Что такое виртуальная реальность: свойства, классификация, оборудование — подробный обзор области. Создаём простое VR-приложение под Android с помощью Unity

Сегодня технология виртуальной реальности помогает музеям перейти на качественно новый уровень взаимодействия с посетителями. С помощью панорамного видео и 3D-графики каждый желающий получает возможность увидеть закрытые для посещения архивы музеев, утерянные экспонаты или реконструированные исторические памятники. Кроме того, виртуальная реальность - это отличный способ посетить удаленные архитектурные объекты и выставочные залы в любой точке земного шара. Наша статья поможет разобраться в устройствах для создания виртуальной реальности, расскажет об истории этой технологии и о применении виртуальной реальности в музеях.

Вконтакте

Одноклассники

Технология видео 360° позволяет создавать панорамные фильмы с различной степенью интерактивности, где зритель по своему желанию управляет ракурсом просмотра. Такое видео можно посмотреть в шлеме виртуальной реальности, с помощью специального приложения на смартфоне или на дисплее персонального компьютера.

Опыт туристов, совершивших экскурсию в древнюю пирамиду или посетивших выставку в Лувре, который раньше был доступен немногим, теперь сможет разделить каждый желающий за счет полного погружения в виртуальную реальность.

Виртуальная реальность (virtual reality,VR) – это компьютерная имитация реального или вымышленного мира, в который погружается и с которым взаимодействует человек. Не просто искусственный мир, а сложная и отлаженная система устройств, способных синхронно воздействовать на органы чувств.

Кажется, что виртуальная реальность была придумана и создана лишь в последние десятилетия. Однако эту идею начали воплощать в жизнь почти 100 лет назад.

История виртуальной реальности

История виртуальной реальности началась задолго до появления первых компьютеров. В 1929 году был разработан авиасимулятор «Link Trainer», предназначенный для обучения пилотов. Авиасимулятор был закреплен на шарнире и напоминал маленький самолет с короткими крыльями. Внутри находились авиаприборы, кресло и наушники с микрофоном для общения с тренером.

Link Trainer во время его использования на станции Британской авиации и флота в 1943 году

В 1956 году кинематографист Мортон Хейлиг, которого позже назвали «отцом виртуальной реальности», взялся за разработку непростого механизма, способного имитировать поездку на мотоцикле по улицам Бруклина. Он хотел создать «кино будущего», главная идея которого заключалась в полном погружении человека в специально подготовленный фильм при помощи тряски, шума, ветра и запахов. Проект получил название «Sensorama» и был запатентован. Принцип этого устройства стал основой для создания современных 4D-кинотеатров.

Следующий важнейший рывок в области VR-технологий и создании той виртуальной реальности, которую мы с вами знаем, произошел в 1977 году. Первой современной VR-системой стала «Кинокарта Аспена», разработанная в Массачусетском Технологическом Институте. Эта компьютерная программа симулировала прогулку по городу штата Колорадо, давая возможность выбрать между разными способами отображения местности: летний и зимний варианты виртуальной прогулки по Аспену были основаны на реальных фотографиях.

Демонстрация работы «Кинокарты Аспена»

До конца восьмидесятых технология виртуальной реальности считалась перспективной, но вскоре из-за сложности реализации и дороговизны оборудования интерес к ней угас. Снова о виртуальной реальности заговорили только в 2012 году, когда появились устройства для погружения в виртуальную реальность, доступные широкому кругу людей.

Технологии виртуальной реальности

Крупнейшие компании (Facebook, Nokia, Samsung, Google и др.) в настоящее время ведут разработки камер для съемки видео в формате 360°, гарнитур виртуальной реальности для различных смартфонов и стационарных компьютеров, а также различных звукозаписывающих устройств, обеспечивающих создание объемного звука и позволяющих реализовать целый комплекс технологий «мультимедиа 360°».

Камеры для съемки видео 360°

Камеры для съемки панорамного видео называются сферическими и состоят из нескольких видеокамер, которые производят синхронную съемку. Количество объективов колеблется от 2 до 16, а обработка видео осуществляется как в самой камере, так и в специальных программах. Помимо камер именитых марок (Google, Samsung, LG, Nokia, GoPro, Nikon, Kodak, Ricoh) существует множество других - Giroptic, Bublcam, Vuze и т.д.

Камеры для съемки видео 360°

Бинауральный звук

Особой задачей при создании контента для виртуальной реальности является запись и воспроизведение объемного звука – ведь пользователь, находясь в виртуальной реальности, должен слышать разный звук в зависимости от положения головы.

В компьютерных играх эта проблема решена с помощью специальных программных средств, задающих расположение источников звука в виртуальном пространстве. Однако с появлением формата «Видео 360°» возникла необходимость записывать звук предельно точно – так, как его слышит человек, стоящий в определенной точке.

Для этой цели используется так называемый бинауральный звук – он записывается на специальные микрофоны, по форме повторяющие ушную раковину человека.

Устройства для записи бинаурального звука

Шлемы виртуальной реальности

Шлем виртуальной реальности позволяет частично погрузиться в иллюзорный мир, создав зрительный и акустический эффект присутствия. Название «шлем» достаточно условное: современные модели гораздо больше похожи на очки, чем на шлем.

Gear VR - шлем виртуальной реальности от Samsung

Существует два вида шлемов виртуальной реальности: полноценные, имеющие свой процессор и подключающиеся к компьютеру, а также мобильные, в которые вставляется смартфон со специальным приложением.

В полноценных шлемах (например, Oculus Rift, HTC Vive и Sony PlayStation VR) есть два встроенных дисплея - когда вы надеваете устройство, они находятся в нескольких сантиметрах от глаз. На дисплеи передается одна и та же картинка, но с небольшим смещением. Перед дисплеями находятся две искривляющие изображение линзы, которые создают эффект объемного изображения. Чтобы в виртуальном мире можно было смотреть по сторонам при повороте головы, в шлеме имеется несколько датчиков: магнитометр, гироскоп и акселерометр. Еще один - трекер с инфракрасными светодиодами - должен стоять на столе, смотреть на человека и фиксировать его положение в пространстве. Он требуется для игр, где допускается свобода передвижения. К устройству также подсоединяется USB-кабель для передачи данных и питания.

Шлем виртуальной реальности Oculus Rift

Самым современным шлемом виртуальной реальности на сегодняшний день является Oculus Rift. Отличительной особенностью Oculus Rift является линзовый способ построения изображения – зритель, надевший шлем, смотрит на стереоизображение не напрямую, а через специальные асферические линзы. С помощью линз удалось существенно расширить угол обзора, сделав его близким к биологическому зрению человека, благодаря чему шлем обеспечивает необыкновенно глубокое погружение в виртуальную реальность. Данная особенность определила дальнейшую судьбу очков – проект стал одним из самых динамично развивающихся в индустрии, по всему миру стали создаваться экспериментальные приложения для Oculus Rift, а в 2014 году произошла одна из рекордных сделок в индустрии – Facebook осуществил покупку компании Oculus за $2 млрд.

Пока Oculus Rift не поступили в розничную продажу, их можно заказать на сайте разработчика за 599 долларов.

Наиболее простые мобильные шлемы виртуальной реальности представляют собой кусок картона, пару пластиковых линз и смартфон в качестве экрана.

Google Cardboard (в переводе с английского - картон ) - эксперимент компании Google в области виртуальной реальности, в основе которого лежит картонный шлем, в который вставляется Android-смартфон. Смартфон разделяет картинку на стереопару и даже отслеживает положение головы.

Google Cardboard

Шлем можно собрать самому или купить за 15 долларов. На сегодня это самый распространенный шлем в мире, который был выпущен тиражом около пяти миллионов экземпляров.

Другие мобильные шлемы Cardboard в большинстве случаев производят из картона и из металла, чтобы устройство служило как можно дольше.

Кроме того, существуют мобильные шлемы виртуальной реальности из пластика с возможностью регулировать положение линз, встроенным вентилятором, кнопкой регулировки громкости и аккумулятором для подзарядки смартфона (например, Homido, Durovis Dive, Gear VR и другие).

Бинокуляры

Это изобретение больше известно, как смотровой бинокль. В отличие от стандартных конструкций в бинокуляре вместо оптической части находится механизм виртуальной реальности, который дает возможность просмотра панорамного видео с любой стороны простым поворотом устройства. Угол обзора составляет 360 градусов по вертикальной оси и 180 градусов по горизонтальной. Пространственно-звуковая картина меняется в зависимости от поворота устройства, которое может быть установлено как в помещении, так и на городских улицах.

Бинокуляр виртуальной реальности, разработанный Лабораторией мультимедийных решений

С помощью бинокуляра можно переместиться на сотни лет и увидеть реконструкции исторических объектов и событий своими глазами с эффектом полного погружения.

Интерактивность в виртуальной реальности

Не смотря на то, что просмотр объемного видео 360° в различных устройствах виртуальной реальности обеспечивает качественное погружение в видео контент, следующим шагом является возможность внедрения в видеоматериал формата видео 360° различных интерактивных элементов.

3D графика в виртуальной реальности

Такими элементами могут выступать:


Активные метки внутри виртуального пространства для движения по различным траекториям, предварительно отснятым в технологии видео 360°

Внедрение в видео 360° различного дополнительного контента (изображения, видео, гиперссылки и т.д.) – функция «картинка в картинке»

Переход из видеоизображения в формате видео 360° в смоделированное 3D-пространство реконструированной реальности.

Интерактивное взаимодействие дает возможность выбора пути следования: пользователю, в определенных точках видео (развилках), можно выбрать желаемое продолжение экскурсии, либо вернуться назад. Наведение на элемент осуществляется поворотом головы, которое отслеживается с помощью шлема виртуальной реальности. При удержании прицела на выбранном элементе в течение нескольких секунд происходит активация элемента и запускается следующий сегмент видео 360°, например, появляется видео следующего выставочного зала.

На проходах «вперед» может присутствовать экскурсовод в виде трехмерной анимации, рассказывающий об экспонатах. При желании, пользователь может пропустить просмотр отрезка видео нажатием клавиши на клавиатуре или с помощью интерактивного элемента.

Вторая форма интерактивного взаимодействия – возможность перейти из видео 360° в виртуальную трехмерную реконструкцию. В определенных точках видео-экскурсии появляется элемент, активировав который пользователь перемещается в 3D-реконструкцию с возможностью свободного перемещения в виртуальном пространстве и возможностью вернуться в исходное видео.

Примеры использования технологий виртуальной реальности в музеях

Музей Сальвадора Дали, расположенный в американском городе Сент-Питерсбурге, предлагает своим посетителям в буквальном смысле оказаться внутри картины «Археологический отголосок Анжелюса Милле», принадлежащего кисти великого испанского художника.

Для создания VR-версии картины было привлечено агентство Goodby Silverstein & Partners. Художники кропотливо исследовали полотно и воссоздали его 3D-версию в мельчайших подробностях. В проекте также активно участвовали художники студии Disney, которые ранее уже сотрудничали с музеем при создании анимационного фильма Destino. Результатом их совместной работы стал проект для виртуального шлема Oculus Rift, при помощи которого любой желающий сможет оказаться внутри знаменитого полотна.

Виртуальная реальность в Музее Сальвадора Дали

С помощью приложение WoofbertVR для очков виртуальной реальности Samsung Gear VR можно посещать самые известные художественные музеи мира, не выходя из дома. На сегодняшний день доступен тур по лондонской галерее Курто. Виртуальная прогулка сопровождается комментариями известного британского писателя, автора графических романов Нила Геймана. Идея создать такое приложение пришла в голову исполнительному директору компании Woofbert Роберту Хамви, который не смог попасть в Национальную галерею во время своего визита в Вашингтон.

Приложение WoofbertVR для очков виртуальной реальности Samsung Gear VR

В 2016 году Лаборатория мультимедийных решений создала панорамную экскурсию для посетителей Музея истории города Мончегорска. Гости музея смогут совершить виртуальную экскурсию по цехам Кольской горно-металлургической компании и увидеть весь цикл производства цветных металлов, надев шлем виртуальной реальности и запустив специальное приложение на смартфоне.

Съемки виртуальной экскурсии по цехам Кольской ГМК

Существует множество вариантов применения виртуальной реальности в выставочной деятельности. Наша команда специалистов поможет вам в выборе лучшего решения
именно для вашего музея и поможет реализовать проект на самом высоком уровне.

Хотите проект с виртуальной реальностью?

Напишите нам!

Вконтакте

Система образования – довольно консервативна. Несмотря на множество инновационных разработок и открытий, образовательный сектор практически не использует революционных методов обучения, в большинстве своем предпочитая «классику». Но информационные технологии предлагают новые правила для этой сферы – обучение в формате дополненной реальности.

Обучение в формате виртуальной реальности

Прежде всего, стоит отметить, что дополненная и виртуальная реальность – это не одно и то же. Для создания виртуальной реальности понадобятся или очки, которые нарисуют новый мир. Компоненты для создания виртуальной реальности (мощное и современное «железо», очки) достаточно дорого стоят. Еще одним камнем преткновения для внедрения виртуальной реальности в сферу образования может стать «потеря контакта» учителя-ученика: школьник путешествует в виртуальном мире, забывая о реальности в классной комнате.

С дополнительной реальностью дела обстоят на порядок проще. Дополненная реальность – инновационный способ демонстрации учебного материала. Унылая и весьма «заезженная» картинка оживает. Это не только не препятствует, но и в большей степени способствует (заинтересовывает) взаимодействию между учениками и учителем.


Разработка AR (анг. augmented reality) достаточно молода – с момента создания не прошло еще 10 лет, и массово в системе образования (даже развитых стран) пока не используется. Свое широкое применение она нашла в музейном деле («оживление» предметов) и уличной рекламе.
Чтобы привести систему в действие не потребуется хитроумных и дорогостоящих гаджетов: камера (подойдет даже камера в смартфоне), экран (телевизор, планшет, телефон), программное обеспечение, совместимое с имеющимся устройством, и маркер AR. В качестве маркера может быть использован чертеж, рисунок, графическое изображение или реальный объект (постройка, открытка или шоколадка). Приложение идентифицирует предложенный маркер и воспроизводит на экране графический объект или анимацию.

VR делает обучение увлекательным

Как это происходит на практике. На парте перед учеником лежит обычный учебник. На иллюстрации в книге направляется камера гаджета с установленным ПО. Программа распознает книжные рисунки как маркер, и вместо плоского рисунка атома появляется трехмерный объект, который можно рассмотреть со всех сторон. Уроки с дополненной реальностью позволяют ученикам становится частью происходящих процессов как микро- (молекулярный уровень), так и макромире (на уровне солнечной системы и галактик). Едва ли кто-то захочет прогуливать такие уроки физики.

Также многим людям гораздо легче воспринимать информацию, полученную в зрительном контакте, а не сквозь формулу или чертеж. Таким образом данная технология поможет без лишних усилий и серьезных вложений преодолеть барьер получения знаний для школьников и студентов. AR будет полезна при развитии пространственного мышления.

От разработок к реальности.

Стартап HoloGroup (Россия) сегодня активно работает над внедрением технологии дополненной реальности в образовательные будни школьников.
HoloGroup стала лауреатом независимой премии «Время инноваций-2016» в категории «Компьютерные и беспроводные технологии» в номинации «Открытие года».

Обучение в формате виртуальной реальности от HoloStydy ©photo holo.group

Команда специалистов работает над разработкой уроков в формате AR, адаптированных под Microsoft HoloLens (разработанное ими приложение). С помощью данного приложения можно уже сегодня познакомится с устройством нашей планеты.
Дополненная реальность превращает монотонные уроки в захватывающее приключение.

«Если вы постоянно вертитесь в этой индустрии, то хотите вы того или нет, но начинаете замечать определённые тренды и тенденции. Мне кажется, что за виртуальной реальностью кроется действительно огромный потенциал» - слова создателя игр Doom и Quake, а также сооснователя Oculus VR Джона Кармака, как нельзя лучше описывают будущее виртуальной реальности.

Эксперты считают, что к 2020 году индустрия виртуальной реальности будет оцениваться в $30 млрд, и сейчас VR движется к этому показателю огромными шагами.

При поддержке компании Microsoft, которая запустила курс по разработке приложений для виртуальной реальности , публикуем материал о том, зачем учиться разработке VR-приложений.

Французский писатель и режиссёр Антонен Арто вряд ли думал, что введённый им термин «виртуальная реальность», к 2016 году превратится в одну из самых перспективных и дорогих компьютерных индустрий. Впервые Арто употребил этот термин в собрании эссе «Театр и его Двойник» в 1938 году. Об очках виртуальной реальности, программном обеспечении и магазинах приложений речи, разумеется, не шло. Виртуальной реальностью Арто называл иллюзорную природу персонажей и объектов в театре.

Виртуальную реальность в её привычном для нас понимании популяризировал программист, писатель и музыкант Джарон Ланье. В середине 80-х, созданная им компания VPL Research, удерживала права на большинство патентов в сфере VR. А настоящий бум виртуальной реальности в то время обеспечили фильмы «Газонокосильщик» и «Мозговой штурм», а также книга Говарда Рейнгольда «Виртуальная реальность».

Сейчас о виртуальной реальности в большей или меньшей мере знает каждый. В конце 2015 года аналитическая компания Statista провела исследование среди жителей США. Всем респондентам задали один и тот же вопрос - «Заинтересованы ли вы в виртуальной реальности?» - и попросили оценить свой интерес по пятибалльной шкале. Лишь 7% оценили свой интерес на единицу, 5% на двойку. 44% сказали, что заинтересованы на пять баллов и 26% - на 4.

В любом исследовании, касающемся виртуальной реальности, всё так или иначе сводится к тому, что индустрия будет процветать. Прибыль от программных продуктов к 2018 году вырастет почти в 60 раз, количество пользователей к этому же году возрастёт до 171 млн, а прибыль от продажи шлемов виртуальной реальности вырастет с $685 млн до $3,89 млрд.

VR - это идеальная индустрия и для разработчиков. Она относительно нова, а значит еще не сформирована и не наполнена специалистами, интересна, а объём инвестиций в неё сейчас катастрофически велик. Разумеется, разработчики и сами это понимают. Статистики по количеству разработчиков в VR-индустрии нет, однако известно , что только Oculus Rift Development Kit купили в количестве более 175 000.

По мнению VR-инженера Лив Эрискон, один из главных вопросов, который ей задают программисты - «Как много денег и времени мне придется инвестировать, чтобы научиться работать с VR?». Учитывая $600-ценник на первые версии Oculus Rift, раньше этот ответ был бы не слишком воодушевляющим. Теперь, когда есть Cardboard, а практически каждый человек имеет смартфон, это не проблема.

Что касается временных рамок - здесь ответ более расплывчат. По мнению Эриксон, многое зависит от уровня подготовки и способности к обучению. «Если вы знакомы с C# и Unity, то дело пойдёт гораздо быстрее», - говорит инженер.

Зарплата VR-программиста зависит от выбранной им специализации, но, в целом, выше средней по рынку. Больше всего получают специалисты, работающие в медицинской и финансовой среде. Несмотря на то, что внимание СМИ обращено на социальные сети и игры, в сфере медицины и бизнеса происходит не меньше интересного. Например, стартап MindMaze разрабатывает виртуальные пространства для восстановления больных после сердечных приступов. Компания Vivid Vision создаёт игры для лечения амблиопии - болезни, которая ослабляет зрение - и косоглазия.


В бизнесе и корпоративной среде виртуальная реальность развивается с не меньшей скоростью. Компания SDK Lab создаёт виртуальные пространства для обучения сотрудников горнодобывающих компаний, Autodesk экспериментируют с использованием VR в сфере недвижимости, а IrisVR создают инструментарий для 3D-моделирования объектов.

Проблема для разработчиков состоит в том, что VR-шлемов много. Oculus, Microsoft Hololens, Samsung Gear VR, Google Cardboard - эти девайсы вспоминаются сразу. Еще есть HTC Vive, Project Morpheus, Visbox, Fove, StarVR - и на самом деле их еще больше. Разработчики сходятся во мнении, что вне зависимости от выбранной платформы, принцип обучения примерно одинаковый. Первый шаг - изучение C++ или C#, затем Unity или Unreal, так как это наиболее распространённые SDK, которые используют при разработке приложений виртуальной реальности.

Другой вопрос - где начать обучение. Во всём мире сейчас не больше 10 университетов, которые предлагают курсы по VR-разработке. Большая часть из них находится в США и лишь несколько за их пределами, в Норвегии и Сингапуре. Хороший вариант - обучаться самостоятельно. Для этого желательно уже иметь навыки разработки. Начать обучение можно с видеоуроков об инструменте для разработки Unity.

После знакомства со средой Unity, можно перейти к более продвинутому курсу Microsoft . Он посвящен созданию приложений виртуальной и расширенной реальности. Курс состоит из десяти модулей. Первые - ознакомительные и отводятся обсуждению основ виртуальной реальности, использованию VR-шлемов и принципам создания VR-программ на Unity.

Ближе к концу преподаватели курса рассказывают о более сложных технических деталях. Например, в четвертом уроке идёт речь о создании ПО для шлема Fibrum. В пятом - об особенностях взаимодействия с пользователем в виртуальной реальности: как избавить пользователя от дискомфорта и сложностей в управлении. Последний модуль отводится созданию высокоэффективных приложений на C++/DirectX.

Курс ведут евангелисты Microsoft Russia Дмитрий Сошников и Дмитрий Андреев, технический директор маркетингового агентства MAAS Александр Кондратов и основатель компании по разработке VR-приложений VR-AR Lab Артём Печеный.

Дмитрий Сошников, евангелист Microsoft Russia

Сам по себе курс скорее технологический, он учит основам разработки приложений виртуальной реальности для мобильных устройств. Чтобы разработать успешное приложение или игру, необходимо помимо этого ещё несколько составляющих: идея, хорошо подходящая под виртуальную реальность, навыки разработки игр в Unity, навыки создания трехмерных моделей для VR и бизнес-модель - идеи по возможной коммерциализации приложения.

В любом случае, надо пробовать. Придумать какую-нибудь идею и попытаться её реализовать на практике. Даже если не хватает каких-то составляющих, то это не повод откладывать процесс. Рынок VR-приложений пока достаточно свободный, и надо начинать действовать прямо сейчас! При этом с технологической точки зрения, всё не очень сложно, на нашем опыте обучиться созданию VR-приложений можно за пару дней.

Мы со своей стороны поддерживаем разработчиков на нашей платформе, например, в декабре прошел хакатон по VR/AR, на студенческом конкурсе Imagine Cup был целый ряд студенческих VR-проектов, получивших призовые места. Надо начинать действовать и менять этот мир к лучшему.

VR поменяет многие индустрии. В первую очередь, конечно, в голову приходят игры и развлечения. Кроме этого, отдельный класс приложений - это 360-видео или телеприсутствие, когда пользователь может «виртуально» перенестись в другое место. Подобные проекты имеют смысл в сфере образования, туризма и так далее.

Но на самом деле интереснее всего смотреть на то, как VR или AR могут использоваться в неигровых приложениях. Например, в обучении VR может позволить студентам заглянуть внутрь какого-то явления или процесса, будь то движение планет или атомная реакция. Вероятно, VR может изменить и стиль коммуникации людей, ведь недаром Facebook в своё время приобрела компанию Oculus VR.

Виртуальная реальность ещё не стала частью нашей повседневности, но на уровне разработок уже проникла в сферы от медицины до искусства и становится всё более доступна пользователю: самые простые VR-очки изготавливаются из картона. Постепенно VR находит своё место и в сфере детского образования, значительно меняя сам процесс обучения.

Как технологии меняют образование

Сразу скажем: речь не о том, чтобы приложения и гаджеты заменили школьникам учебники или работу в классе с учителем. Но современные технологии, такие как виртуальная и дополненная реальность, могут существенно дополнить традиционные методы и обеспечить более полное погружение в предмет изучения.

Исследования показываютThe Brain May Use Only 20 Percent of Its Memory-Forming Neurons , что мы запоминаем только 20% от того, что мы слышим, 30% - от того, что видим, и до 90% - от того, что делаем сами или испытываем во время симуляции. Виртуальная реальность позволяет получить реальный опыт присутствия, повышая эффективность обучения и вероятность запоминания.

Погулять внутри человеческого тела, совершить экспедицию на Марс, оказаться внутри химической реакции вещества - всё это позволяет совершенно иначе понимать и воспринимать предмет.

Кроме того, использование современных технологий во время школьных занятий кажется детям очень увлекательным, они с энтузиазмом погружаются в процесс. Если во время традиционного урока учителю трудно удерживать внимание всех учеников, то во время виртуального тура дети полностью вовлечены и фокусируются на 100%, поэтому процесс обучения идет с максимальной эффективностью.

Чему можно научиться в виртуальной реальности

Виртуальная реальность, как никакая другая технология, может обеспечить эффект погружения. VR - это не абстрактная информация, которую ребёнку надо запомнить, а полноценный визуальный опыт, на котором многим легче учиться.

Многие VR-приложения основаны на простой демонстрации 3D-объектов, фото или видео, но даже это фундаментально меняет процесс познания. И уже существует немало VR-приложений, в которых пользователь может активно влиять на виртуальную реальность и преобразовывать её. Мы подобрали несколько интересных VR-проектов, чтобы показать, чему школьник может научиться и что узнать с их помощью.

Путешествовать с Google Expeditions

Приложение Google содержит сотни туров и объектов в виртуальной или дополненной реальности, с которыми можно отправиться на раскопки археологов, совершить экспедицию под водой, превратить класс в музей. Пока преподаватель рассказывает, например, об океане, ученики «погружаются» на дно океана и «плавают» рядом с акулами. Или, используя дополненную реальность, учитель может устроить извержение вулкана прямо в классе, рассмотрев и обсудив его вместе с учениками.

Недорогие картонные очки Google Cardboard вместе с приложением Expeditions уже используются преподавателями в тысячах школ по всему миру.

Разобраться со сложными научными понятиями в MEL Chemistry VR

VR-уроки от Mel Science позволяют оказаться внутри химических реакций и увидеть своими глазами, что происходит с частицами веществ. Ученики могут взаимодействовать и экспериментировать с атомами и молекулами, а учитель контролирует ход VR-урока и видит прогресс каждого ученика. Мощная визуализация и эффект присутствия помогают понять суть химических явлений без бессмысленного зазубривания формул.


Рисовать в Tilt Brush

Это приложение позволяет рисовать в виртуальной реальности, где всё, что вы задумаете, возникает прямо из воздуха. Представляете, какой взрыв фантазии такие возможности вызовут у творческого школьника?

Даже если ребёнок не будет связывать свою дальнейшую жизнь с искусством, вполне вероятно, что к моменту, когда он будет получать профессиональное образование, проектирование в виртуальной реальности для многих специальностей станет обычным делом. К сожалению, VR-шлемы, необходимые для этой программы, всё ещё довольно дорогое оборудование.


Узнать о строении организма в InMind и InCell

Два очень красивых приложения, наглядно раскрывающих принципы работы мозга и клеток организма в виде игр. Анатомия вдохновляет разработчиков VR-приложений, и интересных решений в этой области можно найти немало. Мы остановились на этих двух, потому что, во-первых, это примеры российской разработки (их выпустила студия Nival VR), а во-вторых, они полностью бесплатны. Кстати, медицина - одна из сфер, где VR-технологии уже сегодня заняли заметное место в науке, практике и профессиональном обучении.



Познакомиться с виртуальной реальностью в The Lab и создавать её в CoSpaces Edu

Ещё один распространённый тип образовательных VR-приложений даёт представление о самой этой технологии. The Lab - альманах мини-игр, демонстрирующих возможности виртуальной реальности. С этого полностью бесплатного приложения рекомендуют начинать знакомство с VR.

Если ребёнок уже заинтересовался виртуальной реальностью, то ему можно предложить площадку для самостоятельного творчества. Подойдёт CoSpaces Edu: 3D-конструктор можно собирать из готовых объектов или строить их самостоятельно, а можно и писать код.


Одним из наиболее популярных направлений развития виртуальной и дополненной реальности является образование. Существует много различных вариантов применения современных технологий в этой области — от простых школьных туров по Древнему Египту на уроках географии до обучения специалистов для работы на сверхскоростном поезде или на космической станции. Своими замечаниями о том, какими возможности обладает виртуальная реальность в образовании, поделился Дмитрий Кириллов, руководитель VRAR lab и Cerevrum Inc .

Плюсы использования VR в образовании

Использование виртуальной реальности открывает много новых возможностей в обучении и образовании, которые слишком сложны, затратны по времени или дороги при традиционных подходах, если не всё одновременно. Можно выделить пять основных достоинств применения AR/VR технологий в образовании.

Наглядность. Используя 3D-графику, можно детализированно показать химические процессы вплоть до атомного уровня. Причем ничто не запрещает углубиться еще дальше и показать, как внутри самого атома происходит деление ядра перед ядерным взрывом. Виртуальная реальность способна не только дать сведения о самом явлении, но и продемонстрировать его с любой степенью детализации.

Безопасность. Операция на сердце, управление сверхскоростным поездом, космическим шатлом, техника безопасности при пожаре — можно погрузить зрителя в любое из этих обстоятельств без малейших угроз для жизни.

Вовлечение. Виртуальная реальность позволяет менять сценарии, влиять на ход эксперимента или решать математическую задачу в игровой и доступной для понимания форме. Во время виртуального урока можно увидеть мир прошлого глазами исторического персонажа, отправиться в путешествие по человеческому организму в микрокапсуле или выбрать верный курс на корабле Магелланна.

Фокусировка. Виртуальный мир, который окружит зрителя со всех сторон на все 360 градусов, позволит целиком сосредоточиться на материале и не отвлекаться на внешние раздражители.

Виртуальные уроки. Вид от первого лица и ощущение своего присутствия в нарисованном мире — одна из главных особенностей виртуальной реальности. Это позволяет проводить уроки целиком в виртуальной реальности.

Форматы VR в образовании

Использование новых технологий в образовании предполагает, что учебноый процесс должен быть перестроен соответствующим образом.

ОЧНОЕ ОБРАЗОВАНИЕ

Виртуальные технологии предлагают интересные возможности для передачи эмпирического материала. В данном случае классический формат обучения не искажается, так как каждый урок дополняется 5–7-минутным погружением. Может быть использован сценарий, при котором виртуальный урок делится на несколько сцен, которые в включаются в нужные моменты занятия. Лекция остается, как и прежде, структурообразующим элементом урока. Такой формат позволяет модернизировать урок, вовлечь учеников в учебный процесс, наглядно иллюстрировать и закрепить материал.

ДИСТАНЦИОННОЕ ОБРАЗОВАНИЕ

При дистанционном обучении ученик может находиться в любой точке мира, равно как и преподаватель. Каждый из них будет иметь свой аватар и лично присутствовать в виртуальном классе: слушать лекции, взаимодействовать и даже выполнять групповые задания. Это позволит придать ощущение присутствия и устранить границы, которые существуют при обучении через видеоконференции. Также преподаватель сможет понять, когда ученик решит покинуть урок, так как шлемы Oculus Rift и HTC Vive оборудованы датчиком освещения, позволяющим распознать, используется шлем в данный момент или нет.

СМЕШАННОЕ ОБРАЗОВАНИЕ

При наличии обстоятельств, мешающих посещать занятия, ученик может делать это удаленно. Для этого класс должен быть оборудован камерой для съемки видео в формате 360-градусов с возможностью трансляции видео в режиме реального времени. Ученики, посещающие урок дистанционно, смогут наблюдать происходящее в классе от первого лица (например, прямо со своего места), видеть своих одноклассников, общаться с преподавателем и принимать участие в совместных уроках.

САМООБРАЗОВАНИЕ

Любой из разработанных образовательных курсов может быть адаптирован для самостоятельного изучения. Сами уроки могут размещаться в онлайн-магазинах (например, Steam, Oculus Store, App Store, Google Play Market), чтобы у всех была возможность осваивать или повторять материал самостоятельно.

Минусы использования VR в образовании

Однако пока использование технологий и сами устройства не будут максимально «отточены», будут существовать минусы и потенциальные проблемы использования виртуальной реальности в образовании.

Объем. Любая дисциплина довольно объемна, что требует больших ресурсов для создания контента на каждую тему урока — в виде полного курса или десятков и сотен небольших приложений. Компании, которые будут создавать такие материалы, должны быть готовы заниматься разработкой довольно продолжительное время без возможности ее окупить до выхода полноценных наборов уроков.

Стоимость. В случае с дистанционным обучением нагрузка по покупке устройства виртуальной реальности ложится на пользователя, или этим устройством может быть его телефон. Но образовательным учреждениям понадобится закупать комплекты оборудования для классов, в которых будут проходить занятия, что также требует существенных инвестиций.

Функциональность. Виртуальная реальность, как и любая технология, требует использования своего, специфического языка. Важно найти верные инструменты для того, чтобы сделать контент наглядным и вовлекающим. К сожалению, многие попытки создания обучающих VR-приложений не используют все возможности виртуальной реальности и, как следствие, не выполняют своей функции.

Пример: урок физики в VR

Для того, чтобы проверить эффективность и жизнеспособность использования виртуальной реальности в образовании, компания VRAr lab разработала экспериментальный урок по физике. В исследовании приняли участие 153 человека: подростки 6-17 лет, их родители и родственники. После просмотра участников попросили ответить на три вопроса: насколько хорошо усваивается учебный материал, поданный таким образом; каково отношение детей к обучению в виртуальной реальности; какие школьные предметы (по мнению школьников) предпочтительны для создания уроков в виртуальной реальности.

Урок был посвящен теме электрического тока в простейшей электрической цепи. Надев очки, пользователь оказывался в комнате перед столом, на котором была визуализирована простейшая электрическая цепь. Далее пользователь попадал внутрь проводника, где ему предстояло изучить его строение (визуализация строения атома, кристаллической решетки, условная визуализация течения электрического тока в связке с источником питания). Урок рассчитан на шесть учеников, сопровождается лекцией учителя и длится от 5 до 7 минут.

После лекции респонденты заполнили анкеты.

Усвоение материала и отношение к урокам в VR

Респондентам было предложено ответить на три закрытых вопроса анкеты: какая из перечисленных частиц не является частицей атома; из чего состоит ядро атома; какая частица отвечает за передачу электрического заряда. Результат оказался отличным – лишь 8,5% респондентов не усвоили материал.

Что касается отношения к подобным урокам, то по данным VRAR lab, 148 респондентов из 153 (97,4%) желали бы и дальнейшего применения технологий виртуальной реальности на школьных уроках, причем в качестве дисциплин большинство указало физику и химию.

В целом, эксперимент, проведенный VRAR lab, показал успешность применения VR в образовании. Современные технологии, несмотря на долгий путь развития, еще молоды, но всё же виртуальная реальность – это следующий большой рывок в развитии сферы образования. И в ближайшее время нам предстоит увидеть множество интересных открытий в этой области.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва