволока;
- клей;
- колеса;
- резиночки;
- коллекторы;
- лента;
- батарейки и корпус для них.


Из инструментов понадобится паяльник, ножовка и отвертка.

Процесс изготовления робота:

Шаг первый. Изготовление шасси
Шасси устанавливаются в том месте, где будут монтироваться двигатели. А крепится, моторчики будут с помощью клея. Чтобы прикрепить колеса используют две угловые скобки. Чтобы их прикрепить используется суперклей, но надежнее бы их было зафиксировать с помощью болтов с гайками.
Небольшой мраморный шарик нужно обмотать проводами, но его верхняя часть должна быть свободной. К макетной плате припаиваются два провода.







Шаг второй. Как сделать колеса для робота

В качестве колес подойдут любые от детских игрушек подходящего размера. Если же таковых не имеется, то колеса можно изготовить самому из крышек от бутылок, для этого по их центру сверлятся отверстия. Важно при этом, чтобы колеса были хорошо отцентрированы, иначе робот будет ездить криво.




Шаг третий. Как работает двигатель
Для того чтобы управлять двигателями хорошо подойдет чип H-Bridge Motor Driver 1A - SN754410. Благодаря этому устройству можно управлять сразу двумя двигателями, которые вращаются в разных направлениях. Подробнее, как происходит подключение двигателей, можно узнать из схемы. Бывает, что от большой нагрузки чипы начинают греться, эта проблема решается установкой радиатора.






Шаг четвертый. Зачем нужен ИК-датчик
ИК-датчик нужен для того, чтобы робот мог определять перед собой препятствия. Как только оно возникает, датчик сразу же посылает сигнал. Чтобы ИК-датчик работал в любое время суток и при любых условиях на робота устанавливают красный светодиод. Датчик подключается к девятому контакту Arduino. С помощью других контактов робот будет питаться.


Шаг пятый. Устройство мозга робота
Для управления робота используется платформа freeduino, она является ничем иным как клоном платформы Ardunio. Помимо этого можно использовать платформу обучающего типа picaxe или любой другой микроконтроллер. Сперва для Arduino нужно сделать основной макет, для этого необходимо нарисовать линию через всю макетную плату. Она должна охватывать контакты от 8 до 13, а также первые четыре контакта в нижнем ряду.
В качестве питания для робота используются четыре батарейки типа АА, они припаяны к основной плате по полярностям.
На чипе H-bridge имеется четыре выхода для управления двигателями. С помощью него можно регулировать скорость вращения двигателей.




Шаг шестой. Создание макета для робота
Макет не является обязательным при создании такого робота, он нужен лишь в том случае, если с роботом будут постоянно проводиться какие-то эксперименты и улучшения. Для создания макета берется пластиковая трубка, которая приклеивается к плате робота. На другой стороне находится картонная площадка, на которую устанавливается Arduino.


Шаг седьмой. Питание робота
Робот работает благодаря четырем батарейкам типа АА, благодаря тому Ardunio питается напряжением чуть больше 5В. Чтобы батареи было проще менять, их можно установить в специальный держатель. Такой держатель можно извлечь из детских игрушек, радиоприемников и прочей техники. Вес батарей здесь имеет стратегическое значение, так как он играет роль противовеса двигателям. Если использовать батареей литиево-полимерного типа, они могут быть недостаточно тяжелыми. В таком случае вес на стороне батареек нужно будет добавлять.

Датчики играют в робототехнике одну из важнейших ролей. При помощи различных сенсоров робот ощущает окружающую среду и может ориентироваться в ней. По аналогии с живым организмом — это органы чувств. Даже обычный самодельный робот не может полноценно функционировать без простейших датчиков. В этой статье мы подробно рассмотрим все виды датчиков, которые можно установить на робота, и полезность их применения.

Тактильные сенсоры

Тактильные сенсоры наделяют робота возможностью реагировать на контакты (силы), возникающие между ним и другими объектами в рабочей зоне. Обычно этими датчиками оснащают промышленные манипуляторы, а также роботов с медицинским применением. Машины, оснащенные тактильными сенсорами, эффективно справляются с операциями сборки и контроля, то есть функциями, требующими учитывать тонкости работы.

Разрабатывая современных гуманоидных роботов, производители оснащают их этими сенсорами, чтобы сделать машины ещё более «одушевленными», способными воспринимать информацию об окружающем мире буквально на ощупь.

Оптические датчики

При построении робота просто не обойтись без оптических датчиков. С помощью них аппарат будет «видеть» все вокруг. Эти сенсоры работают с помощью фоторезистора. Датчик отражения (излучатель и приемник) позволяет определять белые или черные участки на поверхности, что позволяет, к примеру, колесному роботу двигаться по нарисованной линии или определить близость препятствия. Источником света часто служит инфракрасный светодиод с линзой, а детектором — фотодиод или фототранзистор.

Отдельного внимания заслуживают видеокамеры. По сути, это глаза робота. Этот тип датчиков на сегодняшний широко используется благодаря росту технологий в сфере обработки изображений. Как понимаете, кроме роботов, применений видеокамерам достаточно: системы авторизации, распознавания образов, обнаружения движения в случае охранной деятельности и т.п.

Звуковые датчики

Эти датчики служат для безопасного передвижения роботов в пространстве за счет измерения расстояния до препятствия от нескольких сантиметров до нескольких метров. К ним относятся микрофон (позволяет фиксировать звук, голос и шум), дальномеры, которые представляют собой датчики, измеряющие расстояние до ближайших объектов и другие ультразвуковые сенсоры. УЗ особенно широко используются практически во всех отраслях робототехники.

Работа ультразвукового датчика основана на принципе эхолокации. Вот как это работает: динамик прибора издает УЗ импульс на определенной частоте и замеряет время до момента его возвращения на микрофон. Звуковые локаторы излучают направленные звуковые волны, которые отражаются от объектов, и часть этого звука снова поступает в датчик. При этом время поступления и интенсивность такого возвратного сигнала несут информацию о расстоянии до ближайших объектов.

Для автономных подводных аппаратов преимущественно используются технологии подводных гидролокаторов, а на земле звуковые локаторы в основном используются для предотвращения столкновений лишь в ближайших окрестностях, поскольку эти датчики характеризуются ограниченным диапазоном.

К числу других устройств, альтернативных по отношению к звуковым локаторам, относятся радары, лазеры и лидары. Вместо звука, в этом типе дальномеров используется отраженный от препятствия лазерный луч. Эти датчики получили более широкое применение в разработке автономных автомобилей, так как позволяют транспортному средству более эффективно справляться с дорожным движением.

Датчики положения

Этот вид датчиков используется в основном в беспилотных транспортных средствах, промышленных роботах, а также устройствах, требующих самобалансировки. К датчикам положения относятся GPS (система глобального позиционирования), ориентиры (исполняют роль маяка), гироскопы (определение угла вращения) и акселерометры. GPS - это спутниковая система навигации, обеспечивающая измерение расстояния, времени и определяющая местоположение робота в пространстве. GPS позволяет беспилотным наземным, воздушным и водным транспортным средствам находить свой маршрут и без труда двигаться от одной точки к другой.

Гироскопы в робототехнике также распространенная вещь. Они отвечают за балансировку и стабилизацию любого устройства. А за счет того, что эта деталь относительно недорогая, её можно установить в любой самодельный робот.

Акселерометр - это датчик, позволяющий роботу измерять ускорение тела под действием внешних сил. Этот прибор похож на массивное тело, способное передвигаться вдоль некоторой оси и соединено с корпусом прибора пружинами. Если такой прибор толкнуть вправо, то груз сместится по направляющей влево от центра оси.

Датчики наклона

Данные сенсоры используются в роботах, где нужно контролировать наклон, для поддержания равновесия и во избежание переворота аппарата на неровной поверхности. Существуют как с аналоговыми, так и с цифровыми интерфейсами.

Инфракрасные датчики

Самый доступный и простой вид датчиков, которые применяются в роботах для определения приближения. Инфракрасный датчик самостоятельно посылает инфракрасные волны и, поймав отраженный сигнал, определяет наличие препятствия перед собой.

В режиме "маяк", данный датчик посылает постоянные сигналы, по которым робот сможет определять примерное направление и удаленность маяка. Это позволяет запрограммировать робота таким образом, чтобы он всегда следовал в сторону этого маяка. Низкая стоимость этого датчика позволяет устанавливать его практически на все самодельные роботы, и таким образом, оснащать их способностью уходить от препятствий.

Датчики температуры

Датчик температуры - еще один полезный прибор, который часто используется в современных устройствах. Он служит для автоматического измерения температуры в различных средах. Как и в компьютерах, в роботах прибор используется для контролирования температуры процессора и его своевременного охлаждения.

Мы рассмотрели все самые основные сенсоры, которые используются в робототехнике и позволяют роботу быть более ловким, маневренным и производительным.

Чтобы наработать опыт в работе с платой Arduino, так сказать в качестве учебного опыта и просто для интереса был создан этот проект. Целью проекта было создать автомобиль, который может автономно перемещаться, объезжая различные препятствия и не сталкиваясь с ними.

Шаг 1: Список компонентов и стоимость проекта

1. Игрушечная Машинка с радиоуправлением (radio controlled).

Стоит эта штука около 20 баксов, если у вас есть возможность потратить больше, то можете использовать и получше.

2. Arduino Uno микроконтроллер - 25 долларов

3. Motor shield для контроля электромоторов - 20 долларов

4. GPS для навигации. Adafruit Ultimate GPS Shield - 50 долларов

5. Магнитометр в качестве компаса для навигации. Adafruit HMC5883 Magnetometer - 10 долларов

6. Ультразвуковой датчик расстояния, чтобы избегать препятствия. HC-SR04 - 6 долларов

7. ЖК-дисплей для отображения состояния транспортного средства и информации. LCD Display Blue 1602 IIC, I2C TWI - 6 долларов (можете использовать другой)

8. Инфракрасный датчик и пульт.

9. Arduino sketch (программа C++).

10. Тонкая древесная плита в качестве монтажной платформы.

11. Макетные платы. Одна длинная и узкая, а другая маленькая, чтобы отдельно установить на ней магнитометр подальше от других элементов.

12. Перемычки.

13. Набор для монтажа ультразвукового датчика - 12 долларов

14. Паяльник и припой.

Итак, в общем на всё ушло около 150 долларов, это при условии, если закупать все эти компоненты, поскольку возможно у вас уже что то имеется из этого.

Шаг 2: Шасси и монтаж платформы

Радиоуправление изъяли из ненужной игрушки, которая стоила 15 баксов.

Машинка здесь с двумя двигателями. С помощью одного движка пультом контролируется скорость движения робота, а с помощью другого контролируется рулевое управления.

Использовалась тонкая доска в качестве монтажной поверхности, на которой были прикреплены макетные платы, Arduino, ЖК и т.д. Батарейки размещены под доской и провода пропущены через просверленные отверстия.

Шаг 3: Программа

Arduino управляется через программу С ++.

Исходный код

RC_Car_Test_2014_07_20_001.ino

Шаг 4: ЖК-дисплей

Во время работы экран отображает следующую информацию:

Ряд 1:

1. TH - Задача, курс к текущей маршрутной точки

2. CH - Текущее направление робота

Ряд 2:

3. Err - Направление по компасу, показывает в каком направлении движется робот (влево или вправо)

4. Dist - Фокусное расстояние (в метрах) до текущей маршрутной точки

Ряд 3:

5. SNR - Sonar расстояние, то есть расстояние до любых объектов в передней части робота

6. Spd - Скорость робота

Ряд 4:

7. Mem - Память (в байтах). В памяти Arduino имеется 2 КБ

8. WPT n OF x - Показывает, где робот находится в списке маршрутных точек

Шаг 5: Избежать столкновения с объектами

Чтобы робот избегал препятствий, здесь использовался ультразвуковой датчик » Ping». Было решено совместить его с библиотекой Arduino NewPing, поскольку она лучше, чем простая PIng библиотека.

Библиотека была взята отсюда: https://github.com/fmbfla/Arduino/tree/master/NewPing

Датчик был установлен на бампере робота.

В отличие от человека, роботы не ограничены только зрением, слухом, осязанием, обонянием и вкусом. Датчики роботов бывают разных типов. В первую очередь роботы используют различные электромеханические датчики, чтобы исследовать и понять окружающий мир и самих себя.

Воспроизвести органы чувств живого существа в данный момент очень сложно. Из-за этого исследователи и разработчики прибегают к альтернативам биологических чувств.

Что могут чувствовать люди, но не могут чувствовать роботы?

При помощи камер роботы могут “видеть”, но испытывают трудности с понимание того, что они видят. Робот может получить с камеры изображение, состоящее из миллионов пикселей. Но без сложного программирования, он не будет знать, что любой из этих точек обозначает.

Датчики расстояния указывают расстояние до объекта, но нужно, чтобы робот не врезался в препятствие или объект. Исследователи и компании экспериментируют с различными подходами к датчикам роботов. Дополнительно разрабатываются датчики, которые позволяет роботу не только “видеть” но “понимать” что он видит.

Это может занять длительное время, прежде чем сможет различить объекты, расположенные перед ним на столе. Особенно если они расположены не так как в базе данных объектов.

Роботы очень плохо различают то, что связано со вкусом или обонянием.

Человек может сказать вам, “это является на вкус сладким” или “это плохо пахнет”, в то время как роботу необходимо провести анализ химического состава. Затем нужно искать вещества в базе данных, чтобы определить, что у человека отмечено на вкус как “сладкое” или на запах как “плохой”.

Такие датчики роботов как датчики вкуса и обоняния разрабатывались мало. В первую очередь потому что не было большого спроса на робота, который может различать вкус или запах.

Люди имеют множество нервных окончаний на всей своей коже, и мы знаем, когда мы дотронулись до какого-либо предмета или что-то коснулось нас. Роботы оборудованы кнопками или простыми контактами, размещенными в стратегически важных местах. Например, на переднем бампере, чтобы определить, вступает ли он в контакт с объектом.

Роботы типа «домашние животные» могут иметь контакты или группу датчиков, расположенных на голове, ногах или спине, но если вы попытаетесь прикоснуться к зоне, где нет датчика, робот не поймет, что его касались, и не будет реагировать. Поскольку исследования в области гуманоидных роботов продолжаются, возможно, такие датчики роботов как “электромеханическая кожа” будет развиваться.

Что могут чувствовать роботы, но не могут чувствовать люди?

Робот не может сказать вам приятное на вкус или запах вещество. Хотя этапы анализа химического состава могут дать ему гораздо больше информации, чем нормальный человек может знать о его свойствах. Если робот оснащен датчиком окиси углерода, то он будет в состоянии обнаружить угарный газ.

Это повысит безопасность так как угарный газ не имеет цвета и запаха для человека. Робот также будет в состоянии сказать вам уровень рН вещества. Следовательно может определить, она кислая или щелочная, и многое, многое другое.

Люди используют пару глаз, чтобы получить визуальную информацию, хотя многие люди не могут определить точно расстояние до объекта. Человек может сказать вам, что до дерева около 20 метров. В то же самое время робот, оснащенный датчиками расстояния, может сказать вам, что до дерева 21.1 метра.

Кроме того, роботы могут дать точные значения различных факторов окружающей среды, про которые люди не знают или не способны воспринимать.

Например, робот может сказать вам какое у него точное угловое или линейное ускорение. Хотя большинство людей большинство людей скорее всего определит что он передвигается или поворачивает.

Человек может сказать вам на основе своего опыта, что предмет горячий или холодный, не прикасаясь к нему. В то время как тепловизор может предоставить 2D тепловое изображение, находящееся перед ним. Хотя у человека есть пять основных чувств, датчики роботов могут иметь практически бесконечное количество разновидностей.

Какие датчики необходимы для вашего робота?

Итак, какие типы датчиков доступны, а какие датчики нужны вашему роботу? Вы должны сначала спросить себя, для каких целей нужен робот и что он должен измерять. Затем ниже можно посмотреть какие бывают типы датчиков для роботов.

Есть большая вероятность того, что вам не подойдет ни одна их перечисленных ниже категорий, поэтому постарайтесь определить основные элементы робота и разбить задачу на составляющие.

Датчики для роботов бывают:

  1. контактные
  2. дистанционные
  3. позиционирования
  4. реагирующие на условия окружающей среды
  5. использующие вращение
  6. и другие

Контактные датчики.

— Кнопка / контактный выключатель.


Переключатели, кнопки и контактные датчики используются для обнаружения физического контакта между объектами, а не ограничиваются только людьми, нажимающими на кнопки.

Бампер робота может быть оснащен датчиком касания или кнопкой. Дополнительно “усы” (как и у животного) могут использоваться для обнаружения объекта на различных расстояниях.

  • Преимущества: очень низкая цена, простота интеграции, надежность.
  • Недостатки: расстояние измерения ограничено.

— Датчики измерения давления

Кнопка, которая предлагает одно из двух возможных показаний (ON или OFF). В результате датчик робота производит выходной сигнал, пропорциональный прилагаемой к нему силе.

  • Преимущества: позволяет измерять, сколько силы применяется.
  • Недостатки: могут быть неточными и сложнее в использовании, чем простые коммутаторы.

Дистанционные датчики

— Ультразвуковые датчики


Датчики, которые используют ультразвуковые сигналы для измерения времени между отправкой сигнала и возвратом его эхо-сигнала называются ультразвуковыми. Датчики роботов в этом случае созданы на основе изучения летучих мышей, дельфинов и других животных.

Ультразвуковые дальномеры могут измерять диапазон расстояний, но используются, в частности, в воздухе и зависят от отражающей способности различных материалов.

  • Преимущества: измерение среднего диапазона (несколько метров).
  • Недостатки: поверхности и факторы окружающей среды могут повлиять на показания.

— Инфракрасные датчики

Инфракрасный диапазон также может использоваться для измерения расстояния. Некоторые инфракрасные датчики измеряют одно конкретное расстояние, в то время как другие обеспечивают выходной сигнал, пропорциональный расстоянию до объекта.

  • Преимущества: низкая стоимость, достаточно надежные и точные.
  • Недостатки: более широкий диапазон, чем у ультразвуковых датчиков.

— Лазер

Лазеры используются, когда требуется высокая точность, или большое расстояние до объекта, или когда присутствуют оба фактора. Сканирующие лазерные дальномеры используют спин-лазеры (ультрабыстрые лазеры) для двумерного сканирования расстояния до объектов.

  • Преимущества: очень точные с очень большим диапазоном.
  • Недостатки: намного дороже, чем обычные инфракрасные или ультразвуковые датчики.

— Энкодеры


Оптические энкодеры часто используют пару светодиод фотодиод. На валу установлен диск с отверстиями, через которые сигнал со светодиода попадает на фотодиод и считывается количество импульсов.

Определенное количество отверстий соответствует полному углу, пройденному колесом. Зная радиус колеса, вы можете определить общее расстояние, пройденное этим колесом. Два энкодера дают вам относительное расстояние в двух измерениях.

  • Преимущества: если нет скольжения, то высокая точность измерения. Часто устанавливается на задний вал двигателя.
  • Недостатки: требуется дополнительное программирование, более точные оптические энкодеры могут дорого стоить.

— Линейный потенциометр


Линейный потенциометр способен измерять абсолютное положение объекта.

  • Преимущества: точно измеряет абсолютное положение.
  • Недостатки: маленький диапазон.

— Датчики растяжения и изгиба


Датчик растяжения состоит из материала, сопротивление которого изменяется в зависимости от того, насколько он растянут. Датчик изгиба обычно представляет собой сэндвич из материалов, где сопротивление одного из слоев изменяется в зависимости от того, насколько он был согнут.

Их можно использовать для определения небольшого угла или поворота, например, сколько пальцев было согнуто.

  • Преимущества: полезно, когда ось вращения является внутренней или недоступной.
  • Недостатки: небольшая точность и возможность измерения только малых углов.

— Стереокамера

Как и человеческие глаза, две камеры, расположенные на расстоянии друг от друга, могут предоставлять информацию о глубине (стереовидение). Роботы, оснащенные камерами, могут быть одними из самых способных и сложных роботов.

Камера, в сочетании с правильным программным обеспечением, может обеспечить хорошее распознавание цвета и объектов.

Преимущества: возможность предоставления подробной информации и хорошая обратная связь.

Недостатки: сложность в программирование и в использовании информации.

Датчики позиционирования

— Локализация в помещении (навигация в комнате)


Внутренняя система локализации может использовать несколько маяков для триангуляции (определение взаимного расположения точек на поверхности) положения робота в помещении, в то время как другие используют камеру и ориентиры.

  • Преимущества: отлично подходит для абсолютного позиционирования
  • Недостатки: требуется сложное программирование и использование маркеров.

— GPS


GPS использует сигналы от нескольких спутников, вращающихся вокруг планеты, чтобы определить их географические координаты.

Устройства GPS могут обеспечить географическое позиционирование с точностью до 5 метров, в то время как более сложные системы, включающие обработку данных и исправление ошибок, благодаря использованию других единиц GPS или ИДУ, могут иметь точность до нескольких сантиметров.

  • Преимущества: не требует маркеров или других ссылок.
  • Недостатки: могут работать только на открытом пространстве.

Датчики вращения

— Потенциометр


Поворотный потенциометр – это, по сути, делитель напряжения и обеспечивает аналоговое напряжение, соответствующее углу поворота ручки.

  • Преимущества: простой в использовании, недорогой, достаточно точный, обеспечивает абсолютные показания.
  • Недостатки: большинство из них ограничены 300 градусами вращения.

— Гироскоп


Электронный гироскоп измеряет скорость углового ускорения и подает соответствующий сигнал (аналоговый сигнал напряжения, последовательный канал связи, с I2C и т. д.). В электронном гироскопе используются пьезопластины.

  • Преимущества: отсутствие «механических» компонентов.
  • Недостатки: датчик всегда подвергается угловому ускорению, тогда как микроконтроллер не всегда может принимать непрерывный входной сигнал, то есть значения теряются, что приводит к ”дрейфу" значений

— Энкодеры

Оптические энкодеры используют мини — инфракрасные пары передатчика / приемника. Количество разрывов инфракрасного пучка соответствует полному углу, пройденному колесом.

Механический энкодер использует очень тонко обработанный диск с достаточным количеством отверстий, чтобы читать определенные углы. Поэтому механические датчики могут использоваться как для абсолютного, так и для относительного вращения.

  • Преимущества: точность.
  • Недостатки: у оптических энкодеров угол поворота является относительным (не абсолютным) от исходного положения.

Датчики роботов, реагирующие на условия окружающей среды

— Датчик света


Датчик света может использоваться для измерения интенсивности источника света, будь то естественным или искусственным. Обычно его сопротивление пропорционально интенсивности света.

  • Преимущества: обычно очень недорогие и очень полезные.
  • Недостатки: не могут различать источник или тип света.

— Датчик звука


Датчик звука — это, по сути, микрофон, который возвращает напряжение, пропорциональное уровню окружающего шума. Более сложные платы могут использовать данные из микрофона для распознавания речи.

  • Преимущества: дешевый и надежный датчик.
  • Недостатки: для того, чтобы расшифровать важную информацию требуется сложное программное обеспечение.

— Температурные датчики


Температурные датчики могут использоваться для измерения температуры окружающей среды или в сложных условиях, например в нагревательных элементах, печах и т.д.

  • Преимущества: могут быть высокоточными.
  • Недостатки: более сложные и точные датчики могут быть более сложными в использовании.

— Тепловизионная камера


Тепловизионный датчик (камера) инфракрасного или теплового изображения позволяет получить полное 2D-тепловое изображение всего, что находится перед камерой тепловизора. Таким образом, можно определить температуру объекта.

  • Преимущества: можно выборочно на расстоянии измерять тепловую активность объектов.
  • Недостатки: высокая стоимость

— Датчики измерения влажности


Датчики влажности определяют процентное содержание воды в воздухе и часто соединяются с датчиками температуры.

— Барометрический датчик давления


Датчик давления (который также может быть барометрическим датчиком) может использоваться для измерения атмосферного давления. Следовательно может дать представление о высоте БПЛА (беспилотный летательный аппарат).

— Датчики газа

Датчики газа используются для определения наличия и концентрации различных газов. Однако они нужны только специализированных робототехнических комплексов.

  • Преимущества: это единственные датчики роботов, которые могут быть использованы для точного обнаружения газа
  • Недостатки: недорогие датчики могут давать ложные срабатывания или несколько неточны и поэтому не должны использоваться для критически важных задач.

— Магнитометры


Магнитометры могут быть использованы для обнаружения магнитов и магнитных полей. Также может определить полярность.

  • Преимущества: помогает обнаружить ферромагнитные металлы.
  • Недостатки: в некоторых случаях датчики могут быть повреждены сильными магнитами.

Датчики, использующие вращение

— Компас


Цифровой компас способен использовать магнитное поле Земли для определения его ориентации относительно магнитных полюсов. Наклон компаса компенсируется и учитывает тот факт, что робот не может передвигаться строго горизонтально.

  • Преимущества: обеспечивает абсолютную навигации.
  • Недостатки: более высокая точность увеличивает цену.

— Гироскоп


Электронные гироскопы способны определять угол наклона по одной или нескольким осям. Механические датчики наклона, как правило, определяют наклон робота при помощи ртути в стеклянных капсулах или шарах.

  • Преимущества: электронные гироскопы имеют более высокую точность, чем механические.
  • Недостатки: более высокая стоимость.

— Акселерометры


Акселерометры измеряют линейное ускорение. Это позволяет измерять гравитационное ускорение или любое другое ускорение, которое испытывает робот.

Это может быть хорошим вариантом для приблизительной оценки расстояния, если ваш робот не может использовать окружающую среду для уточнения координат.

Акселерометры могут измерять ускорение вдоль одной, двух или трех осей. Трехосевой акселерометр позволяет измерять все углы наклона сенсора в пространстве.

  • Преимущества: они не требуют никаких внешних ссылок или маркеров для функционирования, и может обеспечить абсолютную ориентацию по отношению к гравитационному полю Земли или определить относительную ориентацию.
  • Недостатки: они только приблизительно оценивают пройденное расстояние и не могут точно определить его.

— ИИБ


Инерциальный измерительный блок сочетает в себе мультиосевой акселерометр с мультиосевым гироскопом и иногда мультиосевым магнитометром для того, чтобы более точно измерить крен.Такие датчики роботов достаточно сложные.

  • Преимущества: это очень надежный способ измерения без использования внешних ссылок (кроме магнитного поля Земли)
  • Недостатки: может быть очень дорогим и сложным в использовании.

И другие


Датчики тока и напряжения измеряют ток и/или напряжение конкретной электрической цепи. Это может быть очень полезно для определения того, сколько ваш робот сможет работать (измерять напряжение аккумуляторной батареи) или, если ваши моторы слишком сильно работает (измерения тока).

  • Преимущества: они делают именно то, что они предназначены.
  • Недостатки: могут вносить изменения в измеряемое напряжение или ток. Иногда требуется изменить измеряемую электрическую цепь.

— Магнитные датчики


Магнитные датчики и магнитометры способны обнаружить магнитные предметы и могут требовать контакта с объектом, или должны быть расположены относительно близко к объекту.

Такие датчики роботов могут использоваться на автономной газонокосилке для обнаружения провода, проложенного по газону или для поиска скрытой проводки в квартире.

  • Преимущества: как правило, недорогие
  • Недостатки: как правило, должны располагаться относительно близко к объекту, и к сожалению, не могут обнаруживать немагнитные металлы.

— Датчики вибрации


Датчики вибрации предназначены для обнаружения вибрации объекта с помощью пьезоэлектрических или других технологий.

— Технологии RFID


Технология RFID – это технология беспроводного обмена данными посредством радиосигнала между электронной меткой, которая помещается на объект и специальным радиоэлектронным устройством, которое считывает сигнал метки.

Устройства радиочастотной идентификации могут использовать как активные (с питанием), так и пассивные (без питания) RFID-метки обычно имеющие размер и форму кредитной карты, небольшой плоский диск или дополнение к брелоку (другие формы также возможны).

Когда метка RFID находится на определенном расстоянии от считывателя RFID, создается сигнал с идентификатором тега.

  • Преимущества: RFID метки обычно имеют очень низкую стоимость и могут определяться индивидуально.
  • Недостатки: бесполезно для измерения расстояния, кроме случаев, когда метка находится в пределах диапазона.

Практическая часть

Типичным примером, демонстрирующим автономную работу робота, является робот на базе набора Lego EV3 для движения по линии при помощи одного или двух датчиков цвета. В этом случае датчики робота определяют яркость отраженного света.

В этой статье мы рассмотрим несколько схем роботов, в которых реализованы следующие варианты поведения:
1. Объезжает препятствие при контакте с ним "усиками".
2. Избегает препятствия без контакта (ИК бампер).
3. Упирается "усиками" в препятствие, отъезжает назад, делает поворот, затем продолжает движение.
4. Избегает препятствие с разворотом (ИК бампер).
5. Следует за объектом, сохраняя дистанцию (ИК бампер).

Перед тем как приступить к рассмотрению схем давайте кратко разберем особенности микросхемы L293.

Рис.1. Расположение выводов микросхемы L293D

Внутри нее имеется два драйвера для управления электромоторами.
Моторы подключаются к выходам OUTPUT. Мы имеем возможность подключить два двигателя постоянного тока.
8-й и 16-й выводы микросхемы подключаются к плюсу питания. Поддерживается раздельное питание, т.е. 16-й вывод (Vss) предназначен для питания самой микросхемы (5 вольт), а контакт Vs (8-й вывод) можно подключить к источнику питания для двигателей. Максимальное напряжение силовой части составляет 36 вольт.
Я их разделять не буду и во всех схемах подключу к общему источнику питания.
Минус питания или земля (GND) подключается к выводам № 4, 5, 12, 13. Эти контакты, кроме того, обеспечивают теплоотвод микросхемы, поэтому при пайке на плату для этих выводов желательно выделить увеличенную металлизированную область.
Еще микросхема имеет входы ENABLE1 и ENABLE2.
Для включения драйверов, необходимо наличие логической единицы на этих выводах, проще говоря 1-й и 9-й выводы подключаем к плюсу питания.
Также имеются входы INPUT для управления двигателями.

Рис.2. Таблица соответствия логических уровней на входах и выходах.

Выше представлена таблица, по которой можно понять, что если на вход INPUT1 подать логической единицу, т.е. соединить с плюсом источника питания, а вход INPUT2 - с минусом, то мотор М1 начнет вращаться в определенную сторону. А если поменять местами логические уровни на этих входах, то мотор М1 будет вращаться в другую сторону.
Аналогично происходит и со второй частью, к которой подключается мотор М2.

Именно эта особенность и использована в представленных схемах роботов.

Схема №1. Робот объезжает препятствие при контакте с ним "усиками".

Рис.3. Схема №1. С механическими датчиками препятствий.

После подачи питания моторы будут вращаться в определенную сторону, двигая робота вперед. Это происходит за счет того, что на INPUT1 через резистор R2 поступает сигнал высокого уровня, так же как и на входе INPUT4. Транзистор VT1 надежно закрыт, база стянута на минус питания, на коллектор ток не втекает.
Объяснять я буду по левой части, т.к. обе части симметричны.
На входе INPUT2 через резистор R3 устанавливается логический 0. Судя по таблице (рис.2) мотор вращается в определенную сторону. В правой части схемы происходит тоже самое и робот едет вперед.
В схеме имеются ключи (SB1, SB2), в качестве которых применены SPDT переключатели. На них с помощью термоклея прикрепляются скрепки и получаются датчики препятствий.

Рис.4. Из скрепок сделаны датчики "усики".

Когда такой датчик упирается в препятствие, ключ замыкается и вход INPUT2 оказывается подключенным к плюсу питания, т.е. подается логическая "1". В этот же момент времени открывается и транзистор, вследствие чего логическая единица на входе INPUT1 сменяется логическим нулем. Мотор при нажатой кнопке вращается в другую сторону. Рывками происходят микропереключения и мотор разворачивает робота от препятствия, до того момента, пока датчик перестанет соприкасаться с препятствием.

Как вы уже догадались, переключатели или сами моторы нужно расположить крест-накрест.

Схема №2. Робот избегает препятствия без контакта (ИК бампер)

Еще более интересное поведение можно реализовать, если в качестве датчиков использовать TSOP-приемники для приема инфракрасных сигналов. Это будет некое подобие ИК-бампера.
Итак, теперь схема выглядит таким образом.

Рис.5. Схема №2. С инфракрасными датчиками препятствий.

"Модуль приема ИК" работает так: при поступлении инфракрасного сигнала на TSOP-приемник на его выходе появляется отрицательное напряжение, которое отпирает PNP транзистор, и ток с плюса питания поступает на входную цепь микросхемы. Если в прошлый раз были использованы механические переключатели, с так называемыми усиками из скрепок, то новая схема позволит роботу не врезаться в препятствие, а реагировать на него с некоторой дистанции. Это выглядит так:

Приемная часть выполнена таким образом: два абсолютно одинаковых модуля (левый и правый) скрепленные между собой (рис.8).

В качестве приемников использованы TSOP1136 с рабочей частотой 36 кГц. Расположение выводов представлено на рисунке ниже.

Рис.6. TSOP1136.

С приемниками мы разобрались, но для обнаружения препятствий нужно в пространство перед роботом посылать инфракрасное излучение с определенной частотой. Рабочая частота приемников бывает разная, в моем случае она составляет 36 кГц. Поэтому на микросхеме NE555 был собран генератор импульсов на данную частоту, а к выходу подключены излучающие диоды инфракрасного диапазона.


Рис.7. Схема излучателя на NE555.

На шасси робота закреплен фрагмент макетной платы, на которую можно установить желаемое количество ик-диодов.
На диоды желательно надеть термоусадочные трубочки или что нибудь подобное, чтобы они светили вперед, а не в разные стороны.

Рис.8. ИК бампер.

После подачи питания робот может попятиться назад, это из-за слишком большой чувствительности TSOP-приемников. Они воспринимают отраженный сигнал даже от пола, стен и других поверхностей. Поэтому в схеме излучателя ИК-сигнала (рис.7) использован подстроечный резистор, с помощью него уменьшаем яркость инфракрасных диодов и добиваемся желаемой чувствительности.

Схема №3. Такой робот отъезжает назад от препятствия, делая поворот.

Давайте рассмотрим еще одну интересную схему.

Рис.9. Схема №3.

Когда такой робот упирается в препятствие одним из своих усиков, то он отъезжает назад, делая небольшой поворот, затем после небольшой паузы робот продолжает движение. Поведение показано на анимации ниже:

Эта схема тоже полностью совместима с инфракрасным бампером, от предыдущей схемы.

В схеме появились электролитические конденсаторы между эмиттером и базовыми резисторами транзисторов VT1 и VT2. Появились диоды VD1, VD2 и светодиоды HL1, HL2.
Давайте по порядку разберем, зачем нужны эти дополнительные компоненты.
Итак, когда замыкается переключатель SB1, т.е. первый датчик, ток от плюса питания через диод VD1 и токоограничивающий резистор R1 поступает на базу транзистора. Он открывается, меняя логический уровень на входе INPUT1, на входе INPUT2 уровень тоже меняется.
В этот момент ток также поступает на конденсатор C1 и он заряжается. Мотор М1 резко меняет направление вращения и робот отъезжает назад от препятствия. На видео можно заметить, что второй мотор тоже меняет направление движения, но на более короткий промежуток времени. Это происходит из-за того, что при замыкании датчика SB1, ток от плюса питания поступает также и на правую часть схемы, через светодиод HL2. Светодиоды не только подают кратковременный сигнал о столкновении с препятствием, но и являются гасителем напряжения, поступающего на противоположную половину схемы. Проще говоря, при замыкании ключа SB1, конденсатор C2 заряжается меньше, чем C1. А при замыкании ключа (датчика) SB2 происходит тоже самое, но наоборот - С2 заряжается больше (т.е. напряжение на его обкладках больше). Это позволяет не только отъехать от препятствия, но и немного отвернуться от него. Угол этого отворачивания зависит от емкости конденсаторов C1 и С2. Конденсаторы емкостью 22 мкФ, на мой взгляд, являются оптимальными. При емкости 47 мкФ угол поворота будет больше.
Также на видео можно заметить, что после того, как робот отъезжает назад от препятствия, то присутствует небольшая пауза перед тем как он поедет вперед. Это происходит из-за разрядки конденсаторов, т.е. в некоторый момент времени логические сигналы на входах INPUT уравновешиваются и драйвер на секунду перестает понимать в какую сторону вращать мотор. Но когда C1 и С2 разрядятся, на входах INPUT установятся первоначальные логические уровни.
Диоды VD1 и VD2 препятствуют разрядке конденсаторов через светодиоды HL1, HL2. Без светодиодов схема не работает.

Схема №4. Предыдущая схема с ИК бампером.

Эта схема отличается от предыдущей тем, что вместо механических датчиков здесь использованы инфракрасные (ИК бампер).

Рис.10. Схема №4.

Коллекторы PNP транзисторов VT1 и VT2 при обнаружении препятствия, подадут сигнал на входную цепь микросхемы. Далее всё происходит также, как было описано ранее, только такой робот при обнаружении препятствия перед собой отъезжает назад, делает поворот, затем продолжает движение.
Поведение показано на анимации ниже:

У робота будет более резкое поведение, если уменьшить емкость конденсаторов C1 и C2 например до 1 мкФ (минимальная емкость 0,22 мкФ).

Как сделать так, чтобы робот следовал за объектом?

Во всех схемах, представленных выше, датчики-сенсоры или сами моторы должны быть расположены крест-накрест. А при прямом подключении (когда левый датчик "командует" левым двигателем, правый - правым) робот будет не избегать препятствие, а наоборот следовать за ним. Благодаря прямому подключению можно добиться очень интересного поведения робота - он будет активно преследовать объект, сохраняя определенную дистанцию. Расстояние до объекта зависит от яркости ИК диодов на бампере (настроить).

Еще немного фотографий:

В шасси использованы металлические детали от конструктора. Макетная плата откидывается для удобства замены батареек.

Питание робота осуществляется от 4-х батареек АА.

Варианты изготовления корпуса и шасси для робота ограничиваются только вашей фантазией, тем более в продаже имеется много готовых решений. В моем случае схема будет перенесена на плату, т.к. куча проводов это не эстетично. Также будут установлены аккумуляторы со схемой подзарядки. А какие еще доработки можно произвести или добавить новые функции - это всё вы можете предложить в комментариях.

К этой статье имеется видео, в котором подробно описана работа схем и продемонстрированы разные варианты поведения робота.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Элементы схемы №1 и №2 (кроме ИК бампера)
VT1, VT2 Биполярный транзистор

2N3904

2 В блокнот
R1, R2, R4, R6 Резистор

10 кОм

4 В блокнот
R3, R5 Резистор

4.7 кОм

2 В блокнот
C1 100 мкФ 1 В блокнот
Элементы "модуля приема ИК" на схеме №2, №4
VT1, VT2 Биполярный транзистор

2N3906

2 КТ361, КТ816 В блокнот
R1, R2 Резистор

100 Ом

2 В блокнот
C1, C2 Электролитический конденсатор 10-47 мкФ 2 В блокнот
Элементы "модуля излучения ИК сигнала" рис.7
R1 Резистор

1 кОм

1 В блокнот
R2 Резистор

1.5 кОм

1 В блокнот
R3 Переменный резистор 20 кОм 1 для настройки яркости FD1, FD2 В блокнот
C1 Конденсатор керамический 0.01 мкФ 1 В блокнот
C2 Конденсатор керамический 0.1 мкФ 1 В блокнот
FD1, FD2 ИК диод 2 Любой
 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва