Чем отличается конвексный датчик от линейного. Виды датчиков для аппаратов узи и как врач выбирает нужный сканер

Датчики – важнейшие «инструменты» современного ультразвукового исследования, посредством которых становится возможным дистанционное обнаружение определенных объектов и измерение расстояний между ними. В основе их работы – взаимодействие ультразвуковых колебаний и измеряемого пространства.

За счет уникального конструктивного исполнения и специальных функций УЗИ-датчики могут фокусироваться при определенной глубине. Внешне они представляют собой детекторы с множеством взаимосвязанных пьезокристаллов и встроенными линзами.

У каждого типа датчика свое назначение. Поэтому при покупке данного устройства необходимо, прежде всего, отталкиваться от области применения.

Существуют узкоспециализированные УЗИ-датчики, которые можно использовать только для определенной области (например, трансвагинальные датчики, применяемые в гинекологии), а также многофункциональные, допустимые к использованию в нескольких областях.

Конвексные датчики

Если проводятся абдоминальные исследования и диагностика состояния органов малого таза, вам понадобятся конвексные датчики. Также они необходимы в урологии, педиатрии и для исследований сосудов головного мозга. Они имеют особую форму с выгнутой поверхностью, при этом сканирующая зона выделена специальным цветом.

Важно отметить, что внешний вид конвексного датчика может варьироваться в зависимости от производителя и назначения. Радиус кривизны конвексного датчика составляет 40-70 мм, угол сканирования – 50-80 градусов.

Линейные датчики

Отличительная особенность линейного УЗИ-датчика – плоская излучающая поверхность. Такие детекторы могут отличаться параметрами апертуры, частотой диапазона и внешним видом в зависимости от области применения.

Линейный датчик актуален для ультразвукового исследования поверхностных органов и структур, костно-мышечной системы, опорно-двигательного аппарата. Специалисты также нередко используют их для педиатрии и неонатологии.

Линейный датчик с шириной 6-7 см и апертурой от 50 до 60 мм идеально подойдет для УЗИ поверхностных органов. Если же такой прибор 80-100 мм, он может применяться для маммологии и биопсии.

Микроконвексные датчики

Микроконвексные УЗИ-датчики предназначаются для внешнего и внутриполостного использования. В этом заключается их особенность. Радиус кривизны составляет примерно 30 мм.

Если внешняя структура микроконвексного датчика может напоминать форму конвексного детектора, то внутреннее строение этих приборов заметно отличается. У микроконвексного датчика очень маленькая сканирующая головка.

Секторные фазированные датчики

Если ультразвуковой датчик оснащается фазированной решеткой и предполагает постоянно-волновой допплер, то это секторный фазированный тип. Отличается также широкой областью применения, так как может использоваться для трансторакальной ЭХКГ, кардиологических или транскраниальных исследований.

В секторном фазированном датчике каждый специальный элемент способен работать самостоятельно. Угол сканирования составляет 90 градусов.

Чреспищеводные датчики

Иногда их также называют трансэзофагеальными. Стоит задуматься о покупке такого типа датчика, если проводятся кардиологические исследования.

Благодаря чреспищеводному ультразвуковому датчику можно будет увидеть сердце в состоянии динамики и в различных проекциях, что повысит информативность и точность диагностики.

Примечательная структура таких устройств, предполагающая гибкий дистальный наконечник и гибкую рабочую зону, специальные вращающиеся излучатели. Чреспищеводный УЗИ-датчик имеет частотный диапазон от 3 до 8 МГц и угол сканирования – 90 градусов.

Трансректальные датчики

Необходимость в трансректальном датчике возникает при проведении брахитерапии простаты или биопсии. В чем особенность таких детекторов? У них предполагается широкий спектр множественных излучателей для обеспечения работы с фронтальной и сагиттальной проекцией.

Кроме того, на одном устройстве можно зафиксировать сразу 2 микроконвексных излучателя (другой вариант: 1 линейный и 1 микроконвексный).

Механические датчики

Для данной разновидности УЗИ-датчиков характерны специальные движущиеся излучатели. Механический датчик следует купить, если проводятся аноректальные, внутрисосудистые и трансуретральные исследования.

Матричные датчики

Для эхокардиографии, урологии, гинекологии, акушерства, сосудистых исследований и педиатрии покупают матричные УЗИ-датчики, оснащенные специальной решеткой с излучателями.

Принято различать полуторомерные детекторы данного типа, у которых ширина апертуры меньше длины, а также двухмерные датчики, у которых множество элементов по ширине и длине.

Монокристальные датчики

В монокристальных датчиках все пьезоэлементы гармонично согласованы друг с другом, поэтому функционируют как единое целое. При работе с таким типом детекторов практически полностью минимизируются шумы, что немаловажно для достоверности диагностики.

В группу монокристальных датчиков могут входить не только конвексные, но и фазированные, а также линейные устройства.

Карандашные датчики

Датчики с особым разделением излучателя и приемника принято называть «карандашными» или «допплеровскими».

Их отличительная черта – работа в режиме постоянно-волнового допплера. Стоит выбрать карандашный ультразвуковой датчик, если проводятся исследования сердца и артерий.

Объемные датчики

Один из самых современных вариантов на сегодняшний день – это объемный тип датчиков, благодаря которым можно получать статические и динамические трехмерные изображения.

Видеоэндоскопические датчики

Данные приборы соединяют в себе функциональные возможности видеогастрофиброскопа и видеобронхофиброскопа.

Лапароскопические датчики

Представляя собой своеобразную трубку с излучателем, лапароскопические датчики также имеют характерный гибкий кончик, который может меняться в разных плоскостях. Такие устройства нужны при выполнении лапароскопических манипуляций.

В этой статье мы разберем различные виды ультразвуковых датчиков, расскажем какие поломки могут быть и каким образом может происходить


1. Конвексный узи датчик

Частота датчиков такого типа варьируется от 2х до 7,5 МГц, глубина проникновения около 25 см. Ширина отображения исследуемого органа на несколько сантиметров шире самого датчика. Ультразвуковые датчики данного типа применяются для исследования глубоко расположенных объектов: абдоминальные исследования, тазобедренные суставы, половая система и др.

Частые неисправности данного типа узи датчика:

  • Стирание акустической линзы
  • Проблемы с кабелем
  • Выход из строя пьезоэлементов

2. Микроконвексный узи датчик

Датчик по своему строению идентичен конвексному, разница только в том, что микроконвексный датчик меньше в размерах. Применяется он, как правило, для тех же исследований, но только в педиатрии.


3. Линейный узи датчик

Частота данного типа узи датчиков варьируется от 5 до 15 МГц. Глубина сканирования составляет не более 11 см. Основная особенность линейного датчика - полная пропорциональность исследуемого объекта положению линейного узи датчика, но сложностью является, что невозможно обеспечить полное прилегание узи датчика к исследуемым поверхностям. Данные датчики используются для исследований поверхностных структур, таких как молочная железа, щитовидная железа, маленьких суставов и мышц и для осмотра сосудов.
Частые неисправности данного типа узи датчиков:

  • Воздушные пузыри на акустической линзе
  • Проблемы с коннектором
  • Выход из строя пьезоэлементов

4. Секторный узи датчик.

Частота данного типа датчика варьируется от 1,5 до 5 МГц. Используется для ситуаций, когда необходимо получить широкий обзор небольшого участка. В основном, используется для обзора сердца и промежутков между ребрами.
Частые проблемы с секторными датчиками:

  • Проблемы с линзой
  • Трещины корпуса
  • Проблемы с манжетой

5. Секторные фазированные датчики

Данный вид датчиков активно используется в кардиологии. При помощи секторной решетки появляется возможность корректировки угла ультразвукового луча в зоне сканирования, что дает возможность посмотреть за родничок, ребра или глаза. Датчик имеет возможность работать в режиме PW и CW, по причине того, что у него есть возможность автономного приема и передачи разных частей фазированной решетки.


6. Внутриполостной ультразвуковой узи датчик

Данный типа датчика используется для исследований органов таза: акушерство, гинекология, урологию. В данную группу входят вагинальные и трансректальные и ректально-вагинальные ультразвуковые датчики.


7. Биплановые узи датчики

Биплановые узи датчики имеют несколько излучателей. При помощи этого есть возможность получить изображения в продольном и поперечном срезах.

8. 3D/4D объемные узи датчики.

Данный вид датчика используется для реализации трехмерных изображений. Возможность такого метода обеспечивается благодаря датчику, который вращается внутри колпака.
Чаще всего можно столкнуться со следующими проблемами 3D/4D датчиков:

  • Обрыв тросов
  • Утечка масла
  • Проблемы с механизмом 3D

9. Матричные объемные узи датчики.

Данные датчики можно поделить на полуторомерные и двумерные.
Полуторомерные матричные датчики дают возможность получить максимальное разрешение по толщине
Двумерные дают возможность получать объемное изображение в режиме реального времени и выводить на экран некоторое количество проекций и срезов.

10. Карандашные узи датчики

Данный тип датчика предусматривает разделение приемника и излучателя. Используется для исследования артерий, вен ног и шеи.


11. Чреспищеводные или TEE датчики

Данный тип датчиков используется для чреспищеводной эхокардиографии. Достаточно сложное строение данного датчика разработано для специфичных исследований.
Рабочая частота данного типа датчика от 2,5 до 10 МГц.
Основные неисправности этих датчиков:

  • Разгерметизация
  • Датчик нагревается
  • Нарушение целостности наружной оболочки
  • Обрыв тяг

Наш сервисный центр на протяжении 5 лет профессионально занимается ремонтом узи датчиков и успешно восстанавливает их.

Если у Вас возникли проблемы с узи датчиками, обращайтесь, мы решим любую Вашу проблему.


Сайт :: Дайджест ::

    По данным публикации в журнале Ультразвука в медицине(Journal of Ultrasound in Medicine) за апрель 2013 - Ultrasound Transducer Selection in Clinical Imaging Practice / Выбор ультразвукового датчика в клинической практике визуализации - https://onlinelibrary.wiley.com/doi/10.7863/jum.20...

    На протяжении более чем 50 лет, многие виды медицинских ультразвуковых датчиков используются в клинической практике. Они работают на различных центральных частотах, имеют различные физические размеры и формы, а также обеспечивают различные форматы изображений.

    Например, фазированная решетка имеет небольшую (обычно 20 х 15 мм) контактную поверхность для установки между ребрами и имеет возможность создавать секторные изображения с широким охватом и глубиной при высокой (> 100 кадров/с) частоте кадров.

    Хорошо известно, что пьезоэлектрические датчики могут при размещении на теле или внутри него передавать ультразвуковые импульсы и получать эхо-сигналы изнутри тканей и органов. Для получения клинически полезных изображений необходим дополнительный ингредиент, а именно сканирование. Обычно акустический луч, генерируемый отдельным датчиком, перемещается в заданном направлении либо электронным, либо механическим способом для получения серии импульсных эхо-линий, которые определяют плоскость изображения. Для 2-мерного (2D) сканирования плоскостью изображения является плоскость xz. Простой метод сканирования состоит в том, чтобы перемещать акустический луч постепенно, с шагом определяемым как дельта-x вдоль оси x. В каждой позиции создается импульсная эхо-линия, а затем набор полученных линий интерполируется для получения изображения прямоугольной формы. Альтернативный подход к перемещению заключается в смещении угла акустического луча по дуге, с шагом определяемым как дельта-тета в плоскости xz. Как и в предыдущем подходе, после получения полного набора линий они интерполируются в секторное 2-мерное изображение. Вариантом линейного сдвига является криволинейная геометрия, в этом случае массив расположен на кривой, образованной радиусом кривизны (R), а линейное приращение, дельта-s, находится вдоль криволинейной поверхности, а не прямой линии. Что интересно в этой геометрии, так это то, что это приращение вдоль кривой, эквивалентно угловому сдвигу через отношение дельта-s = R х дельта-тета. Вследствие этого типа сканирования вдоль дуги, линии разветвляются радиально.

    Аналогично, сканирование может быть определено для плоскости yz. В этом случае поступательное сканирование выполняется вдоль оси y с шагом дельта-y, а угловое сканирование выполняется с шагом дельта-тета в плоскости yz. Для достижения трехмерного (3D) сканирования или сканирования в любом месте положительного полупространства, определяемого положительными осями x, y и z, сканирование в плоскостях xz и yz может быть объединено для формирования объемного сканирования пирамидальной формы.

    Несмотря на то, что ранние (одноэлементные) датчики для ультразвуковой визуализации в двумерных плоскостях были механическими, к началу 1980-х годов для сканирования уже использовались многоэлементные датчики с массивами пьезоэлементов. Многоэлементный датчик для УЗИ состоит из набора одиночных пьезоэлементов, которыми можно управлять, как группами. В линейной матрице группа встроенных элементов включается и выключается постепенно, эффективно сдвигая активную группу элементов в сторону на дельта-x для создания отдельных импульсных эхо-линий, составляющих плоскость изображения. Импульсные эхо-линии интерполируются для формирования результирующего прямоугольного формата изображения соответствующего форме датчика.

    Фокусировка может быть выполнена как механическим, так и электронным способом. Для линейного формата электронная фокусировка достигается для каждой линии сканируемого изображения путем управления временем задержки, при котором напряжение возбуждения отдельных элементов подается на группу активных элементов. В плоскости yz (т.е. плоскости, перпендикулярной плоскости изображения, часто называемой толщиной среза) достигается фиксированная фокусировка с использованием механической линзы.

    Чтобы несколько облегчить ограничение фиксированного фокуса, некоторые производители систем визуализации предлагают массивы с несколькими строками в направлении z. Однако для полностью управляемой фокусировки в плоскости yz требуются двухмерные матричные датчики, которые способны обеспечить не только улучшенную фокусировку по z, но также трехмерные и 4-мерные (4D) изображения.

    Типы датчиков

    Чтобы классифицировать датчики, можно использовать аббревиатуры для их описания. В частности, M - означает механическое сканирование; E - электронное сканирование; и F - фиксированное - отсутствие сканирования. Направление сканирования является либо линейным (L) вдоль оси x, либо угловым (

    Согласно приведенному выше описанию, каждый датчик может быть закодирован по типу сканирования и плоскостям. Например, линейная матрица L связана с электронным линейным сканированием, E в плоскости xz и фиксированной фокусировкой F в плоскости yz; поэтому полученные обозначения можно сократить как ELxz и Fyz.

    Криволинейный или конвексный массив/датчик аналогичен линейному массиву за исключением того, что элементы находятся на криволинейной, а не плоской поверхности, и соответственно отличие в направлении сканирования - C, т.е. ECxz и Fyz. Этот формат, подобный по форме сектору или куску пирога с укусом, взятым из его вершины, часто описывается углом поля зрения (FOV), определяющим его боковую угловую протяженность.

    Поскольку важность 3D-визуализации неуклонно растет, целесообразно обсудить ее более подробно. Для трехмерного изображения сканируется объем вместо плоскости, сканирование может быть электронным и обычно угловым в обоих направлениях, так что сканируемый объем имеет пирамидальную форму. В этом случае электронная фокусировка достигается в обеих плоскостях с угловым сканированием, поэтому - E

    В качестве альтернативы, для достижения экономически эффективного 3D-изображения, линейные или конвексные массивы могут быть отсканированы механически вокруг оси x в плоскости yz. В этих случаях массивы перемещаются в заполненные жидкостью акустически прозрачные камеры. Например, линейная матрица (обычно типа А) поворачивается вокруг оси z для получения серии плоскостных изображений и таким образом мы получаем механический 3D датчик типа F. Аналогично, изогнутая или выпуклая матрица (обычно типа C) поворачивается вокруг оси для получения серии плоскостных изображений и таким образом мы получаем механический 3D датчик типа G.

    В дополнение к электронно-управляемому движению, эти 1-мерные (1D) массивы (массив типа A, B или C) также могут быть перемещены механически вручную, при " ручном" 3D-сканировании, в котором полученные 2D-изображения в дальнейшем объединяются в 3D-объемы. Здесь стоит отметить, что реконструкция изображения для трехмерного изображения в " ручном" 3D режиме включает либо предположение о регулярном расстоянии, либо дополнительную пространственную информацию для каждой плоскости пространственного изображения, что может быть достигнуто с помощью датчиков положения(*ага разбежались, только куда их потом, эти дополнительные " GPS" -датчики подсоединять в аппарате?).

    Наконец, для полноты понимания, в настоящее время одноэлементные датчики в основном используются во внутрипросветных или катетерных датчиках (для внутрисосудистых/внутрисердечных ультразвуковых исследований *и внутриигольных УЗИ - ). Один пеьзоэлемент, может механически перемещаться для получения 2D или 3D изображений. Также существует изображение по типу пончика(*диска), когда элемент перемещается под углом по окружности(*используется не только во внутрисосудистых УЗИ, но и при эндоУЗИ кишечника). Здесь уместно отметить, что существует также массивная(*многоэлементная) версия этого внутрисосудистого ультразвукового датчика. Если этот механический пьезоэлемент вращается и перемещается вдоль оси y, получается цилиндрическое объемное изображение(*3D-пончик).

    Клиническое применение датчиков

    Акустические окна

    Насколько хорошо тип датчика подходит для " акустического окна" или места, где он контактирует с телом, чтобы визуализировать интересующие органы или ткани? Существуют стандартные акустические окна(*доступы); многие из них, по соглашению, имеют конкретные названия, такие как " трансабдоминальное" или " парастернальное окно длинная ось" , благодаря этому изображения в дальнейшем можно сравнивать. Типичные окна расположены в или на следующих общих областях тела: голова, грудь, живот, малый таз, конечности, сосуды и различные отверстия тела.

    Как уже упоминалось, для трансторакального окна фазированная решетка была бы наиболее подходящей, если задача визуализации требует размещения датчика между ребрами; она предназначена для размещения в межреберных пространствах и максимизации сканируемой области. Для большинства контактных поверхностей, которые являются относительно плоскими и / или слегка деформируемыми (например, те, которые используются для поверхностно-расположенных органов или сосудистой визуализации), наиболее общим и часто используемым типом датчика является линейная матрица, предназначенная для контакта с плоскими поверхностями, при этом размер контактной поверхности уменьшается с увеличением частоты. Здесь FOV(*рабочая область изображения или поле зрения) прямоугольная или трапециевидная. При абдоминальной визуализации, для увеличения площади обзора с минимальным увеличением контактной поверхности, используются конвексные(выпуклые) массивы, которые предназначены для осуществления поверхностного контакта в деформируемых мягких областях тела(*В основном это живот).

    Специализированные датчики

    Специализированные датчики предназначены для работы внутри тела(*не обязательно - ). К ним относятся чреспищеводные зонды, которые представляют собой фазированные решетки, пригодные для ручного манипулирования внутри пищевода (тип B). Ряд других специальных датчиков также были разработаны для интервенционного или хирургического использования, таких как лапароскопические массивы и внутрисердечные массивы. Эти зонды могут быть либо с линейными, либо с фазированными решетками, в зависимости от поставленной задачи. Также существует еще несколько разновидностей эндо-датчиков: такие как эндовагинальные, эндоректальные и эндокавитальные (тип D), функционально похожи на концевые фазированные решетки(В) или конвексные решетки (C) на конце цилиндрического корпуса малого диаметра, чтобы вписаться в отверстия и все же максимизировать FOV. Другим примером является внутрисосудистый ультразвуковой датчик (тип H), который вставляется в вены.

    Разрешение и проникновение

    Выбранная глубина сканирования позволяет просматривать в интересующем диапазоне глубины. Факторы, участвующие в возможности визуализации, включают размер активной апертуры (скрытый для пользователя, обычно используется низкое значение f ), фокусную глубину передачи и доступные настройки регулировки усиления по времени. Проникновение(*проникающая способность) - это минимальная глубина сканирования, при которой виден электронный шум, несмотря на оптимизацию доступных элементов управления (обычно при самой глубокой настройке фокуса передачи и максимальном усилении), а электронный шум остается на фиксированной глубине даже при боковом перемещении массива. Проникновение в первую очередь определяется центральной частотой датчика: чем выше частота, тем меньше проникновение, потому что больше поглощение ультразвуковой волны, проходящей через ткань.

    Полезным первым приближением для оценки глубины проникновения (dp) для данной частоты является dp = 60/f см-МГц, где f задается в мегагерцах. Таким образом, можно ожидать от датчика с центральной частотой 10 МГц проникновения сигнала на глубину 6 см. Как отмечалось ранее, коэффициент поглощения (потери акустической мощности на единицу глубины) является функцией частоты и изменяется от ткани к ткани (значения для мягких тканей варьируют от 0,6 до 1,0 дБ/см-МГц). Более общим термином, описывающим акустические потери, является коэффициент затухания, который включает в себя дополнительные потери из-за рассеяния и диффузии и, следовательно, всегда больше коэффициента поглощения. Коэффициент затухания сильно зависит от пациента и акустического пути.

    Чтобы оптимизировать разрешение изображения, производители работали над увеличением частоты изображений для различных типов исследований. Например, около 30 лет назад живот смотрели датчиками с частотой 2,25 МГц, тогда как сегодня это число чаще составляет 3,5 МГц, а частоты некоторых акушерских и гинекологических датчиков достигают 5 МГц. Аналогичным образом, в последнее десятилетие наблюдается устойчивый рост ультразвуковой визуализации молочной железы.

    Свойства датчика и изображение

    Другими критериями, которые должны быть включены в вышеописанный процесс выбора, являются эффективность датчика, конструкция датчика, отношение сигнал / шум и, как уже отмечалось, поглощение сигнала тканями. Основным фактором является поглощение, состав и относительные положения различных типов тканей на пути ультразвукового сигнала. Например, толстый слой жировой ткани будет уменьшать проникновение из-за аномалий рефракции или аберрации по пути к интересующему участку. Аналогично увеличенные количества околоплодных вод при визуализации плода усиливают проникновение и могут позволить использовать частоты выше обычных.

    Частотный диапазон, или ширина полосы частот датчика определит сможет ли он поддерживать B-режим на различных разбивочных частотах и также работать в допплеровском режиме, гармоники, и цвета. При использовании доплеровских режимов визуализации нам часто приходится работать с более низкими частотами, чем частота B-режима, чтобы минимизировать сглаживание. При гармоническом изображении, по определению, используется частота приема, которая кратна (обычно 2) передаваемой частоте; следовательно, требуется широкая пропускная полоса. Пропускная способность и фокусирующие свойства также влияют на разрешение изображения. В клинической практике важно обеспечить изображение с максимально мелким зерном(пикселем), как в продольном, так и поперечном размерах.

    Количество пьезо-элементов датчика представляет отдельный интерес, поскольку количество активных элементов (за исключением фазированных решеток или двумерных решеток с угловым сканированием) определяет поперечную протяженность или ширину изображения. Для фазированных решеток увеличение числа элементов связано с улучшением разрешения и глубины проникновения. Для двумерных массивов (обычно симметричных) число элементов вдоль направлений x и y определяет степень объема для линейно сканируемых массивов. Для двумерной фазированной решетки разрешение и проникновение увеличиваются с большим количеством элементов вдоль направлений x и y, но FOV остается неизменной, независимо от количества используемых активных элементов. Фокусировка в фиксированном направлении может косвенно влиять на изображение, поскольку фокусировка расположена только на одной глубине и хуже в других местах. Для 3D-изображений механически сканированные 2D-массивы страдают от того же ограничения фиксированной по z фокусной глубины, которое встречается в 2D-изображении. Напротив, все элементы полноценного электронного 3D-массива фокусируются электронным способом в одной точке, чтобы обеспечить гораздо лучшее разрешение.

    На самых глубоких глубинах именно максимальное количество доступных активных каналов(*элементов) в системе определяет разрешение (наряду с силой фокусировки и системным шумом). Пространственное разрешение обычно хуже (обычно в 2 раза), чем временное разрешение вдоль линий сканирования; в представленном здесь обсуждении разрешение относится к пространственному разрешению, если не указано иное. Для фазированных решеток, количество каналов, обычно соответствует максимальному количеству элементов. Как правило, поскольку элементы обычно находятся на полуволновом расстоянии, чем больше элементов, тем лучше пространственное разрешение, которое обратно пропорционально активной апертуре в длинах волн. Например, 64-элементная матрица с 32-волновой апертурой будет иметь максимальное пространственное разрешение в 2 раза ниже (более широкий луч), чем у 128-элементной 64-волновой матрицы. В случае линейного массива, который может иметь несколько сотен элементов, количество элементов определяет латеральную протяженность изображения, но именно количество активных каналов определяет разрешение. Для этих 1D массивов разрешение вне плоскости изображения (также известной как толщина среза) является плохим, за исключением фиксированного фокусного расстояния по z. Для двумерных массивов пространственное разрешение обратно пропорционально активным апертурам, образующим стороны двумерного массива. Двумерные массивы имеют лучшее разрешение по сравнению с 1D массивами, потому что истинная точка фокусировки в 2D массиве может быть достигнута одновременно.

    Другой способ взглянуть на разрешение-F#. Чем меньше f#, тем лучше разрешение. Простая оценка полной ширины(луча) в миллиметрах, общая мера разрешения, пренебрегающая поглощением, составляет приблизительно F# х лямбду, где лямбда - длина волны (1,5 мм/микросек/f[МГц]). Например, разрешение будет 0,3 мм при 5 МГц для F# = 1. Фокусные глубины также зависят от активной апертуры. Например, для 128-элементного 64-волнового массива самая глубокая фокусная глубина, достигаемая при максимальной апертуре и F# = 1, равна f = F# х L = 64 длин волны. Фактическая глубина проникновения или полезная глубина сканирования, конечно, будет глубже, чем максимальная фокусная глубина.

    Соответствие датчиков клиническому применению

    Теперь, когда типы и свойства датчиков были связаны с визуализацией и акустическими окнами, они могут способствовать выбору датчиков для конкретных клинических применений. Уместность некоторых датчиков для конкретных применений развивалась исторически. Основными соображениями являются целевая область интереса и ее протяженность, а также доступные акустические окна, необходимые для доступа.

    Абдоминальная визуализация

    Когда в 1970-х годах для визуализации органов брюшной полости (включая акушерство и гинекологию) были впервые введены в промышленную эксплуатацию массивы датчиков, они были линейного типа (тип А). В большинстве случаев площадь контакта с пациентом не была критической проблемой, и некоторые из этих линейных массивов были достаточно длинными (например, 8 см *видали и по больше - http://www.jira-net.or.jp/vm/data/1986000017/19860... , звали их утюжками), чтобы покрыть, скажем, голову плода в третьем триместре. Однако вскоре стало ясно, что можно достичь большого охвата за счет использования криволинейных или конвексных матриц (тип С), не подвергая себя риску манипулирования довольно громоздкими линейными датчиками.

    Конвексные датчики являются датчиками выбора для большинства общих областей 2D-визуализации, связанных с брюшной полостью. Форм-фактор, связанный с эргономическими факторами и пригодностью формы датчика и FOV к применению, для абдоминального 3D все еще эволюционирует. Три ключевых дескриптора для этих массивов - это контактная поверхность(общий размер апертуры), FOV и радиус кривизны. Контактная поверхность обычно имеет форму прямоугольника, круга или эллипса.

    Для механических 3D-датчиков в настоящее время предпочтительным форм-фактором является конвексный массив с механической разверткой; в настоящее время становятся доступными и полностью электронные 2D-массивы. В этих случаях для ортогональных направлений сканирования задаются две FOV. Альтернативно, фазированные решетки, из-за их малой контактной поверхности и широкой FOV, также используются для брюшной полости. 2D матричные массивы становятся все более распространенными из-за их превосходного качества изображения, разрешения и простоты использования.

    Межреберная визуализации

    Применяется чаще для сканирование сердца и печени. Из-за ограничительной анатомии и ограниченных акустических окон, вызванных ребрами и наполненными воздухом легкими, выбор датчика здесь ограничен фазированными решетками. Даже в этой области были предприняты первоначальные попытки использовать линейные массивы; однако они были быстро отброшены из-за затенения ребер и превосходства формата датчика с фазированной решеткой(*это смотря для каких целей и смотря у кого! Линейный датчики и сейчас используются при межреберном сканировании, особенно у детей, т.к. линейные датчики обычно обладают максимальной частотой и, соответсвенно, максимальной разрешающей способностью на ближней дистанции). Кардио-датчики, как правило, имеют размеры массива на заказ от 20 х 14 мм в зависимости от производителя. Контактная поверхность с пациентом будет немного больше. Эти цифры изменились за последние 40 лет и зависят от ряда факторов, таких как общий размер пациентов в популяции, возраст, расстояние между ребрами и глубина проникновения - которые варьируют в разных возрастных группах населения(дети, взрослые).

    У обычных межреберных датчиков размеры массивов несколько больше. Как отмечалось ранее, существование этих анатомических ограничений создает верхний предел производительности для пространственного разрешения, поскольку производительность разрешения обратно связана с размером апертуры, как было объяснено выше. Как в кардиальной, так и в общей межреберной визуализации глубина визуализации является глубокой (в зависимости от размера пациента она может достигать 24 см), что вынуждает использовать более низкие (1-3,5 МГц) частоты и приводит к некоторой дальнейшей потере производительности визуализации.

    Существует интересный аспект визуализации сердца, который оказал глубокое влияние на природу датчиков. Из-за наличия ребер и другой акустически враждебной ткани на пути луча, эхокардиография страдает от артефактов визуализации из-за реверберативного шума. Внедрение гармонического изображения оказалось весьма успешным в снижении этого шума. Как следствие, важность пропускной полосы датчика стала критической в конструкции кардио-датчика. Сегодня большинство кардио-датчиков передают на частотах от 1,5 до 2,0 МГц и, конечно же, принимают сигналы на частотах в два раза большем диапазоне(*отдельно существуют детские кардио-датчики для грудных детей с более высокими частотами).

    Основным достижением в области визуализации сердца была реализация матричных массивов (тип E), содержащих тысячи (обычно 50 х 50 или около того) элементов. Они позволяют в режиме реального времени (4D) отображать пирамидальные объемы, визуализировать срезы в произвольных плоскостях(* и еще так называемое 5D, когда одновременно отображаются на экране несколько срезов в произвольных плоскостях, очень удобно при проведении стресс-эхо, с одновременной визуализацией поперечных и продольных срезов сердца), а также 4D визуализацию сердца и цветовое изображение потока. Кроме того, истинная электронная фокусировка в плоскостях xz и yz обеспечивает превосходное разрешение по сравнению со всеми другими 1D матричными датчиками.

    Поверхностно расположенные структуры(мягкие ткани) и молочные железы

    Эта категория относится к поверхностной визуализации сонных артерий, вен ног, молочных и щитовидной желез, яичек и т.д. и включает категории визуализации поверхностно расположенных органов, скелетно-мышечной и периферической сосудистой систем. В этой клинической категории доступ обычно не является проблемой, и размеры самих датчиков могут быть небольшими (из-за использования высоких частот 7-15 МГц и результирующих малых размеров элементов *это когда как...бывает и очень даже не хватает длины датчика, особенно при измерении длины щитовидной железы). В последние 10 лет визуализация молочной железы перешла на очень высокие частоты (например, 14 МГц), в то время как визуализация периферической сосудистой сети осталась на более низких (около 3-11 МГц) значениях из-за необходимости осмотра глубоких вен ног и допплерографии. Обычно возможность массива добавить трапециевидное изображение (*трапециевидное сканирование или псевдоконвексный режим) является значительным преимуществом. Как и в абдоминальной визуализации, 3D-визуализация с механическими или электронными 2D-массивами теперь доступна, что значительно улучшает доступное покрытие и качество изображения.

    Акушерство и гинекология

    В настоящее время для обеспечения 3D и 4D визуализации плодов in vivo широко используются механические конвексные или линейные массивы (типы G и F). Матричные массивы (тип E) также доступны.

    Для гинекологии используются специализированные эндо-массивы (тип D). Как правило, массивы находятся в конце датчика (концевые массивы) и представляют собой конвексные или изогнутые массивы с широкими FOV; однако можно также использовать фазированные массивы(тип D). Используемые частоты обычно составляют 5 МГц и выше.

    Новорожденные и дети

    Педиатрические датчики имеют более малые контактные поверхности, чем датчики используемые для взрослых и работают на более высоких частотных диапазонах(> 7 МГц *Конечно не всегда, дети разные, бывают такие дети, что по больше некоторых взрослых). В зависимости от региона тела применяются типы датчиков, аналогичные тем, которые предназначены для взрослых.

    Внутриполостные(эндокавитальные) датчики

    Внутриполостные датчики представляют собой большую группу специализированных датчиков, которые предназначены для изображения внутри полости тела. Трансэзофагеальные(чреспищеводные) датчики используются для визуализации внутренних органов, особенно сердца, изнутри пищевода. Они используют более высокие частоты (> 5 МГц) и реализованы в виде фазированных решеток с манипуляторами и двигателями для регулировки ориентации датчика. Миниатюрные чреспищеводные 2D массивы поддерживают электронное сканирование в 3D и 4D режимах.

    Внутрисердечные фазированные решетки вводятся через сосуд, чтобы получить доступ к внутренним камерам сердца. Хирургические специальные зонды включают лапароскопические массивы, вставленные через небольшие разрезы для помощи при лапароскопической хирургии; они примечательны своей FOV, несмотря на небольшие диаметры. Интраоперационные массивы имеют специальную форму для размещения на сосудах, органах и областях, доступных во время открытой операции.

    Как уже отмечалось, эндокавитальные датчики, прездназначенные для работы через небольшие отверстия обычное имеют широкой FOV (90°-150°). Эти зонды включают трансректальные (эндоректальные) для визуализации малого таза через прямую кишку и уже описанные эндовагинальные (также называемые трансвагинальными) для визуализации женского малого таза и репродуктивных органов через влагалище. Эти эндо-датчики, имеют цилиндрическую форму, чтобы вписаться в небольшие отверстия, а также имеют конвексные массивы (обычно 3-9 МГц) на их концах с большой FOV. Трансректальные датчики могут быть биплановыми.

    Уникальными датчиками являются биплановые датчики, которые состоят из двух ортогональных массивов, создающих изображения в плоскостях xz и yz. Обычно массивы бывают небольшими (8-12 мм) и выпуклого типа. Каждый массив пьезоэлементов будет соответствовать определенному типу сканирования: конвексное, секторное или линейное, в зависимости от конструкции датчика, так что на практике можно использовать несколько комбинаций. Альтернативно, подмножество возможностей визуализации двумерного массива является одновременным представлением двух ортогональных двумерных изображений.

    Внутрисосудистые датчики вводятся в кровеносные сосуды для изображения стенок сосудов при различных патологических состояниях (тип H). Они чаще всего представлены механически вращаемым одиночным пьезоэлементом с частотой более 20 МГц и специализированными системами визуализации, хотя существуют также крошечные (около 2 мм в диаметре) массивы, предназначенные для этой цели.

    Транскраниальные датчики

    Транскраниальная визуализация мозга и его сосудистой системы проводится через ограниченные акустические окна через череп, такие как виски или глаза. Трансорбитальные матрицы являются высокочастотными (обычно > 20 МГц) офтальмологическими датчиками и используются для изображения глаза или использования глаза в качестве акустического окна. Транскраниальные датчики обычно представляют собой низкочастотные (1-4 МГц) фазированные решетки, используемые для изображения кровеносных сосудов внутри черепа через висок в качестве акустического окна.

    *комментарии редактора

Физическая основа УЗИ - пьезоэлектрический эффект. При деформации монокристаллов некоторых химических соединений (кварц, титанат бария) под воздействием ультразвуковых волн, на поверхности этих кристаллов возникают противоположные по знаку электрические заряды - прямой пьезоэлектрический эффект. При подаче на них переменного электрического заряда, в кристаллах возникают механические колебания с излучением ультразвуковых волн. Таким образом, один и тот же пьезоэлемент может быть попеременно то приёмником, то источником ультразвуковых волн. Эта часть в ультразвуковых аппаратах называется акустическим преобразователем, трансдюсером или датчиком.

Ультразвук распространяется в средах в виде чередующихся зон сжатия и расширения вещества. Звуковые волны, в том числе и ультразвуковые, характеризуются периодом колебания- временем, за которое молекула (частица) совершает одно полное колебание; частотой- числом колебаний в единицу времени; длиной- расстоянием между точками одной фазы и скоростью распространения, которая зависит главным образом от упругости и плотности среды. Длина волны обратно пропорциональна её частоте. Чем меньше длина волн, тем выше разрешающая способность ультразвукового аппарата. В системах медицинской ультразвуковой диагностики обычно используют частоты от 2 до 10 МГц. Разрешающая способность современных ультразвуковых аппаратов достигает 1-3 мм.

Любая среда, в том числе и ткани организма, препятствует распространению ультразвука, то есть обладает различным акустическим сопротивлением, величина которого зависит от их плотности и скорости распространения звуковых волн. Чем выше эти параметры, тем больше акустическое сопротивление. Такая общая характеристика любой эластической среды обозначается термином «акустический импеданс».

Достигнув границы двух сред с различным акустическим сопротивлением, пучок ультразвуковых волн претерпевает существенные изменения: одна его часть продолжает распространяться в новой среде, в той или иной степени поглощаясь ею, другая - отражается. Коэффициент отражения зависит от разности величин акустического сопротивления граничащих друг с другом тканей: чем это различие больше, тем больше отражение и, естественно, больше амплитуда зарегистрированного сигнала, а значит, тем светлее и ярче он будет выглядеть на экране аппарата. Полным отражателем является граница между тканями и воздухом.

В простейшем варианте реализации метод позволяет оценить расстояние до границы разделения плотностей двух тел, основываясь на времени прохождения волны, отраженной от границы раздела. Более сложные методы исследования (например, основанные на эффекте Допплера) позволяют определить скорость движения границы раздела плотностей, а также разницу в плотностях, образующих границу.

Ультразвуковые колебания при распространении подчиняются законам геометрической оптики. В однородной среде они распространяются прямолинейно и с постоянной скоростью. На границе различных сред с неодинаковой акустической плотностью часть лучей отражается, а часть преломляется, продолжая прямолинейное распространение. Чем выше градиент перепада акустической плотности граничных сред, тем большая часть ультразвуковых колебаний отражается. Так как на границе перехода ультразвука из воздуха на кожу происходит отражение 99,99 % колебаний, то при ультразвуковом сканировании пациента необходимо смазывание поверхности кожи водным желе, которое выполняет роль переходной среды. Отражение зависит от угла падения луча (наибольшее при перпендикулярном направлении) и частоты ультразвуковых колебаний (при более высокой частоте большая часть отражается).

Для исследования органов брюшной полости и забрюшинного пространства, а также полости малого таза используется частота 2,5 - 3,5 МГц, для исследования щитовидной железы используется частота 7,5 МГц.

Особый интерес в диагностике вызывает использование эффекта Допплера. Суть эффекта заключается в изменении частоты звука вследствие относительного движения источника и приемника звука. Когда звук отражается от движущегося объекта, частота отраженного сигнала изменяется (происходит сдвиг частоты).

При наложении первичных и отраженных сигналов возникают биения, которые прослушиваются с помощью наушников или громкоговорителя.

Составляющие системы ультразвуковой диагностики Генератор ультразвуковых волн

Генератором ультразвуковых волн является датчик, который одновременно играет роль приемника отраженных эхосигналов. Генератор работает в импульсном режиме, посылая около 1000 импульсов в секунду. В промежутках между генерированием ультразвуковых волн пьезодатчик фиксирует отраженные сигналы.

Ультразвуковой датчик

В качестве детектора или трансдюсора применяется сложный датчик, состоящий из нескольких сотен мелких пьезокристаллических преобразователей, работающих в одинаковом режиме. В датчик вмонтирована фокусирующая линза, что дает возможность создать фокус на определенной глубине.

Виды датчиков

Все ультразвуковые датчики делятся на механические и электронные. В механических сканирование осуществляется за счет движения излучателя (он или вращается или качается). В электронных развертка производится электронным путем. Недостатками механических датчиков являются шум, вибрация, производимые при движении излучателя, а также низкое разрешение. Механические датчики морально устарели и в современных сканерах не используются. Используются три типа ультразвукового сканирования: линейное (параллельное), конвексное и секторное. Соответственно датчики или трансдюсоры ультразвуковых аппаратов называются линейные, конвексные и секторные. Выбор датчика для каждого исследования проводится с учетом глубины и характера положения органа.

Линейные датчики

Линейные датчики используют частоту 5-15 Мгц. Преимуществом линейного датчика является полное соответствие исследуемого органа положению самого трансдюсора на поверхности тела. Недостатком линейных датчиков является сложность обеспечения во всех случаях равномерного прилегания поверхности трансдюсора к коже пациента, что приводит к искажениям получаемого изображения по краям. Также линейные датчики за счет большей частоты позволяют получать изображение исследуемой зоны с высокой разрешающей способностью, однако глубина сканирования достаточно мала (не более 11 см). Используются в основном для исследования поверхностно расположенных структур - щитовидной железы, молочных желез, небольших суставов и мышц, а также для исследования сосудов.

Конвексные датчики

Конвексный датчик использует частоту 1,8-7,5 МГц. Имеет меньшую длину, поэтому добиться равномерности его прилегания к коже пациента более просто. Однако при использовании конвексных датчиков получаемое изображение по ширине на несколько сантиметров больше размеров самого датчика. Для уточнения анатомических ориентиров врач обязан учитывать это несоответствие. За счет меньшей частоты глубина сканирования достигает 20-25 см. Обычно используется для исследования глубоко расположенных органов - органы брюшной полости и забрюшинного пространства, мочеполовой системы, тазобедренные суставы.

Секторные датчики

Секторный датчик работает на частоте 1,5-5 Мгц. Имеет ещё большее несоответствие между размерами трансдюсора и получаемым изображением, поэтому используется преимущественно в тех случаях, когда необходимо с маленького участка тела получить большой обзор на глубине. Наиболее целесообразно использование секторного сканирования при исследовании, например, через межреберные промежутки. Типичным применением секторного датчика является эхокардиография - исследование сердца.

Прибором, посредством которого отраженный узи-сигнал от тела человека поступает в аппарат для дальнейшей обработки и визуализации, является датчик. Области медицинского применения определяются, в основном, типом датчиков, работающих с ультразвуковом аппаратом и наличием различных режимов работы.

Датчик это прибор, который излучает сигнал нужной частоты, амплитуды и формы импульса, а также принимает отраженный от исследуемых тканей сигнал, преобразует в электрическую форму и передает для дальнейшего усиления и обработки.

Существует большое количество датчиков, различающихся по способу сканирования, по области применения, а также датчиков, различающихся по виду используемого в них преобразователя.

По способу сканирования

Из возможных способов получения информации о биологических структурах наибольшее распространение получил способ получения двумерного изображения (В-режим). Для этого режима существуют различные виды реализации сканирования.

Секторное (механическое) сканирование. В датчиках секторного механического сканирования угловое перемещение УЗ луча происходит за счет качания или вращения вокруг оси УЗ преобразователя, излучающего и принимающего сигналы. Ось ультразвукового луча перемещается по углу так, что изображение имеет вид сектора.

Линейное электронное сканирование. При этом способе сканирования угловое направление УЗ луча не меняется, луч перемещается параллельно самому себе так, что начало луча двигается вдоль рабочей поверхности датчика по прямой линии. Зона обзора имеет вид прямоугольника.

Конвексное электронное сканирование. В силу геометрии решетки, отличной от линейной, лучи не параллельны друг другу, а расходятся веером в некотором угловом секторе. Сочетает в себе преимущества линейного и секторного сканирования.

Микроконвексное электронное сканирование. Данный вид сканирования принципиально аналогичен конвексному. Зона обзора при микроконвексном сканировании имеет такой же вид, как и при секторном механическом сканировании. Иногда этот вид сканирования относят к одному из видов секторного сканирования, отличие заключается только в меньшем радиусе кривизны рабочей поверхности датчика (не более 20-25 мм).

Фазированное секторное электронное сканирование. Отличие фазированного сканирования от линейного заключается в том, что при каждом зондировании при излучении используются все элементы решетки. Для осуществления такого сканирования генераторы импульсов возбуждения формируют одинаковые по форме импульсы, но со сдвигом по времени.

По областям медицинского применения

В зависимости от того, в какой области будет проводиться исследование, выбирается датчик. Кроме того, на выбор того или иного типа датчика влияет глубина расположения исследуемого органа или тканей и их доступность. Первым шагом в оптимизации изображения является выбор наиболее высокой частоты для желаемой глубины исследования.


1. Универсальные датчики для наружного обследования . Применяются для исследований органов малого таза и абдоминальной области у взрослых и детей. В основном в качестве универсальных используются конвексные датчики с рабочей частотой 3,5 МГц для взрослых; 5 МГц для педиатрии; 2,5 МГц для глубоко расположенных органов. Угловой размер сектора сканирования: 40-90º (реже до115º), длина дуги рабочей поверхности – 36-72 мм.

2. Датчики для поверхностно расположенных органов. Применяются для обследования неглубоко расположенных малых органов и структур – щитовидной железы, периферических сосудов, суставов и т.д. Рабочие частоты – 7,5 МГц, иногда 5 или 10 МГц. Чаще всего используется линейный датчик, 29-50 мм, реже конвексный, микроконвексный или секторный механический с водной насадкой с длиной дуги 25-48 мм.

3. Внутриполостные датчики. Существует большое разнообразие внутриполостных датчиков, которые отличаются между собой по областям медицинского применения.

ü Интраоперационные датчики. Т.к. датчики вводятся в операционное поле, то должны выполняться очень компактными. Как правило, в них применяются линейные преобразователи длиной 38-64 мм. Иногда применяются конвексные преобразователи с большим радиусом кривизны. Рабочая частота 5 или 7,5 МГц.

ü Чреспищеводные датчики. Данный вид датчиков используется для исследования сердца со стороны пищевода. Сконструирован по тому же принципу, что и гибкий эндоскоп, система управления ракурсом наблюдения аналогична. Используется секторное механическое, конвексное или фазированное секторное сканирование с рабочей частотой 5 МГц.

ü Внутрисосудистые датчики. Применяются для инвазивного обследования сосудов. Сканирование – секторное механическое круговое, 360 º. Рабочая частота 10 МГц и более.

ü Трансвагинальные (интравагинальные) датчики. Бывают секторного механического или микроконвексного типа с углом обзора от 90º до 270º. Рабочая частота 5, 6 или 7,5 МГц. Ось сектора обычно расположена под некоторым углом относительно оси датчика. Иногда используются датчики с двумя преобразователями, у которых плоскости сканирования расположены под углом 90º друг к другу. Такие датчики называются биплановыми .

ü Трансректальные датчики. В основном применяются для диагностики простатита. Рабочая частота – 7,5 МГц, реже 4 и 5 МГц. В трансректальных датчиках используется несколько типов сканирования. При секторном механическом сканировании в круговом секторе (360 º) плоскость сканирования перпендикулярна оси датчика. В другом виде датчиков используется линейный ультразвуковой преобразователь с расположением вдоль оси датчика. В третьих применяется конвексный преобразователь с плоскостью обзора, проходящей через ось датчика.

Специфическая особенность этих датчиков – наличие канала подвода воды для заполнения одеваемого на рабочую часть резинового мешочка.

ü Трансуретальные датчики. Датчики малого диаметра, вводимые через уретру в мочевой пузырь, использующие механическое секторное или круговое (360º) сканирование с рабочей частотой 7,5 МГц.

4. Кардиологические датчики. Особенностью обследования сердца является наблюдение через межреберную щель. Для таких исследований применяются секторные датчики механического сканирования (одноэлементные или с кольцевой решеткой) и фазированные электронные. Рабочая частота – 3,5 или 5 МГц. В последнее время в приборах высокого класса с цветовым допплеровским картированием применяются чреспищеводные датчики.

5. Датчики для педиатрии . В педиатрии используются те же датчики, что и для взрослых, но с большей частотой – 5 или 7,5 МГц. Это позволяет получать более высокое качество изображения благодаря малым размерам пациентов. Кроме того, применяются специальные датчики. Например, для обследовании головного мозга новорожденных через родничок используется секторный или микроконвексный датчик с частотой 5 или 6 МГц.

6. Биопсийные датчики. Используются для точного наведения биопсийных или пункционных игл. Для этого специально сконструированы датчики, в которых игла может проходить через отверстие (или щель) в рабочей поверхности (апертуре). Вследствие технологической сложности выполнения данных датчиков (что существенно увеличивает стоимость биопсийного датчика) часто применяются биопсийные адаптеры – приспособления для наведения биопсийных игл. Адаптер съемный, жестко крепится на корпусе обычного датчика.

7. Мультичастотные датчики. Датчики с широкой полосой рабочих частот. Датчик работает на различных переключаемых частотах в зависимости от того, какая глубина интересует исследователя.

8. Допплеровские датчики. Применяются для получения информации о скорости или спектре скоростей кровотока в сосудах. В нашем случае ультразвуковые волны отражаются от частиц крови, и это изменение напрямую зависит от скорости кровотока.

 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва
 
 
Рекламодателям | Контакты