Атф накопление энергии. Пути использования атф

Практическое занятие № 15.

Задание к занятию № 15.

Тема: ЭНЕРГЕТИЧЕСКИЙ ОБМЕН.

Актуальность темы.

Биологическое окисление – совокупность протекающих в каждой клетке ферментативных процессов, в результате которых молекулы углеводов, жиров и аминокислот расщепляются, в конечном счете, до углекислоты и воды, а освобождающаяся энергия запасается клеткой в виде аденозинтрифосфорной кислоты (АТФ) и затем используется в жизнедеятельности организма (биосинтез молекул, процесс деления клеток, сокращение мышц, активный транспорт, продукция тепла и др.). Врач должен знать о существовании гипоэнергетических состояний, при которых снижается синтез АТФ. При этом страдают все процессы жизнедеятельности, которые протекают с использованием энергии, запасенной в виде макроэргических связей АТФ. Наиболее распространенная причина гипоэнергетических состояний – гипоксия тканей , связанная со снижением концентрации кислорода в воздухе, нарушением работы сердечно-сосудистой и дыхательной систем, анемиями различного происхождения. Кроме того, причиной гипоэнергетических состояний могут быть гиповитаминозы , связанные с нарушением структурного и функционального состояния ферментных систем, участвующих в процессе биологического окисления, а также голодание , которое приводит к отсутствию субстратов тканевого дыхания. Кроме того, в процессе биологического окисления образуются активные формы кислорода, запускающие процессы перекисного окисления липидов биологических мембран. Необходимо знать механизмы защиты организма от данных форм (ферменты, лекарственные препараты, оказывающие мембраностабилизирующее действие – антиоксиданты).

Учебные и воспитательные цели:

Общая цель занятия: привить знания о протекании биологического окисления, в результате которого образуется до 70-8- % энергии в виде АТФ, а также об образовании активных форм кислорода и их повреждающего действия на организм.

Частные цели: уметь определять пероксидазу в хрене, картофеле; активность сукцинатдегидрогеназы мышц.



1. Входной контроль знаний:

1.1. Тесты.

1.2. Устный опрос.

2. Основные вопросы темы:

2.1. Понятие об обмене веществ. Анаболические и катаболические процессы и их взаимосвязь.

2.2. Макроэргические соединения. АТФ – универсальный аккумулятор и источник энергии в организме. Цикл АТФ-АДФ. Энергетический заряд клетки.

2.3. Этапы обмена веществ. Биологическое окисление (тканевое дыхание). Особенности биологического окисления.

2.4. Первичные акцепторы протонов водорода и электронов.

2.5. Организация дыхательной цепи. Переносчики в дыхательной цепи (ЦПЭ).

2.6. Окислительное фосфорилирование АДФ. Механизм сопряжения окисления и фосфорилирования. Коэффициент окислительного фосфорилирования (Р/О).

2.7. Дыхательный контроль. Разобщение дыхания (окисления) и фосфорилирования (свободное окисление).

2.8. Образование токсичных форм кислорода в ЦПЭ и обезвреживание перекиси водорода ферментом пероксидазой.

Лабораторно-практические работы.

3.1. Методика определения пероксидазы в хрене.

3.2. Методика определения пероксидазы в картофеле.

3.3. Определение активности сукцинатдегидрогеназы мышц и конкурентное торможение её активности.

Выходной контроль.

4.1. Тесты.

4.2. Ситуационные задачи.

5. Литература:

5.1. Материалы лекций.

5.2. Николаев А.Я. Биологическая химия.-М.: Высшая школа, 1989., С 199-212, 223-228.

5.3. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. - М.: Медицина, 1990.С.224-225.

5.4. Кушманова О.Д., Ивченко Г.М. Руководство к практическим занятиям по биохимии.- М.: Медицина, 1983, раб. 38.

2. Основные вопросы темы.

2.1. Понятие об обмене веществ. Анаболические и катаболические процессы и их взаимосвязь .

Живые организмы находятся в постоянной и неразрывной связи с окружающей средой.

Эта связь осуществляется в процессе обмена веществ.

Обмен веществ (метаболизм)совокупность всех реакций в организме.

Промежуточный обмен (внутриклеточный метаболизм) – включает 2 типа реакций: катаболизм и анаболизм.

Катаболизм – процесс расщепления органических веществ до конечных продуктов (СО 2 , Н 2 О и мочевины). В этот процесс включаются метаболиты, образующиеся как при пищеварении, так и при распаде структурно-функциональных компонентов клеток.

Процессы катаболизма в клетках организма сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате реакций катаболизма происходит выделение энергии (экзергонические реакции), которая необходима организму для его жизнедеятельности.

Анаболизм – синтез сложных веществ из простых. В анаболических процессах используется энергия, освобождающаяся при катаболизме (эндергонические реакции).

Источниками энергии для организма являются белки, жиры и углеводы. Энергия, заключенная в химических связях этих соединений, в процессе фотосинтеза трансформировалась из солнечной энергии.

Макроэргические соединения. АТФ – универсальный аккумулятор и источник энергии в организме. Цикл АТФ-АДФ. Энергетический заряд клетки.

АТФ является макроэргическим соединением, содержащим макроэргические связи; при гидролизе концевой фосфатной связи выделяется около 20 кдж/моль энергии.

К макроэргическим соединениям относятся ГТФ, ЦТФ, УТФ, креатинфосфат, карбамоилфосфат и др. Они используются в организме для синтеза АТФ. Например, ГТФ + АДФ à ГДФ + АТФ

Этот процесс называется субстратное фосфорилирование – экзоргонические реакции. В свою очередь все эти макроэргические соединения образуются при использовании свободной энергии концевой фосфатной группы АТФ. Наконец, энергия АТФ используется для совершения различных видов работ в организме:

Механической (мышечное сокращение);

Электрической (проведение нервного импульса);

Химической (синтез веществ);

Осмотической (активный транспорт веществ через мембрану) – эндергонические реакции.

Таким образом, АТФ- главный, непосредственно используемый донор энергии в организме. АТФ занимает центральное место между эндергоническими и экзергоническими реакциями.

В организме человека образуется количество АТФ, равное массе тела и за каждые 24 часа вся эта энергия разрушается. 1 молекула АТФ «живет» в клетке около минуты.

Использование АТФ как источника энергии возможно только при условии непрерывного синтеза АТФ из АДФ за счет энергии окисления органических соединений. Цикл АТФ-АДФ – основной механизм обмена энергии в биологических системах, а АТФ – универсальная «энергетическая валюта».

Каждая клетка обладает электрическим зарядом, который равен

[АТФ] + ½[АДФ]

[АТФ] + [АДФ] + [АМФ]

Если заряд клетки равен 0,8-0,9, то в клетке весь адениловый фонд представлен в виде АТФ (клетка насыщена энергией и процесс синтеза АТФ не происходит).

По мере использования энергии, АТФ превращается в АДФ, заряд клетки становится равным 0, автоматически начинается синтез АТФ.

ОТВЕТ: Клетка является элементарной структурной, функциональной и генетической единицей живого. Клетка – элементарная единица развития живого. Клетка способна к саморегуляции, самообновлению и самовоспроизведению.

12. Общая масса митохондрий по отношению к массе клеток различных органов крысы составляет: в поджелудочной железе – 7,9%, в печени – 18,4%, в сердце – 35,8%. Почему в клетках этих органов различное содержание митохондрий?

ОТВЕТ: Митохондрии являются энергетическими станциями клетки - в них синтезируются молекулы АТФ. Для работы сердечной мышцы нужно много энергии, поэтому в ее клетках наибольшее количество митохондрий. В печени больше, чем в поджелудочной железе, потому что в ней более интенсивный обмен веществ.

Как используется аккумулированная в АТФ энергия?

ОТВЕТ : АТФ является универсальным источником энергии в клетках всех живых организмов. Энергия АТФ тратится на синтез и транспорт веществ, на размножение клетки, на сокращение мышц, на проведение импульсов, т.е. на жизнедеятельность клеток, тканей, органов и всего организма.

Какие свойства ДНК подтверждают, что она является носителем генетической информации?

ОТВЕТ : Способность к репликации (самоудвоению), комплементарность двух цепей, способность к транскрипции.

Опишите молекулярное строение наружной плазматической мембраны животных клеток.

ОТВЕТ : Плазматическая мембрана образована двумя слоями липидов. Молекулы белков могут пронизывать плазматическую мембрану или располагаться на ее внешней или внутренней поверхности. Снаружи к белкам могут присоединяться углеводы, образуя гликокалис.

По каким признакам живые организмы отличаются от тел неживой природы?

ОТВЕТ: Признаки живого: обмен веществ и превращение энергии, наследственность и изменчивость, приспособленность к условиям обитания, раздражимость, размножение, рост и развитие, саморегуляция и т.д.

Какие признаки характерны для вирусов?

Какое значение для формирования научного мировоззрения имело создание клеточной теории?

ОТВЕТ: Клеточная теория обосновала родство живых организмов, их общность происхождения, обобщила знания о клетке, как о единице строения и жизнедеятельности живых организмов.

Чем молекула ДНК отличается от и-РНК?

ОТВЕТ : ДНК имеет структуру в виде двойной спирали, а РНК – одинарную цепь нуклеотидов; ДНК имеет в составе сахар дезоксорибозу и нуклеотиды с азотистым основанием тимин, а РНК – сахар рибозу и нуклеотиды с азотистым основанием урацил.

Почему бактерии нельзя отнести к эукариотам?

ОТВЕТ: Они не имеют обособленного от цитоплазмы ядра, митохондрий, комплекса Гольджи, ЭПС, для них не характерен митоз и мейоз, оплодотворение. Наследственная информация в виде кольцевой молекулы ДНК.

Обмен веществ и энергии

В каких реакциях обмена исходным веществом для синтеза углеводов является вода?

ОТВЕТ: Фотосинтеза.

Энергию какого типа потребляют гетеротрофные живые организмы?

ОТВЕТ: Энергию окисления органических веществ.

Энергию какого типа потребляют автотрофные организмы?

ОТВЕТ: Фототрофы – энергию света, хемотрофы – энергию окисления неорганических веществ.

В какую фазу фотосинтеза происходит синтез АТФ?

ОТВЕТ: Всветовой фазе.

Какое вещество служит источником кислорода во время фотосинтеза?

ОТВЕТ: Вода (в результате фотолиза – распада под действием света в световой фазе, происходит выделение кислорода).

Почему гетеротрофные организмы сами не могут создавать органические вещества?

ОТВЕТ: В их клетках нет хлоропластов и хлорофилла.

Оглавление темы "Обмен веществ и энергии. Питание. Основной обмен.":
1. Обмен веществ и энергии. Питание. Анаболизм. Катаболизм.
2. Белки и их роль в организме. Коэффициент изнашивания по Рубнеру. Положительный азотистый баланс. Отрицательный азотистый баланс.
3. Липиды и их роль в организме. Жиры. Клеточные липиды. Фосфолипиды. Холестерин.
4. Бурый жир. Бурая жировая ткань. Липиды плазмы крови. Липопротеины. ЛПНП. ЛПВП. ЛПОНП.
5. Углеводы и их роль в организме. Глюкоза. Гликоген.


8. Роль обмена веществ в обеспечении энергетических потребностей организма. Коэффициент фосфорилирования. Калорический эквивалент кислорода.
9. Способы оценки энергетических затрат организма. Прямая калориметрия. Непрямая калориметрия.
10. Основной обмен. Уравнения для расчета величины основного обмена. Закон поверхности тела.

Роль обмена веществ в обеспечении энергетических потребностей организма. Коэффициент фосфорилирования. Калорический эквивалент кислорода.

Количество энергии , поступающей в организм с пищей, должно обеспечивать подержание равновесного энергетического баланса на фоне неизменной массы тела, физической активности и соответствующих скоростях роста и обновления структур организма. Организм человека получает энергию в виде потенциальной химической энергии питательных веществ. Эта энергия аккумулирована в химических связях молекул жиров, белков и углеводов, которые в процессе катаболизма преобразуются в конечные продукты обмена с более низким содержанием энергии. Высвобождающаяся в процессе биологического окисления энергия используется, прежде всего, для синтеза АТФ, которая как универсальный источник энергии необходима в организме для осуществления механической работы, химического синтеза и обновления биологических структур, транспорта веществ, осмотической и электрической работы. Схема процессов превращения энергии в клетке представлена на рис. 12.1.

Количество синтезированных молей АТФ на моль окисленного субстрата зависит от его вида (белка, жира, углевода) и от величины коэффициента фосфорилирования . Этот коэффициент, обозначаемый как Р/О, равен количеству синтезированных молекул АТФ в расчете на один атом кислорода, потребленный при окислении восстановленных органических соединений в процессе дыхания. При переносе каждой пары электронов по дыхательной цепи от НАД Н до 02 величина Р/О = 2. Для субстратов, окисляемых НАД Н2-зависимыми ферментами, Р/О = 1,3. Эти соотношения Р/О отражают энергетические затраты клетки на синтез АТФ в митохондриях и транспорт макроэрга против химического градиента из митохондрий к местам потребления.

Рис. 12.1. Обмен энергии в клетке. В процессе биологического окисления аминокислот, моносахаридов и жирных кислот освобождающаяся химическая энергия используется для синтеза макроэргического соединения (АТФ). При расщеплении АТФ его энергия реализуется для осуществления всех видов работы клетки (химической, электрической, осмотической и механической)

Таким образом, одна часть аккумулированной в химических связях молекул жиров, белков и углеводов энергии в процессе биологического окисления используется для синтеза АТФ, другая часть этой энергии превращается в теплоту. Эта теплота, выделяющаяся сразу же в процессе биологического окисления питательных веществ, получила название первичной. Какая часть энергии будет использована на синтез АТФ и будет вновь аккумулирована в ее химических макроэргических связях, зависит от величины Р/О и эффективности сопряжения в митохондриях процессов дыхания и фосфорилирования . Разобщение дыхания и фосфорилирования под действием гормонов щитовидной железы, ненасыщенных жирных кислот, липопротеидов низкой плотности, динитрофенола ведет к уменьшению коэффициента Р/О, превращению в первичную теплоту большей, чем в условиях нормального сопряжения дыхания и фосфорилирования, части энергии химических связей окисляемого вещества. При этом снижается коэффициент полезного действия синтеза АТФ, количество синтезированных молекул АТФ уменьшается.

При полном окислении 1 г смеси углеводов пищи выделяется 4 ккал тепла. В процессе окисления в организме 1 г углеводов синтезируется 0,13 моля АТФ. Если считать, что энергия пирофосфатной связи в АТФ равна 7 ккал/моль, то при окислении 1 г углеводов лишь 0,91 (0,13 х 7) ккал энергии будет запасено в организме в синтезированной АТФ. Остальные 3,09 ккал будут рассеяны в виде тепла (первичная теплота). Отсюда можно рассчитать коэффициент полезного действия синтеза АТФ и аккумулирования в ней энергии химических связей глюкозы:

к.п.д. = (0,91: 4,0) х 100 = 22,7 %.

Из приведенного расчета видно, что только 22,7 % энергии химических связей глюкозы в процессе ее биологического окисления используется на синтез АТФ и вновь запасается в виде химической макроэргической связи, 77,3 % энергии химических связей глюкозы превращается в первичную теплоту и рассеивается в тканях.

Аккумулированная в АТФ энергия в последующем используется для осуществления в организме химических, транспортных, электрических процессов, производства механической работы и в конечном итоге тоже превращается в теплоту, получившую название вторичной.

В названиях первичная и вторичная теплота отражено представление о двухступенчатости полного превращения всей энергии химических связей питательных веществ в тепло (первая ступень - образование первичной теплоты в процессе биологического окисления, вторая ступень - образование вторичной теплоты в процессе затраты энергии макроэргов на производство различных видов работы). Таким образом, если измерить все количество тепла, образовавшегося в организме за час или сутки, то это тепло станет мерой суммарной энергии химических связей питательных веществ, подвергшихся за время измерения биологическому окислению. По количеству образовавшегося в организме тепла можно судить о величине энергетических затрат, произведенных на осуществление процессов жизнедеятельности.

Основным источником энергии для осуществления в организме процессов жизнедеятельности является биологическое окисление питательных веществ. На это окисление расходуется кислород. Следовательно, измерив количество потребленного организмом кислорода за минуту, час, сутки, можно судить о величине энергозатрат организма за время измерения.

Между количеством потребленного за единицу времени организмом кислорода и количеством образовавшегося в нем за это же время тепла существует связь, выражающаяся через калорический эквивалент кислорода (КЭ02). Под КЭ02 понимают количество тепла, образующегося в организме при потреблении им 1 л кислорода.

Источником энергии в клетках является вещество аденозинтрифосфат (АТФ), которое при необходимости распадается до аденозинфосфата (АДФ):

АТФ → АДФ + энергия.

При интенсивной нагрузке имеющийся запас АТФ расходуется всего за 2 секунды. Однако АТФ непрерывно восстанавливается из АДФ, что позволяет мышцам продолжать работать. Существует три основные системы восстановления АТФ: фосфатная, кислородная и лактатная.

Фосфатная система

Фосфатная система выделяет энергию максимально быстро, поэтому она важна там, где требуется стремительное усилие, например, для спринтеров, футболистов, прыгунов в высоту и длину, боксеров и теннисистов.

В фосфатной системе восстановление АТФ происходит за счет креатинфосфата (КрФ), запасы которого имеются непосредственно в мышцах:

КрФ + АДФ → АТФ + креатин.

При работе фосфатной системы не используется кислород и не образуется молочная кислота.

Фосфатная система работает только в течение короткого времени — при максимальной нагрузке совокупный запас АТФ и КрФ истощается за 10 секунд. После завершения нагрузки запасы АТФ и КрФ в мышцах восстанавливаются на 70% через 30 секунд и полностью — через 3-5 минут. Это нужно иметь в виду при выполнении скоростных и силовых упражнений. Если усилие длится дольше 10 секунд или перерывы между усилиями слишком короткие, то включается лактатная система.

Кислородная система

Кислородная, или аэробная, система важна для спортсменов на выносливость, так как она может поддерживать длительную физическую работу.

Производительность кислородной системы зависит от способности организма транспортировать кислород в мышцы. За счет тренировок она может вырасти на 50%.

В кислородной системе энергия образуется, главным образом, в результате окисления углеводов и жиров. Углеводы расходуются в первую очередь, так как для них требуется меньше кислорода, а скорость выделения энергии выше. Однако запасы углеводов в организме ограничены. После их исчерпания подключаются жиры — интенсивность работы при этом снижается.

Соотношение используемых жиров и углеводов зависит от интенсивности упражнения: чем выше интенсивность, тем больше доля углеводов. Тренированные спортсмены используют больше жиров и меньше углеводов по сравнению с неподготовленным человеком, то есть более экономично расходуют имеющиеся запасы энергии.

Окисление жиров происходит по уравнению:

Жиры + кислород + АДФ → АТФ + углекислый газ + вода.

Распад углеводов протекает в два шага:

Глюкоза + АДФ → АТФ + молочная кислота.

Молочная кислота + кислород + АДФ → АТФ + углекислый газ + вода.

Кислород требуется только на втором шаге: если его достаточно, молочная кислота не накапливается в мышцах.

Лактатная система

При высокой интенсивности нагрузки поступающего в мышцы кислорода не хватает для полного окисления углеводов. Образующаяся молочная кислота не успевает расходоваться и накапливается в работающих мышцах. Это приводит к ощущению усталости и болезненности в работающих мышцах, а способность выдерживать нагрузку снижается.

В начале любого упражнения (при максимальном усилии — в течение первых 2 минут) и при резком увеличении нагрузки (при рывках, финишных бросках, на подъемах) возникает дефицит кислорода в мышцах, так как сердце, легкие и сосуды не успевают полностью включиться в работу. В этот период энергия обеспечивается за счет лактатной системы, с выработкой молочной кислоты. Чтобы избежать накопления большого количества молочной кислоты в начале тренировки, нужно выполнить легкую разогревающую разминку.

При превышении определенного порога интенсивности организм переходит на полностью анаэробное энергообеспечение, в котором используются только углеводы. Из-за нарастающей мышечной усталости способность выдерживать нагрузку истощается в течение нескольких секунд или минут, в зависимости от интенсивности и уровня подготовки.

Влияние молочной кислоты на работоспособность

Рост концентрации молочной кислоты в мышцах имеет несколько последствий, которые нужно учитывать при тренировках:

  • Нарушается координация движений, что делает тренировки на технику неэффективными.
  • В мышечной ткани возникают микроразрывы, что повышает риск травм.
  • Замедляется образование креатинфосфата, что снижает эффективность спринтерских тренировок (тренировок фосфатной системы).
  • Снижается способность клеток окислять жир, что сильно затрудняет энергообеспечение мышц после истощения запасов углеводов.

В условиях покоя на нейтрализацию половины молочной кислоты, накопившейся в результате усилия максимальной мощности, организму требуется около 25 минут; за 75 минут нейтрализуется 95% молочной кислоты. Если вместо пассивного отдыха выполняется легкая заминка, например, пробежка трусцой, то молочная кислота выводится из крови и мышц намного быстрее.

Высокая концентрация молочной кислоты может вызвать повреждение стенок мышечных клеток, что приводит к изменениям в составе крови. Для нормализации показателей крови может потребоваться от 24 до 96 часов. В этот период тренировки должны быть легкими; интенсивные тренировки сильно замедлят восстановительные процессы.

Слишком высокая частота интенсивных нагрузок, без достаточных перерывов на отдых, приводит к снижению работоспособности, а в дальнейшем — к перетренированности.

Запасы энергии

Энергетические фосфаты (АТФ и КрФ) расходуются за 8-10 секунд максимальной работы. Углеводы (сахар и крахмалы) откладываются в печени и мышцах в виде гликогена. Как правило, их хватает на 60-90 минут интенсивной работы.

Запасы жиров в организме практически неисчерпаемы. Доля жировой массы у мужчин составляет 10-20%; у женщин — 20-30%. У хорошо тренированных спортсменов на выносливость процент жира может находиться в диапазоне от максимально низкого до относительно высокого (4-13%).

Запасы энергии человека
* Высвобождаемая энергия при переходе в АДФ
Источник Запас (при весе 70 кг) Длительность Дли-
тель-
ность

интенсивной
работы
Энергети-
ческая система
Особенности
Граммы Ккал
Фосфаты (фосфатная система энергообеспечения )
Фосфаты 230 8* 8—10 секунд Фосфатная Обеспечивают «взрывную» силу. Кислород не требуется
Гликоген (кислородная и лактатная системы энергообеспечения )
Гликоген 300—
400
1200—
1600
60—90 минут Кислородная и лактатная При нехватке кислорода образуется молочная кислота
Жиры (кислородная система энергообеспечения )
Жиры Больше 3000 Больше 27000 Больше 40 часов Кислородная Требуют больше кислорода; интенсивность работы снижается

По книге Петера Янсена «ЧСС, лактат и тренировки на выносливость».


ОСНОВНЫЕ ПРОЦЕССЫ, ДЛЯ КОТОРЫХ ИСПОЛЬЗУЕТСЯ ЭНЕРГИЯ АТФ:

1. Синтез различных веществ.

2. Активный транспорт (транспорт веществ через мембрану против градиента их концентраций). 30% от общего количества расходуемого АТФ приходится на Na + ,К + -АТФазу.

3. Механическое движение (мышечная работа).

СИНТЕЗ АТФ.

Во внутренней мембране митохондрий расположен интегральный белковый комплекс – Н + -зависимая АТФ-синтаза seu Н + -зависимая АТФ-аза (два разных названия связаны с полной обратимостью катализируемой реакции), обладающий значительной молекулярной массой – более, чем 500кДа. Состоит из двух субъединиц: F O и F 1 .

F 1 представляет из себя грибовидный вырост на матриксной поверхности внутренней митохондриальной мембраны, F O же пронизывает эту мембрану насквозь. В толще F O расположен протонный канал, позволяющий протонам возвращаться обратно в матрикс по градиенту их концентраций.

F 1 способна связывать АДФ и фосфат на своей поверхности с образованием АТФ - без затраты энергии, но обязательно в комплексе с ферментом. Энергия необходима лишь для освобождения АТФ из этого комплекса. Эта энергия выделяется в результате тока протонов через протонный канал F O .

В дыхательной цепи сопряжение абсолютно : ни одно вещество не может окисляться без восстановления другого вещества.

Но при синтезе АТФ сопряжение одностороннее: окисление может идти без фосфорилирования, а фосфорилирование без окисления никогда не идёт. Это означает, что система МтО может работать без синтеза АТФ, но АТФ не может быть синтезирована, если не работает система МтО.

СПЕЦИФИЧЕСКИЕ ИНГИБИТОРЫ ТКАНЕВОГО ДЫХАНИЯ

К ним относятся вещества, прекращающие работу того или иного комплекса дыхательной цепи.

Ингибитором комплекса I является яд растительного происхождения ротенон. Некоторые народности раньше использовали его в рыбной ловле.

Ингибиторами комплекса IV являются цианиды, угарный газ СО, сероводород H 2 S.

ВЕЩЕСТВА-РАЗОБЩИТЕЛИ ПРОЦЕССОВ ОКИСЛЕНИЯ И ФОСФОРИЛИРОВАНИЯ

Они не прекращают процессов окисления, но снижают синтез АТФ. Дыхательная цепь работает, а АТФ при этом синтезируется в меньшем количестве, чем в норме. Тогда энергия, получаемая при переносе электронов по цепи МтО, выделяется в виде тепла. Такое состояние, когда происходит окисление субстратов, а фосфорилирование (образование АТФ из АДФ и Ф) не идет, называется разобщением окисления и фосфорилирования. К такому состоянию может приводить действие веществ-разобщителей:

2,4-динитрофенол, открытый в 1944 году Липманом, при введении в организм повышает температуру тела и понижает синтез АТФ. Это вещество, наряду с другими, открытыми позже, пытались использовать для лечения ожирения, но безуспешно.

Механизм действия веществ-разобщителей становится понятням только с точки зрения хемиоосмотической теории.

Разобщители являются слабыми кислотами, растворимыми в жирах. В межмембранном пространстве они связывают протоны, и затем диффундируют в матрикс, тем самым снижая DmH + .

Подобным действием обладает и йодсодержащие гормоны щитовидной железы – тироксин и трийодтиронин.При состояниях, сопровождающихся гиперфункцией щитовидной железы (например, Базедова болезнь), больным не хватает энергии АТФ: они много едят (нужно большое количество субстратов для окисления), но при этом теряют в весе. Большая часть энергии выделяется в виде тепла.

Схема цепи митохондриального окисления не раскрывает механизма образования АТФ путем окислительного фософорилирования. Этот механизм объясняется гипотезой П.Митчелла.

ТЕОРИЯ СОПРЯЖЕНИЯ ОКИСЛЕНИЯ И ФОСФОРИЛИРОВАНИЯ ПИТЕРА МИТЧЕЛЛА.

Известно, что через мембрану митохондрии могут свободно проникать только небольшие незаряженные молекулы, а также гидрофобные молекулы. Энергия, которая выделяется при переносе электронов по цепи МтО, приводит к переносу протонов (Н +) из матрикса митохондрии в межмембранное пространство. Поэтому на внутренней мембране митохондрий образуется градиент концентраций протонов: в межмембранном пространстве Н + становится много, а в матриксе остается мало. Образуется разность потенциалов 0.14V - наружная часть мембраны заряжена положительно, а внутренняя - отрицательно. Накопившиеся в межмембранном пространстве Н + стремятся выйти обратно в матрикс по градиенту их концентраций, но митохондриальная мембрана для них непроницаема. Единственный обратный путь в матрикс для протонов - через протонный канал фермента АТФ-синтетазы, которая встроена (built-in) во внутреннюю мембрану митохондрий. При движении протонов по этому каналу в матрикс их энергия используется АТФ-синтазой для синтеза АТФ. Синтезируется АТФ в матриксе митохондрий.

После синтеза АТФ переносится в цитоплазму путем облегчённой диффузии по градиенту концентраций, поскольку основные процессы, в которых АТФ потребляется, протекают в цитоплазме.

Как происходит транспорт АТФ из митохондрий в цитоплазму?

Для этого используется специфический для АТФ транспортный белок - АТФ/АДФ-транслоказа. Это интегральный белок, локализован во внутренней мембране митохондрий.

Во внутренней мембране митохондрий есть белок-переносчик - АТФ/АТФ-транслоказа, который имеет 2 центра связывания: со стороны матрикса для АТФ, снаружи - для АДФ. При изменении конформации АТФ/АДФ-транслоказы АДФ переносится в матрикс, а АТФ - в межмембранное пространство, а затем - в цитоплазму, где используется.

Для образования АТФ в матрикс всё время должен поступать неорганический фосфат (Ф). Для этого во внутренней мембране митохондрий есть транспортная система, которая обеспечивает перенос фосфата в матрикс сопряженно с переносом Н + . Это белок-переносчик, который имеет 2 центра связывания: для Ф и Н + . Ф и Н + вместе переносятся из межмембранного пространства в матрикс.

Известны некоторые вещества, которые способны разобщать процессы окисления и фосфорилирования, приводя тем самым к уменьшению коэффициента р/о. К ним относятся йодсодержащие гормоны щитовидной железы (тироксин, трийодтиронин), а также некоторые ксенобиотики (например, 2,4-динитрофенол). Такие вещества известны под общим названием «РАЗОБЩАЮЩИЕ ЯДЫ». Как действуют вещества-разобщители окисления и фосфорилирования? Они могут образовывать собственные протонные каналы во внутренней мембране митохондрий. Поэтому часть протонов, вместо того, чтобы идти обратно в матрикс по протонному каналу АТФ-синтетазы, уходит туда по каналам веществ-разобщителей. В результате АТФ образуется меньше, и часть энергии выделяется в виде тепла.

АВТОНОМНАЯ САМОРЕГУЛЯЦИЯ СИСТЕМЫ МИТОХОНДРИАЛЬНОГО ОКИСЛЕНИЯ

Если клетка организма находится в условиях покоя, то АТФ мало используется и накапливается. Поэтому снижается концентрация АДФ и Ф. В этих условиях АТФ-синтетаза уже не получает из цитоплазмы достаточно фосфата и АДФ для синтеза АТФ. Её активность понижается, и скорость движения протонов из межмембранного пространства в матрикс по протонному каналу этого фермента тоже падает. Поэтому сохраняется высокий градиент концентраций протонов на внутренней мембране митохондрий. В этих условиях энергии переноса водорода по цепи митохондриального окисления уже не хватает для выталкивания Н + из матрикса в межмембранное пространство. Перенос водорода по цепи МтО тормозится и прекращается окисление субстратов.

Метаболизм в клетке регулируется отношением АТФ/АДФ. Это отношение характеризует энергетический заряд клетки.

В норме ЭЗК = 0.85-0.90. Может изменяться от 0 до 1. Высокий ЭЗК тормозит синтез АТФ, и активирует использование АТФ (АТФ-------> АДФ + Ф)

БИОЛОГИЧЕСКАЯ РОЛЬ МИТОХОНДРИАЛЬНОГО ОКИСЛЕНИЯ

Главная его функция - обеспечение организма запасами энергии в форме АТФ.

Именно митохондрии поставляют клетке бо льшую часть необходимого ей АТФ.

В сутки синтезируется до 62 кг АТФ, хотя одновременно в организме никогда не бывает больше 30-40 граммов этого вещества. Т.е. наблюдается очень быстрое восстановление расходуемых молекул АТФ.


 
Статьи по теме:
Притяжательные местоимения в русском языке
Русский язык богат, выразителен и универсален. Одновременно с этим он является весьма сложным языком. Чего стоят одни склонения или спряжения! А разнообразие синтаксического строя? Как быть, например, англичанину, привыкшему к тому, что в его родном языке
Святая праведная анна, мать пресвятой богородицы
Все о религии и вере - "молитва св праведной анне" с подробным описанием и фотографиями.Память: 3 / 16 февраля, 28 августа / 10 сентября Праведная Анна Пророчица происходила из колена Асирова, была дочерью Фануила. Вступив в брак, она прожила с мужем 7 ле
Психология богатства: привлекаем деньги и успех силой мысли
Материальное благополучие - то, к чему стремится каждый человек. Для того, чтобы деньги всегда водились в кошельке, а дела завершались успешно, важно иметь не только хорошие профессиональные навыки, но и соответствующее мышление. Силой мысли можно воплоти
Полтавское высшее военное командное училище связи
ПВИС - Полтавский Военный Институт Связи - высшее военное учебное заведение, выпускавшее офицеров-связистов для вооружённых сил СССР и Украины. История института 11 января в 1968 году было подписано Постановление Совета Министров СССР за №27, а 31 янва