Чем больше диэлектрическая проницаемость вещества тем меньше. Диэлектрическая проницаемость воздуха как физическая величина

  • определяющая напряжённость электрического поля в вакууме;
  • входящая в выражения некоторых законов электромагнетизма , в том числе закона Кулона , при записи их в форме, соответствующей Международной системе единиц .

Через диэлектрическую постоянную осуществляется связь между относительной и абсолютной диэлектрической проницаемостью . Она также входит в запись закона Кулона :

См. также

Примечания

Литература

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Диэлектрическая постоянная" в других словарях:

    диэлектрическая постоянная - диэлектрическая проницаемость — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы диэлектрическая проницаемость… …

    - (обозначение e0), физическая величина, указывающая на соотношение силы, действующей между электрическими зарядами в вакууме с размером этих зарядов и расстоянием между ними. Первоначально этот показатель носил название ДИЭЛЕКТРИЧЕСКОЙ… … Научно-технический энциклопедический словарь

    диэлектрическая постоянная - абсолютная диэлектрическая проницаемость (для изотропного вещества); отрасл. диэлектрическая постоянная Скалярная величина, характеризующая электрические свойства диэлектрика и равная отношению электрического смещения в нем к напряженности… …

    диэлектрическая постоянная - dielektrinė skvarba statusas T sritis fizika atitikmenys: angl. dielectric constant; permittivity vok. dielektrische Leitfähigkeit, f; Dielektrizitätskonstante, f; Permittivität, f rus. диэлектрическая постоянная, f; диэлектрическая проницаемость … Fizikos terminų žodynas

    Устаревшее название диэлектрической проницаемости (См. Диэлектрическая проницаемость) … Большая советская энциклопедия

    Диэлектрическая постоянная ε для некоторых жидкостей (при 20°С) - Растворитель ε Ацетон 21,5 Бензол 2,23 Вода 81,0 … Химический справочник

    начальная диэлектрическая постоянная - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN initial dielectric constant … Справочник технического переводчика

    относительная диэлектрическая постоянная - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999] Тематики электротехника, основные понятия EN relative permittivityrelative dielectric constant … Справочник технического переводчика

    удельная диэлектрическая постоянная - — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN simultaneous interchange capabilitySIC … Справочник технического переводчика

    диэлектрическая проницаемость - абсолютная диэлектрическая проницаемость; отрасл. диэлектрическая проницаемость Скалярная величина, характеризующая электрические свойства диэлектрика равная отношению величины электрического смещения к величине напряженности электрического поля … Политехнический терминологический толковый словарь

Емкость конденсатора зависит, как показывает опыт, не только от размера, формы и взаимного расположения составляющих его проводников, но также и от свойств диэлектрика, заполняющего пространство между этими проводниками. Влияние диэлектрика можно установить при помощи следующего опыта. Зарядим плоский конденсатор и заметим показания электрометра, измеряющего напряжение на конденсаторе. Вдвинем затем в конденсатор незаряженную эбонитовую пластинку (рис. 63). Мы увидим, что разность потенциалов между обкладками заметно уменьшится. Если удалить эбонит, то показания электрометра делаются прежними. Это показывает, что при замене воздуха эбонитом емкость конденсатора увеличивается. Взяв вместо эбонита какой-нибудь иной диэлектрик, мы получим сходный результат, но только изменение емкости конденсатора будет иным. Если – емкость конденсатора, между обкладками которого находится вакуум, а – емкость того же конденсатора, когда все пространство между обкладками заполнено, без воздушных зазоров, каким-либо диэлектриком, то емкость окажется в раз больше емкости , где зависит лишь от природы диэлектрика. Таким образом, можно написать

Рис. 63. Емкость конденсатора увеличивается при вдвигании эбонитовой пластинки между его обкладками. Листки электрометра спадают, хотя заряд остается прежним

Величина называется относительной диэлектрической проницаемостью или просто диэлектрической проницаемостью среды, которой заполнено пространство между обкладками конденсатора. В табл. 1 приведены значения диэлектрической проницаемости некоторых веществ.

Таблица 1. Диэлектрическая проницаемость некоторых веществ

Вещество

Вода (чистая)

Керамика (радиотехническая)

Сказанное справедливо не только для плоского конденсатора, но и для конденсатора любой формы: заменяя воздух каким-либо диэлектриком, мы увеличиваем емкость конденсатора в раз.

Строго говоря, емкость конденсатора увеличивается в раз только в том случае, если все линии поля, идущие от одной обкладки к другой, проходят в данном диэлектрике. Это будет, например, у конденсатора, который целиком погружен в какой-либо жидкий диэлектрик, налитый в большой сосуд. Однако если расстояние между обкладками мало по сравнению с их размерами, то можно считать, что достаточно заполнить только пространство между обкладками, так как именно здесь практически сосредоточено электрическое поле конденсатора. Так, для плоского конденсатора достаточно заполнить диэлектриком лишь пространство между пластинами.

Помещая между обкладками вещество с большой диэлектрической проницаемостью, можно сильно увеличить емкость конденсатора. Этим пользуются на практике, и обычно в качестве диэлектрика для конденсатора выбирают не воздух, а стекло, парафин, слюду и другие вещества. На рис. 64 показан технический конденсатор, у которого диэлектриком служит пропитанная парафином бумажная лента. Его обкладками являются станиолевые листы, прижатые, с обеих сторон к парафинированной бумаге. Емкость таких конденсаторов нередко достигает нескольких микрофарад. Так, например, радиолюбительский конденсатор размером со спичечную коробку имеет емкость 2 мкФ.

Рис. 64. Технический плоский конденсатор: а) в собранном виде; б) в частично разобранном виде: 1 и 1" – станиолевые ленты, между которыми проложены ленты парафинированной тонкой бумаги 2. Все ленты вместе складываются «гармошкой» и вкладываются в металлическую коробку. К концам лент 1 и 1" припаиваются контакты 3 и 3" для включения конденсатора в схему

Понятно, что для изготовления конденсатора пригодны только диэлектрики с очень хорошими изолирующими свойствами. В противном случае заряды будут утекать через диэлектрик. Поэтому вода, несмотря на ее большую диэлектрическую проницаемость, совсем не годится для изготовления конденсаторов, ибо только исключительно тщательно очищенная вода является достаточно хорошим диэлектриком.

Если пространство между обкладками плоского конденсатора заполнено средой с диэлектрической проницаемостью , то формула (34.1) для плоского конденсатора принимает вид

То обстоятельство, что емкость конденсатора зависит от окружающей среды, указывает, что электрическое поле внутри диэлектриков изменяется. Мы видели, что при заполнении конденсатора диэлектриком с диэлектрической проницаемостью емкость увеличивается в раз. Это значит, что при тех же самых зарядах на обкладках разность потенциалов между ними уменьшается в раз. Но разность потенциалов и напряженность поля связаны между собой соотношением (30.1). Поэтому уменьшение разности потенциалов означает, что напряженность поля в конденсаторе при его заполнении диэлектриком делается меньше в раз. В этом и состоит причина увеличения емкости конденсатора. раз меньше, чем в вакууме. Отсюда заключаем, что закон Кулона (10.1) для точечных зарядов, помещенных в диэлектрике, имеет вид

Диэлектрическая проницаемость – это один из основных параметров, характеризующих электрические свойства диэлектриков . Другими словами он определяет насколько хорошим изолятором является тот или иной материал.

Значение диэлектрической проницаемости показывает зависимость электрической индукции в диэлектрике от напряженности электрического поля , воздействующего на него. При этом на ее величину оказывают влияние не только физические свойства самого материала или среды, но еще и частота поля. Как правило в справочниках указывается величина, измеренная для статического или низкочастотного поля.

Различают два вида диэлектрической проницаемости: абсолютную и относительную.

Относительная диэлектрическая проницаемость показывает отношение изолирующих (диэлектрических) свойств исследуемого материала к аналогичным свойствам вакуума. Она характеризует изолирующие свойства вещества в газообразном, жидком или твердом состояниях. То есть применима практически ко всем диэлектрикам. Величина относительной диэлектрической проницаемости для веществ в газообразном состоянии, как правило, находится в переделах 1. Для жидкостей и твердых тел она может находиться в очень широких пределах – от 2 и практически до бесконечности.

К примеру, относительная диэлектрическая проницаемость пресной воды равна 80, а сегнетоэлектриков – десятки, а то и сотни единиц в зависимости от свойств материала.

Абсолютная диэлектрическая проницаемость – это постоянная величина. Она характеризует изолирующие свойства конкретного вещества или материала, не зависимо от его местоположения и воздействующих на него внешних факторов.

Использование

Диэлектрическую проницаемость, а точнее ее значения используют при разработке и проектировании новых электронных компонентов , в частности конденсаторов . От ее значения зависят будущие размеры и электрические характеристики компонента. Эту величину также учитывают и при разработке целых электрических схем (особенно в высокочастотной электронике) и даже

Любое вещество или тело, окружающее нас, обладает определенными электрическими свойствами. Это объясняется молекулярной и атомной структурой: наличием заряженных частиц, находящихся во взаимно связанном или свободном состоянии.

Когда на вещество не действует никакое внешнее электрическое поле, то эти частицы распределяются так, что уравновешивают друг друга и во всем суммарном объеме не создают дополнительного электрического поля. В случае приложения извне электрической энергии внутри молекул и атомов возникает перераспределение зарядов, которое ведет к созданию собственного внутреннего электрического поля, направленного встречно внешнему.

Если вектор приложенного внешнего поля обозначить «Е0», а внутреннего - «Е"», то полное поле «Е» будет складываться из энергии этих двух величин.

В электричестве принято делить вещества на:

    проводники;

    диэлектрики.

Такая классификация существует издавна, хотя она довольно условна потому, что многие тела обладают другими или комбинированными свойствами.

Проводники

В роли проводников выступают среды, имеющие в наличии свободные заряды. Чаще всего проводниками выступают металлы, ведь в их структуре всегда присутствуют свободные электроны, которые способны перемещаться внутри всего объема вещества и, одновременно, являются участниками тепловых процессов.

Когда проводник изолирован от действия внешних электрических полей, то в нем создается баланс положительных и отрицательных зарядов из ионных решеток и свободных электронов. Это равновесие сразу разрушается при внесении - благодаря энергии которого начинается перераспределение заряженных частиц и возникают несбалансированные заряды положительных и отрицательных величин на внешней поверхности.

Это явление принято называть электростатической индукцией . Возникшие при ней заряды на поверхности металлов именуют индукционными зарядами .

Образованные в проводнике индукционные заряды формируют собственное поле Е", компенсирующее действие внешнего Е0 внутри проводника. Поэтому значение полного, суммарного электростатического поля скомпенсировано и равно 0. При этом потенциалы всех точек как внутри, так и снаружи одинаковы.


Полученный вывод свидетельствует, что внутри проводника, даже при подключенном внешнем поле, отсутствует разность потенциалов и нет электростатических полей. Этот факт используется при экранировании - применении способа электростатической защиты людей и чувствительного к наведенным полям электрооборудования, особенно высокоточных измерительных приборов и микропроцессорной техники.


Экранированная одежда и обувь из тканей с токопроводящими нитями, включая головной убор, используется в энергетике для защиты персонала, работающего в условиях повышенной напряженности, создаваемой высоковольтным оборудованием.

Диэлектрики

Так называют вещества, обладающие изоляционными свойствами. Они имеют в своем составе только связанные между собой, а не свободные заряды. У них все положительные и отрицательные частицы скреплены внутри нейтрального атома, лишены свободы передвижения. Они распределены внутри диэлектрика и не перемещаются под действием приложенного внешнего поля Е0.

Однако, его энергия все же вызывает определенные изменения в структуре вещества - внутри атомов и молекул изменяется соотношение положительных и отрицательных частиц, а на поверхности вещества возникают излишние, несбалансированные связанные заряды, образующие внутреннее электрическое поле Е". Оно направлено встречно приложенной извне напряженности.

Это явление получило название поляризации диэлектрика . Оно характеризуется тем, что внутри вещества проявляется электрическое поле Е, образованное действием внешней энергии Е0, но ослабленное противодействием внутренней Е".

Виды поляризации

Она внутри диэлектриков бывает двух видов:

1. ориентационной;

2. электронной.

Первый тип имеет дополнительное название дипольной поляризации. Он присущ диэлектрикам со смещенными центрами у отрицательных и положительных зарядов, которые образуют молекулы из микроскопических диполей - нейтральной совокупности из двух зарядов. Это характерно для воды, диоксида азота, сероводорода.

Без действия внешнего электрического поля у таких веществ молекулярные диполи ориентируются хаотичным образом под влиянием действующих температурных процессов. При этом в любой точке внутреннего объема и на внешней поверхности диэлектрика нет электрического заряда.

Эта картина изменяется под влиянием приложенной извне энергии, когда диполи немного изменяют свою ориентацию и на поверхности возникают области не скомпенсированных макроскопических связанных зарядов, образующих поле Е" со встречным направлением к приложенному Е0.


При такой поляризации большое влияние на процессы оказывает температура, вызывающая тепловое движение и создающая дезориентирующие факторы.

Электронная поляризация, упругий механизм

Она проявляется у неполярных диэлектриков - материалов другого вида с молекулами, лишенными дипольного момента, которые под влияние внешнего поля деформируются так, что положительные заряды ориентируются по направлению вектора Е0, а отрицательные - в противоположную сторону.

В итоге каждая из молекул работает как электрический диполь, сориентированный по оси приложенного поля. Они, таким способом, создают на внешней поверхности свое поле Е" со встречным направлением.


У подобных веществ деформация молекул, а, следовательно, и поляризация от воздействия поля извне не зависит от их движения под влиянием температуры. В качестве примера неполярного диэлектрика можно привести метан СH4.

Численное значение внутреннего поля обоих видов диэлектриков по величине вначале изменяется прямо пропорционально возрастанию внешнего поля, а затем, при достижении насыщения, проявляются эффекты нелинейного характера. Они наступают тогда, когда все молекулярные диполи выстроились вдоль силовых линий у полярных диэлектриков или произошли изменения структуры неполярного вещества, обусловленные сильной деформацией атомов и молекул от большой приложенной извне энергии.

На практике такие случаи возникают редко - обычно раньше наступает пробой или нарушение изоляции.

Диэлектрическая проницаемость

Среди изоляционных материалов важная роль отводится электрическим характеристикам и такому показателю, как диэлектрическая проницаемость . Она может оцениваться двумя различными характеристиками:

1. абсолютным значением;

2. относительной величиной.

Термином абсолютной диэлектрической проницаемости вещества εa пользуются при обращении к математической записи закона Кулона. Она, в форме коэффициента εа, связывает вектора индукции D и напряженности E.


Вспомним, что французский физик Шарль де Кулон с помощью собственных крутильных весов исследовал закономерности электрических и магнитных сил между небольшими заряженными телами.

Определение относительной диэлектрической проницаемости среды используется для характеристики изоляционных свойств вещества. Она оценивает соотношение силы взаимодействия между двумя точечными зарядами при двух различных условиях: в вакууме и рабочей среде. При этом показатели вакуума принимаются за 1 (εv=1), а у реальных веществ они всегда выше, εr>1.

Численное выражение εr отображается безразмерной величиной, объясняется эффектом поляризации у диэлектриков, используется для оценки их характеристик.

Значения диэлектрической проницаемости отдельных сред (при комнатной температуре)

Вещество ε Вещество ε
Сегнетова соль 6000 Алмаз 5,7
Рутил (вдоль оптической оси) 170 Вода 81
Полиэтилен 2,3 Спирт этиловый 26,8
Кремний 12,0 Слюда 6
Стекло 5-16 Углекислый газ 1,00099
NaCl 5,26 Водяной пар 1,0126
Бензол 2,322 Воздух (760 мм рт. ст.) 1,00057

Лекция №19

  1. Природа электропроводности газообразных, жидких и твердых диэлектриков

Диэлектрическая проницаемость

Относительная диэлектрическая проницаемость, или диэлектрическая проницаемость ε - один из важнейших макроскопических электрических параметров диэлектрика. Диэлектрическая проницаемость ε количественно характеризует способность диэлектрика поляризоваться в электрическом поле, а также оценивает степень его полярности; ε является константой диэлектрического материала при данной температуре и частоте электрического напряжения и показывает, во сколько раз заряд конденсатора с диэлектриком больше заряда конденсатора тех же размеров с вакуумом.

Диэлектрическая проницаемость определяет величину электрической емкости изделия (конденсатора, изоляции кабеля и т.п.). Для плоского конденсатора электрическая емкость С, Ф, выражается формулой (1)

где S- площадь измерительного электрода, м 2 ; h - толщина диэлектрика, м. Из формулы (1) видно, что чем больше величина ε используемого диэлектрика, тем больше электрическая емкость конденсатора при тех же габаритах. В свою очередь, электрическая емкость С является коэффициентом пропорциональности между поверхностным зарядом QК, накопленным конденсатором, и приложенным к нему электрическим на-

пряжением U (2):

Из формулы (2) следует, что электрический заряд QК, накопленный конденсатором, пропорционален величине ε диэлектрика. Зная игеометрические размеры конденсатора, можно определить ε диэлектрического материала для данного напряжения.

Рассмотрим механизм образования заряда на электродах конденсатора с диэлектриком и из каких составляющих складывается этот заряд. Для этого возьмем два плоских конденсатора одинаковых геометрических размеров: один - с вакуумом, другой - с межэлектродным пространством, заполненным диэлектриком, и подадим на них одинаковое электрическое напряжение U (рис. 1). На электродах первого конденсатора образуется заряд Q0 , на электродах второго - . В свою очередь, заряд является суммой зарядов Q0 и Q (3):

Заряд Q 0 образован внешним полем Е0 путем накопления на электродах конденсатора сторонних зарядов с поверхностной плотностью σ 0 . Q - это дополнительный заряд на электродах конденсатора, создаваемый источником электрического напряжения для компенсации связанных зарядов, образовавшихся на поверхности диэлектрика.

В равномерно поляризованном диэлектрике заряд Q соответствует величине поверхностной плотности связанных зарядов σ. Заряд σ образует поле Е сз, направленное противоположно полю Е О.

Диэлектрическую проницаемость рассматриваемого диэлектрика можно представить как отношение заряда конденсатора, заполненного диэлектриком, к заряду Q0 такого же конденсатора с вакуумом (3):

Из формулы (3) следует, что диэлектрическая проницаемость ε - величина безразмерная, и у любого диэлектрика она больше единицы; в случае вакуума ε = 1. Из рассмотренного примера также

видно, что плотность заряда на электродах конденсатора с диэлектриком в ε раз больше плотности заряда на электродах конденсатора с вакуумом, а напряженности при одинаковых напряжениях для обо

их конденсаторов одинаковы и зависят только от величины напряжения U и расстояния между электродами (Е = U /h).

Кроме относительной диэлектрической проницаемости ε различают абсолютную диэлектрическую проницаемость ε а , Ф/м, (4)

которая не имеет физического смысла и используется в электротехнике.

Относительное изменение диэлектрической проницаемости εr при повышении температуры на 1 К называется температурным коэффициентом диэлектрической проницаемости.

ТКε = 1/ εr d εr/dT К-1 Для воздуха при 20°С ТК εr = -2.10-6К-

Электрическое старение в сегнетоэлектриках выражается в уменьшении εr со временем. Причиной является перегруппировка доменов.

Особенно резкое изменение диэлектрической проницаемости со временем наблюдается при температурах, близких к точке Кюри. Нагревание сегнетоэлектриков до температуры более точки Кюри и последующее охлаждение возвращает εr к прежнему значению. Такое же восстановление диэлектрической проницаемости можно осуществить, воздействуя на сегнетоэлектрик электрическим полем повышенной напряженности.

Для сложных диэлектриков – механической смеси двух компонентов с разным εr в первом приближении: εrх = θ1 · εr1х ·θ· εr2х,где θ – обьемная концентрация компонентов смеси, εr - относительная диэлектрическая проницаемость компонента смеси.

Поляризация диэлектрика может быть вызвана: механическими нагрузками (пьезополяризация в пьезоэлектриках); нагревом (пирополяризация в пироэлектриках); светом (фотополяризация).

Поляризованное состояние диэлектрика в электрическом поле Е характеризуется электрическим моментом единицы объема, поляризованностью Р, Кл/м2, которая связана с его относительной диэлектрической проницаемостью eг: Р = e0 (eг - 1)Е, где e0 = 8,85∙10-12 Ф/м. Произведение e0∙eг =e, Ф/м, называют абсолютной диэлектрической проницаемостью. В газообразных диэлектриках eг мало отличается от 1,0, в неполярных жидких и твердых достигает 1,5 - 3,0, в полярных имеет большие значения; в ионных кристаллах eг - 5-МО, а в имеющих перовскитовую кристаллическую решетку достигает 200; в сегнетоэлектриках eг - 103 и больше.

В неполярных диэлектриках с ростом температуры eг незначительно уменьшается, в полярных изменения связаны с преобладанием того или иного вида поляризации, в ионных кристаллах увеличивается, в некоторых сегнетоэлектриках при температуре Кюри достигает 104 и больше. Температурные изменения eг характеризуют температурным коэффициентом. Для полярных диэлектриков характерным является уменьшение eг в области частот, где время т на поляризацию соизмеримо с Т/2.


Похожая информация.


 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва